Useful Calculus Formulae

Using examples from the lectures, try the following problems. They are not compulsory. If you like any help or comments, please email your code and question to Polina Vytnova (P.Vytnova@warwick.ac.uk). I am happy to help when you get stuck and nothing comes to mind after some thinking.

Q0. First of all, set the output format to long: run format long.
Q1. Put yourself in Euler's place, looking for a way to extend n ! to non-integer values of n. Observe that

$$
\frac{\left(n+\frac{1}{2}\right)!}{n!} \cdot \frac{\left(\left(n+\frac{1}{2}\right)+\frac{1}{2}\right)!}{\left(n+\frac{1}{2}\right)!}=\frac{(n+1)!}{n!}=n+1
$$

therefore $\frac{\left(n+\frac{1}{2}\right)!}{n!} \approx \sqrt{n}$. Using a similar identity check that $\frac{\left(n+\frac{1}{3}\right)!}{n!} \approx \sqrt[3]{n}$. Make a conjecture about the ratio $\frac{(n+x)!}{n!}$ for large $n \gg 1$. Is your conjecture correct for integer x ? Does it say anything about the value of x ! for non-integer x ?

Q2. Prove rigorously the following inequality for integer $n \geq 1$:

$$
\frac{n^{n}}{e^{n-1}} \leq n!\leq \frac{n^{n+1}}{e^{n-1}}
$$

(Hint: for any $x \in \mathbb{R}$ we have $1+x<e^{x}$.) Using Matlab find the smallest n such that

$$
\frac{1}{n!} \cdot\left(\frac{n^{n} \cdot(n-1)}{e^{n-1}}\right) \leq 10^{-5}
$$

How accurate is the approximation for n ! given by the Stirling formula?
Q3. Consider the harmonic sums $H_{k}:=\sum_{j=1}^{k} \frac{1}{j}$. Calculate the difference

$$
f(n)=\sum_{k=1}^{n} H_{k}-\sum_{k=1}^{n} \ln k
$$

What can you say about the ratio $\frac{f(n)}{n}$ for large $n \gg 1$?
Q4. Monte Carlo numerical integration method suggests to take n random numbers (use rand function to generate random vectors) from the interval $[a ; b]$ and calculate the limit

$$
I_{n}=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{j=1}^{n} f\left(x_{j}\right)
$$

Let $f(x)=\sqrt{4-x^{2}}$. Calculate I_{n} for $n=10, \ldots, 100$ and compare it with the real value, for example, plot the difference $\delta_{n}:=\int_{-2}^{2} f(x) \mathrm{d} x-I_{n}$ against n. Does there exist N such that for $n>N$ the difference δ_{n} is less than 10^{-4} ? 10^{-5} ? 10^{-6} ? Make an observation.

Q5. How many lineary independent vectors in n-dimensional space with k entries equal to 1 are there? Plot a graph (quantity versus k) for $n=50$.

