Example Sheet 2

Advanced Matrix Manipulations

Using examples from the lectures, try the following problems. They are not compulsory. If you like any help or comments, please email your code and question to Polina Vytnova (P.Vytnova@warwick.ac.uk). I am happy to help when you get stuck and nothing comes to mind after some thinking.

Q0. First of all, set the output format to long: run format long.

Q1. Solve the linear equation $A x=b$, for a 30 -by- 30 matrix A given by

$$
A=\left(\begin{array}{cccccccc}
4 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 4
\end{array}\right)
$$

and a vector $b \in \mathbb{R}^{30}$ with coefficients $b_{i}=\cos \left(\frac{\pi(i-1)}{31}\right)-\cos \left(\frac{\pi(i+1)}{31}\right)$. Plot the coordinates of the vector x versus the coordinate number: $\left(i, x_{i}\right)$.

Q2. Find the determinant of the $n \times n$ matrix

$$
F_{n}=\left(\begin{array}{cccccccc}
1 & 1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

for $n=3,4,5,6$. Can you suggest a general formula for $\operatorname{det}\left(F_{n}\right)$ as a function of n ?
**Prove your conjecture rigorously.

Q3. The Hilbert H_{n} matrix is a $n \times n$ matrix with elements $h_{i j}=1 /(i+j-1)$. Find the inverse of the Hilbert H_{5} and H_{8} matrices and make sure that every element of the inverse
matrix is an integer, and check that the sum of elements of the inverse matrix is n^{2} in each case. Then compare the sum of elements of the matrices H_{10} and H_{1000} with 100 and 10^{6}, respectively. Make an observation.

Q4. The Vandermonde matrix is

$$
V_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & \ldots & x_{n-2} & x_{n-1} & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} & \ldots & x_{n-2}^{2} & x_{n-1}^{2} & x_{n}^{2} \\
x_{1}^{3} & x_{2}^{3} & x_{3}^{3} & x_{4}^{3} & \ldots & x_{n-2}^{3} & x_{n-1}^{3} & x_{n}^{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & x_{4}^{n-1} & \ldots & x_{n-2}^{n-1} & x_{n-1}^{n-1} & x_{n}^{n-1} \\
x_{1}^{n} & x_{2}^{n} & x_{3}^{n} & x_{4}^{n} & \ldots & x_{n-2}^{n} & x_{n-1}^{n} & x_{n}^{n}
\end{array}\right)
$$

Calculate the determinant of the following Vandermonde matrices $V_{3}(1,2,3), V_{4}(1,2,3,4)$, $V_{4}(2,3,4,5), V_{5}(1,2,3,4,5)$. State a conjecture about the determinant $\operatorname{det}\left(V_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$.
${ }^{* *}$ Prove your conjecture rigorously.

Q5. The Combinatorial matrix is a $n \times n$ matrix given by

$$
C_{n}(x, y)=\left(\begin{array}{cccccc}
x+y & y & y & \ldots & y & y \\
y & x+y & y & \ldots & y & y \\
y & y & x+y & \ldots & y & y \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
y & y & y & \ldots & x+y & y \\
y & y & y & \ldots & y & x+y
\end{array}\right)
$$

Calculate the determinant of a few combinatorial matrices, suggest a general formula for the determinant, and prove your conjecture rigorously.

