## Example Sheet 1 Getting to know Matlab

Using examples from the lectures, try the following problems. They are not compulsory. If you like any help or comments, please email your code and question to Polina Vytnova (P.Vytnova@warwick.ac.uk). I am happy to help when you get stuck and nothing comes to mind after some thinking.

Q1. (a) Given a matrix $A$ how would you find a product of all its elements?
(b) Calculate $n$ ! for $n=10,20$

Q2. Find the sum of cubes of all prime numbers from 1 to 1000 . Hint: read help isprime.
Q3. Read help plot and help cumsum. Plot the graph of the function $f(n)=\sum_{j=1}^{n} \frac{1}{j^{2}}-\frac{\pi^{2}}{6}$ on the interval $[1 ; 30]$.
$4^{* *}$. Find the last 100 digits and the first 100 digits of 100 !. Warning: this question is very hard!

Q5. (a) Calculate the sum of binomial coefficients $\sum_{k=1}^{n}\binom{n}{k}$ for $n=10$. Verify it is 1024.
(b) Plot the function $f_{n}(k)=\frac{1}{2^{k}}\binom{n}{k}$ for $n=30,50,100$. (Use hold on to plot all of them on the same picture). This is the density of binomial distribution, it is important in probability theory. Hint: you can apply factorial function to matrices: analyse

```
    factorial(k)./(factorial([0:k]).*factorial(k-[0:k]))
```

