## MA222

## Example Sheet 5 Normality and Compactness of Topological Spaces

Hand in solutions to the Problems P7, P10 and P11. Deadline: 2pm, Thursday 21st of February. We consider the space  $\mathbb{R}^n$  with Euclidean topology, unless stated otherwise.

Problems P12–P14 are for independent practice.

**P1.** Decide whether the following subspaces of  $\mathbb{R}$  or  $\mathbb{R}^2$  are compact or not:

$$(1) [0,1) \subset \mathbb{R}, \quad (2) \mathbb{N} \subset \mathbb{Q} \subset \mathbb{R}, \quad (3) \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}, \quad (4) \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\},$$

$$(5) \{(x,y) \in \mathbb{R}^2 \mid x^3 + y^3 = 1\}, \quad (6) \{(x,y) \in \mathbb{R}^2 \mid x \ge 1, 0 \le y \le 1/x\}, \quad (7) (-\infty, 0] \subset \mathbb{R}.$$

- **P2.** Establish the following facts.
  - 1. A finite set in any topological space is compact.
  - 2. The discrete topology on a set X is compact if and only if X is finite.
  - 3. Let X be uncountable. Consider a collection of subsets

$$\mathcal{T}_X = \{ A \subset X \mid X \setminus A \text{ is countable } \} \cup \{\emptyset\}.$$

Show that  $\mathcal{T}_X$  is a topology and that  $(X, \mathcal{T}_X)$  is not compact.

- **P3.** Show that any compact metric space has a countable dense subset.
- **P4.** Show that every injective continuous map of [0,1] to  $\mathbb{R}^2$  is a homeomorphism of [0,1] onto the image of [0,1]. Does the statement hold true for the open interval (0,1)?
- **P5.** Let  $\mathcal{U}$  be an open cover of a metric space (M,d). Consider a function

$$r(x) = \sup_{0 < r < 1} \{ r \mid B(x, r) \subset U \text{ for some } U \in \mathcal{U} \}$$

Is it continuous?

**P6.** Give an example of a non-Hausdorff topological space X and a sequence of non-empty compact sets  $F_1 \supset F_2 \ldots \supset F_n \ldots$  such that  $\bigcap_{j=1}^{\infty} F_j = \emptyset$ . Hint: Consider  $X = [0, +\infty)$  and a collection of infinite intervals  $\mathcal{T}_X = \{(a, +\infty) \mid a \geq 0\} \cup \{\emptyset, [0, +\infty)\}$  as a topology.

**P7.** Let X be a compact Hausdorff space and let  $f: X \to X$  be continuous. Show that there exists a non-empty subset  $A \subset X$  such that f(A) = A. (Hint: Consider the sets  $A_1 = X$ ,  $A_n = f(A_{n-1})$  and  $A = \bigcap_{n=1}^{\infty} A_n$ .)

MA222 Example Sheet 5

- **P8.** Establish the following facts.
  - 1. The set  $\{(x,y) \in \mathbb{C}^2 \mid y = \alpha x + \beta\}$  is a nowhere dense set for any  $\alpha, \beta \in \mathbb{C}$ .
  - 2. The set  $\{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$  is meagre in  $\mathbb{R}^2$  and is not homeomorphic to  $\mathbb{R}$ .
- **P9.** Show that a metric space (M, d) is compact if and only if every continuous function  $f: M \to \mathbb{R}$  is bounded. More precisely, establish the following.
  - 1. If (M, d) is compact and  $f: M \to \mathbb{R}$  is continuous, then for any sequence  $\{x_n\} \subset M$  the sequence  $\{f(x_n)\} \subset \mathbb{R}$  has a convergent subsequence. Deduce that f(M) is bounded.
  - 2. If (M, d) is not compact, then there exists an infinite set  $\{x_n\} \subset M$  such that for some  $\varepsilon_n > 0$  the closed balls  $B(x_n, \varepsilon_n)$  are pairwise disjoint. Construct a non-bounded continuous function  $f: M \to \mathbb{R}$  using the Tietze extension theorem.

Does the statement hold true for topological spaces?

**P10.** Let  $C \subset \ell_{\infty}(\mathbb{C})$  be the subspace of convergent sequences. Show that the map

$$f: C \to \mathbb{C}$$
  $f(\{x_n\}_{n=1}^{\infty}) = \lim_{n \to \infty} x_n$ 

has a continuous extensiion to  $\ell_{\infty}(\mathbb{C})$ .

- P11. Show that if  $f: (X, \mathcal{T}_X) \to [0, 1]$  is a continuous function separating two points  $x \neq y$  of a topological space X, i.e. f(x) = 0 and f(y) = 1, then  $\overline{f^{-1}([0, \frac{1}{4}))} \cap \overline{f^{-1}((\frac{3}{4}, 1])} = \emptyset$ .
- **P12.** Let (M, d) be a compact metric space and suppose that  $f: M \to M$  is a continuous map such that  $f(x) \neq x$  for any  $x \in M$ . Show that there exists a > 0 such that d(f(x), x) > a for all  $x \in M$ .
- **P13.** Let X be a compact Hausdorff space,  $A \subset X$  closed and  $x \notin A$ . Show that there is a compact set B with  $x \in Int(B)$  such that  $A \cap B = \emptyset$ .
- **P14.** Let  $I_n = (n, n+1)$  for all  $n \in \mathbb{Z}$ . Consider  $X = \mathbb{R} \cup \{p_0, p_1\}$ , where  $p_0, p_1 \notin \mathbb{R}$  and  $p_1 \neq p_0$ . Define a collection of sets

$$\mathcal{T}_X = \{ U \subset X \mid U \subset \mathbb{R} \text{ is open } \}$$
  
 $\cup \{ U \subset X \mid U \cap \mathbb{R} \text{ is open, } p_0 \in U, \text{ and } I_n \subseteq U \text{ for all but finitely many } n \geq 0 \}$   
 $\cup \{ U \subset X \mid U \cap \mathbb{R} \text{ is open, } p_1 \in U, \text{ and } I_n \subseteq U \text{ for all but finitely many } n \leq 0 \}$ 

Show that  $(X, \mathcal{T}_X)$  is Hausdorff but not normal.

MA222 Example Sheet 5