MA222

Example Sheet 1 Getting to know Metric Spaces

Hand in solutions to the Problems P7 and P9. Deadline: 2pm, Thursday 24th of January. By the unit ball we understand a ball centred at the origin with radius 1.

 $\begin{aligned} \mathbf{P1.} \quad \text{Let's assume that } 0$

- (a) Determine which of the f_k define a metric on \mathbb{R}^2 .
- (b) For every metric sketch the unit ball and another two balls of your choice. Determine whether or not they are convex.
- (c)* For each pair of metrics f_k and f_j , decide whether there exist constants A > 0 and B such that for any $P_1, P_2 \in \mathbb{R}^2$

$$A \cdot f_k(P_1, P_2) \le f_j(P_1, P_2) \le B \cdot f_k(P_1, P_2).$$

P2. Let $\Sigma = \{0,1\}^{\mathbb{N}}$ be the set of sequences of zeros and ones. Define $d: \Sigma \times \Sigma \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 2^{-n}, & \text{if } x_j = y_j \text{ for all } 0 \le j < n \text{ and } x_n \ne y_n, \\ 0, & \text{if } x = y. \end{cases}$$

- (a) Show that d is a metric on Σ . It is called *the Hausdorff metric* on the space of sequences.
- (b) Describe the open unit ball and the closed ball of radius $\frac{1}{10}$ centred at $x_j = 1 \ \forall j$.

P3. Let *p* be a prime number. Define $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ by

$$d_p(x,y) = \begin{cases} p^{-k}, & \text{if } p^k \mid |x-y| \text{ and } p^{k+1} \nmid |x-y| \text{ for some } k \in \mathbb{N}, \\ 0, & \text{if } x = y. \end{cases}$$

- (a) Show that d is a metric on \mathbb{Z} . It is called a *p*-adic metric on \mathbb{Z} .
- (b) Describe the open and closed unit balls and the open ball of radius p^{-2} centred at 1.
- (c) In the case p = 2 find a connection between the Hausdorff metric on $\{0, 1\}^{\mathbb{N}}$ and d_2 .

P4. Let E be a finite set and let \mathcal{E} be the set of subsets of E.

- (a) Show that $d(A, B) = \operatorname{Card}(A \triangle B)$ is a metric on \mathcal{E} . It is called the Hamming distance.
- (b) Describe the open and closed unit balls centred at the empty set $A = \emptyset$.

P5. Let (M, d) be a metric space. Which of the following functions define a metric on M?

(1)
$$\rho_1(x, y) = \min(1, d(x, y));$$
 (2) $\rho_2(x, y) = d(x, y) + |f(x) - f(y)|$ where $f: M \to \mathbb{R};$
(3) $\rho_3(x, y) = \rho_1(x, y) - \rho_2(x, y);$ (4) $\rho_4(x, y) = \alpha \rho_1(x, y) + (1 - \alpha)\rho_2(x, y), 0 < \alpha < 1;$
(5) $\rho_5(x, y) = \frac{d(x, y)}{1 + d(x, y)}.$

P6. Let (M_1, ρ_1) and (M_2, ρ_2) be two metric spaces. Show that the following expressions define a metric on $M_1 \times M_2$.

(a)
$$d_1((x_1, y_1), (x_2, y_2)) = \rho_1(x_1, x_2) + \rho_2(y_1, y_2)$$

(b) $d_1((x_1, y_1), (x_2, y_2)) = \max(\rho_1(x_1, x_2), \rho_2(y_1, y_2))$

P7. Determine whether or not the following subsets are open or closed.

- (1) $\mathbb{Q} \subset \mathbb{R}$, with respect to the discrete metric,
- (2) $\{(x,y) \in \mathbb{R}^2 \mid xy < 7\} \subset \mathbb{R}^2$, with respect to the Manhattan metric,

(3)
$$\left\{ (x, y, z) \in \mathbb{R}^3 \left| \frac{e^{x - y^2 + z^3}}{2 + x - y - z} > 1 \right\} \subset \mathbb{R}^3 \text{ with respect to the Euclidean metric.} \right\}$$

P8. Let ρ be a metric on the product space $M_1 \times M_2$ which satisfies $\rho((x_1, y_1), (x_2, y_2)) = \rho_1(x_1, x_2) + \rho_2(y_1, y_2)$ Is it true that ρ_1 defines a metric on M_1 ?

P9. Establish the following facts.

- (a) A subset of a metric space is open if and only if it is a union of open balls.
- (b) A closed ball is a closed set (directly from definition).

P10. Let ρ be the Euclidean metric on \mathbb{R} and let d be the discrete metric on \mathbb{R} . Is the identity map $(\mathbb{R}, \rho) \to (\mathbb{R}, d)$ continuous? Is its inverse continuous?

P11. Define a metric d on \mathbb{Q} such that the induced metric on $\mathbb{Z} \subset \mathbb{Q}$ agrees with the *p*-adic metric.

P12. Let *M* be a linear space over \mathbb{C} and let (M, d) be a metric space. Is it true that $(M, (d(\cdot, 0)))$ is a normed linear space?