MA222
 Example Sheet 1 Getting to know Metric Spaces

Hand in solutions to the Problems P7 and P9. Deadline: 2pm, Thursday 24th of January. By the unit ball we understand a ball centred at the origin with radius 1 .

P1. Let's assume that $0<p<1$, let $\|\cdot\|$ stand for the Euclidean distance. Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two points. Consider functions $f_{k}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by
(1) $f_{1}\left(P_{1}, P_{2}\right)=\sin ^{2}\left(\left|x_{1}-x_{2}\right|\right)+\sin ^{2}\left(\left|y_{1}-y_{2}\right|\right)$,
(2) $f_{2}\left(P_{1}, P_{2}\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$
(3) $f_{3}\left(P_{1}, P_{2}\right)= \begin{cases}\left\|P_{1}-P_{2}\right\|, & \text { if } P_{1}=\alpha P_{2} \text { for some } \alpha \in \mathbb{R} \\ \left\|P_{1}\right\|+\left\|P_{2}\right\|, & \text { otherwise. }\end{cases}$
(4) $f_{4}\left(P_{1}, P_{2}\right)= \begin{cases}\left|y_{1}-y_{2}\right|, & \text { if } x_{1}=x_{2}, \\ \left|y_{1}\right|+\left|y_{2}\right|+\left|x_{1}-x_{2}\right|, & \text { otherwise. }\end{cases}$
(5) $f_{5}\left(P_{1}, P_{2}\right)=\left|x_{1}-x_{2}\right|^{p}+\left|y_{1}-y_{2}\right|^{p}$,
(6) $f_{6}\left(P_{1}, P_{2}\right)=\left(\left|x_{1}-x_{2}\right|^{p}+\left|y_{1}-y_{2}\right|^{p}\right)^{1 / p}$.
(a) Determine which of the f_{k} define a metric on \mathbb{R}^{2}.
(b) For every metric sketch the unit ball and another two balls of your choice. Determine whether or not they are convex.
(c)* For each pair of metrics f_{k} and f_{j}, decide whether there exist constants $A>0$ and B such that for any $P_{1}, P_{2} \in \mathbb{R}^{2}$

$$
A \cdot f_{k}\left(P_{1}, P_{2}\right) \leq f_{j}\left(P_{1}, P_{2}\right) \leq B \cdot f_{k}\left(P_{1}, P_{2}\right)
$$

P2. Let $\Sigma=\{0,1\}^{\mathbb{N}}$ be the set of sequences of zeros and ones. Define $d: \Sigma \times \Sigma \rightarrow \mathbb{R}$ by

$$
d(x, y)= \begin{cases}2^{-n}, & \text { if } x_{j}=y_{j} \text { for all } 0 \leq j<n \text { and } x_{n} \neq y_{n} \\ 0, & \text { if } x=y\end{cases}
$$

(a) Show that d is a metric on Σ. It is called the Hausdorff metric on the space of sequences.
(b) Describe the open unit ball and the closed ball of radius $\frac{1}{10}$ centred at $x_{j}=1 \forall j$.

P3. Let p be a prime number. Define $d: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ by

$$
d_{p}(x, y)= \begin{cases}p^{-k}, & \text { if } p^{k}| | x-y \mid \text { and } p^{k+1} \nmid|x-y| \text { for some } k \in \mathbb{N} \\ 0, & \text { if } x=y\end{cases}
$$

(a) Show that d is a metric on \mathbb{Z}. It is called a p-adic metric on \mathbb{Z}.
(b) Describe the open and closed unit balls and the open ball of radius p^{-2} centred at 1 .
(c) In the case $p=2$ find a connection between the Hausdorff metric on $\{0,1\}^{\mathbb{N}}$ and d_{2}.

P4. Let E be a finite set and let \mathcal{E} be the set of subsets of E.
(a) Show that $d(A, B)=\operatorname{Card}(A \triangle B)$ is a metric on \mathcal{E}. It is called the Hamming distance.
(b) Describe the open and closed unit balls centred at the empty set $A=\varnothing$.

P5. Let (M, d) be a metric space. Which of the following functions define a metric on M ?
(1) $\rho_{1}(x, y)=\min (1, d(x, y))$;
(2) $\rho_{2}(x, y)=d(x, y)+|f(x)-f(y)|$ where $f: M \rightarrow \mathbb{R}$;
(3) $\rho_{3}(x, y)=\rho_{1}(x, y)-\rho_{2}(x, y)$;
(4) $\rho_{4}(x, y)=\alpha \rho_{1}(x, y)+(1-\alpha) \rho_{2}(x, y), 0<\alpha<1$;
(5) $\rho_{5}(x, y)=\frac{d(x, y)}{1+d(x, y)}$.

P6. Let $\left(M_{1}, \rho_{1}\right)$ and $\left(M_{2}, \rho_{2}\right)$ be two metric spaces. Show that the following expressions define a metric on $M_{1} \times M_{2}$.
(a) $d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\rho_{1}\left(x_{1}, x_{2}\right)+\rho_{2}\left(y_{1}, y_{2}\right)$
(b) $d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left(\rho_{1}\left(x_{1}, x_{2}\right), \rho_{2}\left(y_{1}, y_{2}\right)\right)$

P7. Determine whether or not the following subsets are open or closed.
(1) $\mathbb{Q} \subset \mathbb{R}$, with respect to the discrete metric,
(2) $\left\{(x, y) \in \mathbb{R}^{2} \mid x y<7\right\} \subset \mathbb{R}^{2}$, with respect to the Manhattan metric,
(3) $\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{e^{x-y^{2}+z^{3}}}{2+x-y-z}>1\right.\right\} \subset \mathbb{R}^{3}$ with respect to the Euclidean metric.

P8. Let ρ be a metric on the product space $M_{1} \times M_{2}$ which satisfies $\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$ $\rho_{1}\left(x_{1}, x_{2}\right)+\rho_{2}\left(y_{1}, y_{2}\right)$ Is it true that ρ_{1} defines a metric on M_{1} ?

P9. Establish the following facts.
(a) A subset of a metric space is open if and only if it is a union of open balls.
(b) A closed ball is a closed set (directly from definition).

P10. Let ρ be the Euclidean metric on \mathbb{R} and let d be the discrete metric on \mathbb{R}. Is the identity $\operatorname{map}(\mathbb{R}, \rho) \rightarrow(\mathbb{R}, d)$ continuous? Is its inverse continuous?

P11. Define a metric d on \mathbb{Q} such that the induced metric on $\mathbb{Z} \subset \mathbb{Q}$ agrees with the p-adic metric.

P12. Let M be a linear space over \mathbb{C} and let (M, d) be a metric space. Is it true that $(M,(d(\cdot, 0))$ is a normed linear space?

