MA222

Example Sheet 6 Compactness and Uniform Continuity

Hand in solutions to the Problems P7, P10 and P11. Deadline: 2pm, Thursday 28th of February. We consider the space \mathbb{R}^n with Euclidean topology, unless stated otherwise. Problems P12–P15 are for *independent practice*.

- **P1.** Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on the same space X. Establish the following facts.
 - 1. The identity map Id: $(X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ is continuous if and only if $\mathcal{T}_2 \subset \mathcal{T}_1$.
 - 2. If $\mathcal{T}_1 \subset \mathcal{T}_2$ and (X, \mathcal{T}_2) is compact, then so is (X, \mathcal{T}_1) .
 - 3. If $\mathcal{T}_1 \subset \mathcal{T}_2$ and (X, \mathcal{T}_1) is Hausdorff, then so is (X, \mathcal{T}_2) .
 - 4. If $\mathcal{T}_1 \subset \mathcal{T}_2$, (X, \mathcal{T}_2) is compact and (X, \mathcal{T}_1) is Hausdorff, then $\mathcal{T}_1 = \mathcal{T}_2$.

P2. Let (X, \mathcal{T}_X) be a compact topological space and ~ be an equivalence relation on X. Show that the quotient topology on X/\sim is compact.

P3. Find an example to demonstrate the following facts.

- 1. There exists a Hausdorff space (X, \mathcal{T}_X) , a compact Hausdorff space (Y, \mathcal{T}_Y) and a continuous bijection $f: X \to Y$ which is not a homeomorphism.
- 2. There exists a compact Hausdorff space (X, \mathcal{T}_X) a compact space (Y, \mathcal{T}_Y) and a continuous bijection $f: X \to Y$ which is not a homeomorphism.

P4. Show that the set of integers with *p*-adic metric is a bounded metric space but there are infinite sequences which don't have a convergent subsequence.

P5. Decide whether or not a closed unit ball is compact in the following spaces.

- 1. The space of sequences $\{0,1\}^{\mathbb{N}}$ with the Hausdorff distance.
- 2. The space of bounded sequences $\ell_{\infty}(\mathbb{C})$.
- 3. The space of summable sequences $\ell_1(\mathbb{C})$.
- 4. The space of subsets of a finite set with the Hamming distance.
- 5. The space of continuous functions C([0, 1]) with the maximum norm.

P6. Let X = (0,1) and $G_n = (\frac{1}{n}, 1)$. Does a Lebesgue number exist for the open cover $\bigcup_{n=1}^{\infty} G_n$ of X?

P7. Give an example of a uniformly continuous function on \mathbb{R} differentiable everywhere save a finite set and with unbounded derivative.

P8. Describe all uniformly continuous functions (1) $f: \mathbb{Z} \to \mathbb{R}$ and (2) $g: \mathbb{R} \to \mathbb{Z}$

P9. Consider a sequence in a compact metric space $\{x_n\}_{n=1}^{\infty} \subset X$ and assume that there exists a unique point \tilde{x} such that any neighbourhood of \tilde{x} contains x_n for infinitely many n. Show that $\lim_{n\to\infty} x_n$ exists.

P10. Show that the image of a sequentially compact metric space under a continuous map is sequentially compact.

P11. Show directly from the definition that a product of countably many sequentially compact spaces is a sequentially compact space. (Hint: first show that a product of two (or any finite number) of sequentially compact spaces is sequentially compact).

▶ **P12.** Show that a space of continuous bounded functions $\mathbb{N} \to \mathbb{R}$ with the topology of pointwise convergence is not sequentially compact. Show that the space of all sequences $\ell([0,1]) = \{\{x_n\}_{n=1}^{\infty} \mid x_n \in [0,1]\}$ is compact in the topology of pointwise convergence.

▶ **P13.** Consider a topology \mathcal{T} on \mathbb{R} consists of all sets of the form $U \cup S$ where U is an open set for the usual Euclidean topology and $S \subset \mathbb{R} \setminus \mathbb{Q}$.

- 1. Show that \mathcal{T} is a topology. (It is called the "scattered topology".)
- 2. Show that \mathcal{T} is Hausdorff.
- 3. Show that a one-point set $\{x\}$ is open and compact if and only if $x \in \mathbb{R} \setminus \mathbb{Q}$.
- 4. Is $(\mathbb{R}, \mathcal{T})$ a normal topological space?

■ **P14.** Let X be a compact topological space and let Y be Hausdorff topolgical space. Denote by ~ an equivalence relation on X and assume that $f: X/\sim \to Y$ is a bijection. Let $\pi: X \to X/\sim$ be a projection $\pi(x) = [x]$.

- 1. Show that if $f \circ \pi \colon X \to Y$ is continuous then f is a homeomorphism.
- 2. Let D be a closed ball in \mathbb{R}^2 and let $S = \partial D$ be its boundary. Show that D/S is homeomorphic to a sphere (the boundary of an open ball) in \mathbb{R}^3 .
- **P15.** Let $C \subset \mathbb{R}$ be the Cantor set. Show that the set $C \times \overline{[0,1] \setminus C} \subset \mathbb{R}^2$ is compact.