Example Sheet 2 Advanced Matrix Manipulations

Using examples from the lectures, try the following problems. They are not compulsory. If you like any help or comments, please email *your code and question* to Polina Vytnova (P.Vytnova@warwick.ac.uk). I am happy to help when you get stuck and nothing comes to mind after some thinking.

- Q0. First of all, set the output format to long: run format long.
- Q1. Solve the linear equation Ax = b, for a 30-by-30 matrix A given by

and a vector $b \in \mathbb{R}^{30}$ with coefficients $b_i = \cos(\frac{\pi(i-1)}{31}) - \cos(\frac{\pi(i+1)}{31})$. Plot the coordinates of the vector x versus the coordinate number: (i, x_i) .

Q2. Find the determinant of the $n \times n$ matrix

$$F_n = \begin{pmatrix} 1 & 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 1 \end{pmatrix}$$

$$F_3 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

for n = 3, 4, 5, 6. Can you suggest a general formula for $\det(F_n)$ as a function of n?

**Prove your conjecture rigorously.

Q3. The Hilbert H_n matrix is a $n \times n$ matrix with elements $h_{ij} = 1/(i+j-1)$. Find the inverse of the Hilbert H_5 and H_8 matrices and make sure that every element of the inverse

MA124 Example Sheet 2

matrix is an integer, and check that the sum of elements of the inverse matrix is n^2 in each case. Then compare the sum of elements of the matrices H_{10} and H_{1000} with 100 and 10⁶, respectively. Make an observation.

Q4. The Vandermonde matrix is

$$V_n(x_1, x_2, \dots, x_n) = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \dots & x_{n-2} & x_{n-1} & x_n \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 & \dots & x_{n-2}^2 & x_{n-1}^2 & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 & \dots & x_{n-2}^3 & x_{n-1}^3 & x_n^3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & x_4^{n-1} & \dots & x_{n-2}^{n-1} & x_{n-1}^{n-1} & x_n^{n-1} \\ x_1^n & x_2^n & x_3^n & x_4^n & \dots & x_{n-2}^n & x_{n-1}^n & x_n^n \end{pmatrix}$$

Calculate the determinant of the following Vandermonde matrices $V_3(1,2,3)$, $V_4(1,2,3,4)$, $V_4(2,3,4,5)$, $V_5(1,2,3,4,5)$. State a conjecture about the determinant $\det(V_n(x_1,x_2,\ldots,x_n))$.

**Prove your conjecture rigorously.

Q5. The Combinatorial matrix is a $n \times n$ matrix given by

$$C_n(x,y) = \begin{pmatrix} x+y & y & y & \dots & y & y \\ y & x+y & y & \dots & y & y \\ y & y & x+y & \dots & y & y \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ y & y & y & \dots & x+y & y \\ y & y & y & \dots & y & x+y \end{pmatrix}$$

Calculate the determinant of a few combinatorial matrices, suggest a general formula for the determinant, and prove your conjecture rigorously.

MA124 Example Sheet 2