MA222

Example Sheet 4 Continuity, Metrizability, and Hausdorff property

Hand in solutions to the Problems P9 and P10. Deadline: 2pm, Thursday 14th of February. We consider the space \mathbb{R}^n with Euclidean topology, unless stated otherwise.

Problems P11–P14 are for independent practice.

- **P1.** Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be a pair of topological spaces.
 - 1. Show that $f: X \to Y$ is continuous if and only if $f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset X$.
 - 2. If $f: X \to Y$ is continuous, is it true that $f(\bar{A}) = \overline{f(A)}$?
- **P2.** Consider the space of sequences of real numbers $\ell(\mathbb{R})$ as a countable infinite product of copies of \mathbb{R} . Let $A := \{\{x_j\}_{j=1}^{\infty} \in \ell(\mathbb{R}) \mid \exists N \geq 1 \ \forall j \geq N \ x_j = 0\}$. Find the closure of A in the product topology.
- **P3.** Let X be infinite (for a specific example, take $X = \mathbb{Z}$ or $X = \mathbb{R}$). We say that $E \subset X$ lies in \mathcal{T}_X if either $E = \emptyset$ or $X \setminus E$ is finite. Show that \mathcal{T}_X is a topology and that every point set $\{x\}$ is closed, but that (X, \mathcal{T}_X) is not Hausdorff. What happens if X is finite?
- **P4.** Let (X, \mathcal{T}_X) be a topological space and let (Y, \mathcal{T}_Y) be a Hausdorff topological space. Show that for any pair of continuous functions $f, g: X \to Y$ the set $\{x \in X \mid f(x) = g(x)\}$ is closed.
- **P5.** Let H_1 and H_2 be collections of subsets of X_1 and X_2 , respectively. Let \mathcal{T}_j be the smallest topology on X_j containing H_j , j = 1, 2. Show that if a function $f: X_1 \to X_2$ has the property that $f^{-1}(H) \in H_1$ for any $H \in H_2$ then $f: (X_1, \mathcal{T}_1) \to (X_2, \mathcal{T}_2)$ is continuous.
- **P6.** Consider a function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} 0, & \text{if } x = y = 0\\ \frac{xy}{x^2 + y^2}, & \text{otherwise.} \end{cases}$$

- 1. Show that for any $x \in \mathbb{R}$ the function $h_x(y) = f(x,y)$ is continuous.
- 2. Show that for any $y \in \mathbb{R}$ the function $g_y(x) = f(x,y)$ is continuous.
- 3. Show, however, that f is not continuous.
- **P7.** Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and consider $X \times Y$ with the product topology. Let (Z, \mathcal{T}_Z) be a topological space. Show that the map $f: Z \to X \times Y$ is continuous if and only if $\pi_X \circ f: Z \to X$ and $\pi_Y \circ f: Z \to Y$ are continuous.

MA222 Example Sheet 4

P8. Let (X, \mathcal{T}) be a topological space and assume that \mathcal{T} is derived from a metric. Show that, for any given $x \in X$, there exists open sets U_j such that $\{x\} = \bigcap_{i=1}^{\infty} U_j$.

P9. Consider the space of functions $f: [0,1] \to \mathbb{R}$. Define a collection of subsets \mathcal{T} as follows. We say that $U \in \mathcal{T}$ if and only if for any $f_0 \in U$, there exists an $\varepsilon > 0$ and $x_1, x_2, \ldots, x_n \in [0,1]$ such that

$$\{f: [0,1] \to \mathbb{R} \mid |f(x_j) - f_0(x_j)| < \varepsilon \text{ for } 1 \le j \le n\} \subseteq U.$$

- 1. Show that \mathcal{T} is a topology.
- 2. Show that the topology \mathcal{T} is Hausdorff but cannot be derived from a metric.

P10. Consider \mathbb{R} with the Euclidean topology. Let $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Show that \sim is an equivalence relation. Show that \mathbb{R}/\sim uncountable and that the quotient topology on \mathbb{R}/\sim is the indiscrete topology. Hint: show that for any interval (a,b) we have that $\bigcup_{x \in (a,b)} \{x+q \mid q \in \mathbb{Q}\} = \mathbb{R}$.

P11. Sierpinski space is a topological space $S:=(\{0,1\},\mathcal{T})$ where $\mathcal{T}=\{\varnothing,\{1\},\{0,1\}\}$. Describe all continuous maps $f:S\to S$.

- ightharpoonup
 igh
 - 1. Find a set $A \subset \mathbb{R}$ such that $A, \overline{A}, \operatorname{Int}(\overline{A})$, and $\overline{\operatorname{Int}(\overline{A})}$ are all distinct.
 - 2. Show that for any $A \subset X$ we have that $\operatorname{Int}\left(\overline{\operatorname{Int}\left(\overline{A}\right)}\right) = \operatorname{Int}\left(\overline{A}\right)$.
 - 3. Deduce that, starting from a set $A \subset X$, the operations of taking interior and closure in various orders can produce at most seven different sets (including A itself).
 - 4. Find a set $A \subset \mathbb{R}$ with the standard topology such that the operations of taking closures and interiors in various orders produce exactly seven different sets.

▶ P13. Consider $E = \{(x, -1) \mid x \in \mathbb{R}\} \cup \{(x, 1) \mid x \in \mathbb{R}\} \subset \mathbb{R}^2$ with the subspace topology. Define a relation \sim on E by

$$(x,y) \sim (x,y)$$
 for all $(x,y) \in E$,
 $(x,y) \sim (x,-y)$ for all $(x,y) \in E$ with $x \neq 0$.

- 1. Show that that \sim is an equivalence relation on E.
- 2. Consider with E/\sim the quotient topology. Show for any $[(x,y)] \in E/\sim$ there exists an open neighbourhood U of [(x,y)] which is homeomorphic to \mathbb{R} .
- 3. Show that E/\sim is not Hausdorff.

MA222 Example Sheet 4

- ightharpoonup P14. Let (Y, \mathcal{T}_Y) be a topological space. Show that the following are equivalent.
 - 1. (Y, \mathcal{T}_Y) is Hausdorff.
 - 2. The diagonal $\{(y,y)\mid y\in Y\}\subset Y\times Y$ is closed with respect to the product topology.
 - 3. For any topological space (X, \mathcal{T}_X) and a pair of continuous functions $f, g: X \to Y$ the set $\{x \in X \mid f(x) = g(x)\}$ is closed.

MA222 Example Sheet 4