MA222
 Example Sheet 4 Continuity, Metrizability, and Hausdorff property

Hand in solutions to the Problems P9 and P10. Deadline: 2pm, Thursday 14th of February. We consider the space \mathbb{R}^{n} with Euclidean topology, unless stated otherwise.

Problems P11-P14 are for independent practice.

P1. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be a pair of topological spaces.

1. Show that $f: X \rightarrow Y$ is continuous if and only if $f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset X$.
2. If $f: X \rightarrow Y$ is continuous, is it true that $f(\bar{A})=\overline{f(A)}$?

P2. Consider the space of sequences of real numbers $\ell(\mathbb{R})$ as a countable infinite product of copies of \mathbb{R}. Let A : $=\left\{\left\{x_{j}\right\}_{j=1}^{\infty} \in \ell(\mathbb{R}) \mid \exists N \geq 1 \forall j \geq N x_{j}=0\right\}$. Find the closure of A in the product topology.

P3. Let X be infinite (for a specific example, take $X=\mathbb{Z}$ or $X=\mathbb{R}$). We say that $E \subset X$ lies in \mathcal{T}_{X} if either $E=\varnothing$ or $X \backslash E$ is finite. Show that \mathcal{T}_{X} is a topology and that every point set $\{x\}$ is closed, but that $\left(X, \mathcal{T}_{X}\right)$ is not Hausdorff. What happens if X is finite?

P4. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space and let $\left(Y, \mathcal{T}_{Y}\right)$ be a Hausdorff topological space. Show that for any pair of continuous functions $f, g: X \rightarrow Y$ the set $\{x \in X \mid f(x)=g(x)\}$ is closed.

P5. Let H_{1} and H_{2} be collections of subsets of X_{1} and X_{2}, respectively. Let \mathcal{T}_{j} be the smallest topology on X_{j} containing $H_{j}, j=1,2$. Show that if a function $f: X_{1} \rightarrow X_{2}$ has the property that $f^{-1}(H) \in H_{1}$ for any $H \in H_{2}$ then $f:\left(X_{1}, \mathcal{T}_{1}\right) \rightarrow\left(X_{2}, \mathcal{T}_{2}\right)$ is continuous.

P6. Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}0, & \text { if } x=y=0 \\ \frac{x y}{x^{2}+y^{2}}, & \text { otherwise }\end{cases}
$$

1. Show that for any $x \in \mathbb{R}$ the function $h_{x}(y)=f(x, y)$ is continuous.
2. Show that for any $y \in \mathbb{R}$ the function $g_{y}(x)=f(x, y)$ is continuous.
3. Show, however, that f is not continuous.

P7. Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are topological spaces and consider $X \times Y$ with the product topology. Let $\left(Z, \mathcal{T}_{Z}\right)$ be a topological space. Show that the map $f: Z \rightarrow X \times Y$ is continuous if and only if $\pi_{X} \circ f: Z \rightarrow X$ and $\pi_{Y} \circ f: Z \rightarrow Y$ are continuous.

P8. Let (X, \mathcal{T}) be a topological space and assume that \mathcal{T} is derived from a metric. Show that, for any given $x \in X$, there exists open sets U_{j} such that $\{x\}=\cap_{j=1}^{\infty} U_{j}$.

P9. Consider the space of functions $f:[0,1] \rightarrow \mathbb{R}$. Define a collection of subsets \mathcal{T} as follows. We say that $U \in \mathcal{T}$ if and only if for any $f_{0} \in U$, there exists an $\varepsilon>0$ and $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$ such that

$$
\left\{f:[0,1] \rightarrow \mathbb{R}| | f\left(x_{j}\right)-f_{0}\left(x_{j}\right) \mid<\varepsilon \text { for } 1 \leq j \leq n\right\} \subseteq U .
$$

1. Show that \mathcal{T} is a topology.
2. Show that the topology \mathcal{T} is Hausdorff but cannot be derived from a metric.

P10. Consider \mathbb{R} with the Euclidean topology. Let $x \sim y$ if and only if $x-y \in \mathbb{Q}$. Show that \sim is an equivalence relation. Show that \mathbb{R} / \sim uncountable and that the quotient topology on \mathbb{R} / \sim is the indiscrete topology. Hint: show that for any interval (a, b) we have that $\cup_{x \in(a, b)}\{x+q \mid q \in \mathbb{Q}\}=\mathbb{R}$.

P11. Sierpinski space is a topological space $S:=(\{0,1\}, \mathcal{T})$ where $\mathcal{T}=\{\varnothing,\{1\},\{0,1\}\}$. Describe all continuous maps $f: S \rightarrow S$.

P12. Let (X, \mathcal{T}) be a topological space.

1. Find a set $A \subset \mathbb{R}$ such that $A, \bar{A}, \operatorname{Int}(\bar{A})$, and $\overline{\operatorname{Int}(\bar{A})}$ are all distinct.
2. Show that for any $A \subset X$ we have that $\operatorname{Int}(\overline{\operatorname{Int}(\bar{A})})=\operatorname{Int}(\bar{A})$.
3. Deduce that, starting from a set $A \subset X$, the operations of taking interior and closure in various orders can produce at most seven different sets (including A itself).
4. Find a set $A \subset \mathbb{R}$ with the standard topology such that the operations of taking closures and interiors in various orders produce exactly seven different sets.

P13. Consider $E=\{(x,-1) \mid x \in \mathbb{R}\} \cup\{(x, 1) \mid x \in \mathbb{R}\} \subset \mathbb{R}^{2}$ with the subspace topology. Define a relation \sim on E by

$$
\begin{array}{rr}
(x, y) \sim(x, y) & \text { for all }(x, y) \in E, \\
(x, y) \sim(x,-y) & \text { for all }(x, y) \in E \text { with } x \neq 0 .
\end{array}
$$

1. Show that that \sim is an equivalence relation on E.
2. Consider with E / \sim the quotient topology. Show for any $[(x, y)] \in E / \sim$ there exists an open neighbourhood U of $[(x, y)]$ which is homeomorphic to \mathbb{R}.
3. Show that E / \sim is not Hausdorff.

P14. Let $\left(Y, \mathcal{T}_{Y}\right)$ be a topological space. Show that the following are equivalent.

1. $\left(Y, \mathcal{T}_{Y}\right)$ is Hausdorff.
2. The diagonal $\{(y, y) \mid y \in Y\} \subset Y \times Y$ is closed with respect to the product topology.
3. For any topological space $\left(X, \mathcal{T}_{X}\right)$ and a pair of continuous functions $f, g: X \rightarrow Y$ the set $\{x \in X \mid f(x)=g(x)\}$ is closed.
