MA222

Example Sheet 3 Getting to know Topological Spaces

Hand in solutions to the Problems P9 and P10. Deadline: 2pm, Thursday 7th of February. Given a set $A \subset X$ denote by \overline{A} its closure, \overline{A}° stands for the interior of the closure, and by $\partial_X A$ we understand the boundary of A in X.

Problems P11–P14 are for *independent practice*.

P1. Let (X, d) be a metric space with the discrete metric. Show that the induced topology consists of all the subsets of X.

P2. Show that for any set X we have that $\mathcal{T} = \{\emptyset, X\}$ is a topology. We call $\{\emptyset, X\}$ the *indiscrete* topology on X.

P3. Show that a pair of metrics generating the same topology are not necessarily equivalent. In other words, give an example of a pair of metrics d_1 and d_2 on \mathbb{R} generating the same topology such that

 $\forall K > 0 \in \mathbb{R} \exists x, y \in \mathbb{R} : Kd_1(x, y) \ge d_2(x, y) \text{ or } d_2(x, y) \ge K^{-1}d_1(x, y)$

P4. Describe all open sets in the topology on \mathbb{R} whose basis consists of intervals $(a, +\infty)$ where $a \in \mathbb{R}$.

P5. Decide whether the following statements hold for every subset A of every topological space X: (a) $\overline{A}^{\circ} = A^{\circ}$. (b) $\overline{\overline{A}}^{\circ\circ} = \overline{A}^{\circ}$. (c) $\overline{A} = A \cup \partial A$. (d) $A^{\circ} = A \setminus \partial A$. (e) $\partial A = A \setminus A^{\circ}$. (f) $\partial A = \overline{A} \setminus A^{\circ}$.

P6. In \mathbb{R}^2 with the Euclidean topology find the interior, the closure and the boundary of

(1) $\mathbb{R} \times \mathbb{Q}$; (2) $\mathbb{Q} \times \mathbb{Q}$; (3) $\{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x^2 + y^2 < 1\}$; (4) $\mathbb{R}^2 \setminus \mathbb{Z}^2$.

Also decide whether these sets are open, closed or neither, and consider the same questions about the first three sets in the space $\mathbb{R} \times \mathbb{Q}$.

P7. If S is a subspace of a topological space X and $H \subset S$, it is true that $\partial_S H = S \cap \partial_X H$? Also state and answer analogous questions for closure and interior.

P8. Let f be a continuous real-valued function on a topological space X. Is it necessarily true that $\partial \{x \in X : f(x) > 0\} = \{x \in X : f(x) = 0\}$?

P9. Consider \mathbb{R} with Zariski topology. Find the closure, the interior, and the boundary of a finite open interval $(a, b) \subset \mathbb{R}$.

P10. Let \mathcal{T}_{ℓ} , \mathcal{T}_{r} be topologies on \mathbb{R} with bases consisting of all half-open intervals [a, b) and (a, b], respectively.

- 1. Find the closure of (0, 1) in \mathcal{T}_{ℓ} and in \mathcal{T}_{r} .
- 2. Among the three topologies \mathcal{T}_{ℓ} , \mathcal{T}_{r} and Euclidean, can you find the coarsest one and/or the finest one? (If $\mathcal{T} \subset \mathcal{T}'$, then \mathcal{T} is *coarser* than \mathcal{T}' and \mathcal{T}' is *finer* than \mathcal{T} .)
- 3. Show that the subspace $\{(x, x) : x \in \mathbb{R}\}$ of $(\mathbb{R}, \mathcal{T}_{\ell}) \times (\mathbb{R}, \mathcal{T}_{r})$ has the discrete topology; i.e. show that all the sets are open.
- \blacksquare P11. Let *F* be a finite set with more than one point. Show that
 - 1. Given a metric d on F the induced topology is the discrete topology.
 - 2. The indiscrete topology on F is not induced by any metric.
- ▶ P12. Establish the following facts.
 - 1. There is no largest closed set contained in the unit interval I = (0, 1) with the standard topology. In other words, show that for any closed subset $F \subsetneq I$ there is a closed $G \subset I$ such that $F \subsetneq G \subset I$.
 - 2. Show that the smallest (by inclusion) open set containing a set $E \subset \mathbb{R}$ may not exist.

▶ **P13.** Show that a pair of norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on a vector space \mathbb{V} generate the same topology if and only if

$$\exists K \in \mathbb{R} \ \forall x, y \in \mathbb{V} : K \| x - y \|_a \le \| x - y \|_b \le K^{-1} \| x - y \|_a.$$

 \blacksquare P14. Show that the set of prime numbers is infinite following H. Furstenberg¹.

Consider arithmetic progressions $S(a, b) = \{an + b : n \in \mathbb{Z}\}$ with $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z}$. We say that $U \subset \mathbb{Z}$ is open if and only if $\forall x \in U \exists a \in \mathbb{Z} \setminus \{0\}$ such that $S(a, x) \subset U$. Establish the following facts.

- 1. Open sets together with the empty set satisfy the axioms of topology and thus define a topology τ .
- 2. There is no finite non-empty sets in τ .
- 3. Every basis set S(a, b) is open and closed.

 $^{^{1}}$ There are many proofs that there exist an infinity of primes. This is a remarkable one published by Furstenberg in 1955 when he was still an undergraduate.

4.

$$\mathbb{Z} \setminus \bigcup_{p \text{ is a prime}} S(p,0) = \{-1,1\}.$$

Deduce that there are infinitely many prime numbers.