MA222

Example Sheet 7 Connectedness in Topological Spaces

Hand in solutions to the Problems P4, P9 and P10. Deadline: 2pm, Thursday 7th of March. We consider the space \mathbb{R}^n with Euclidean topology, unless stated otherwise. Problems P5, P12, P13, and P14 are for *independent practice*.

- **P1.** Establish the following facts.
 - 1. If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, $E \subset X$ is a connected subset and $g: E \to Y$ is continuous, then g(E) is connected. (More briefly, the continuous image of a connected set is connected.)
 - 2. If (X, \mathcal{T}_X) is a connected topological space and \sim is an equivalence relation on X, then X/\sim with the quotient topology is connected.
 - 3. If $A \subset (X, \mathcal{T}_X) \times (Y, \mathcal{T}_Y)$ with the product topology is connected, then the projection $\pi_X(A) \subset (X, \mathcal{T}_X)$ is also connected.
 - 4. If (X, \mathcal{T}_X) is a connected topological space and $E \subset X$, then E with the subspace topology may not be connected.

P2. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X such that $\mathcal{T}_1 \subset \mathcal{T}_2$. Does any of the following hold true?

- 1. If (X, \mathcal{T}_1) is connected then (X, \mathcal{T}_2) is connected.
- 2. If (X, \mathcal{T}_2) is connected then (X, \mathcal{T}_1) is connected.

P3. Deduce the Intermediate Value Theorem from the Heine–Borel Theorem. Let $\overline{B(0,1)} \subset \mathbb{R}^n$ be the closed unit ball. Suppose $g: \overline{B(0,1)} \to \mathbb{R}$ is a continuous function with g(x) < c < g(y) for some $x, y \in \overline{B(0,1)}$. Consider $g^{-1}((-\infty,c))$ and $g^{-1}((c,+\infty))$ and show that there exists a $t \in \overline{B(0,1)}$ with g(t) = c.

P4. Let (X, d) be a metric space. Suppose that $E_1 \supset E_2 \supset \ldots \supset E_n \ldots$ are connected sets. Show that, if the E_j are compact, then $\bigcap_{i=1}^{\infty} E_j$ is compact and connected.

■ **P5.** Does there exist a non-empty connected bounded set $X \subset \mathbb{R}^2$ such that for any $\alpha, \beta \subset \mathbb{R}$ the intersection $X \cap \{(x, y) \in \mathbb{R}^2 \mid \alpha x + \beta = y\}$ is either empty or disconnected?

P6. Assuming A contains at least two points, show that a topological space (X, \mathcal{T}_X) is connected if and only if every continuous function $f: (X, \mathcal{T}_X) \to (A, \text{ discrete topology})$ is constant.

P7. Let X, Y be topological spaces and $y \in Y$. Show that the map f(x) = (x, y) from X to $X \times Y$ is a homeomorphism of X onto its image (i.e., onto $X \times \{y\}$). Deduce that if X is connected then $X \times \{y\}$ is connected for every y.

P8. Which of the following subsets of \mathbb{R}^2 is connected?

(1) {
$$(x, y) | x \in \mathbb{Q} \text{ or } y = 0$$
}, (2) { $(x, y) | x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}$ }
(3) { $(x, y) | (x + 1)^2 + y^2 < 1 \text{ or } (x - 1)^2 + y^2 \le 1$ }.

P9. Let $X \subset \mathbb{R}^n$ be an *n*-dimensional¹ connected set, $n \geq 2$.

- 1. Let z be a point in the interior of X. Show that $X \setminus \{z\}$ is connected.
- 2. Let $\overline{B(x,r)} \subset V \subset \text{Int}(X)$ be a closed ball, where $V \subset \mathbb{R}^k$ is a k-dimensional subset for $k \leq n$. Show that $X \setminus \overline{B(x,r)}$ is connected.

P10. Let C be a subset of a topological space such that \overline{C} is connected. Is it necessarily true that C is connected?

P11. Let (X, \mathcal{T}_X) be a topological space. For any subset $A \subset X$ we consider \overline{A} with respect to \mathcal{T}_X

- 1. Show that X is disconnected if and only if there are nonempty sets $A, B \subset X$ such that $X = A \cup B$ and $\overline{A} \cap \overline{B} = \emptyset$.
- 2. Give an example of a disconnected subspace $Y \subset X$ for which there are no nonempty sets $A, B \subset Y$ such that $Y = A \cup B$ and $\overline{A} \cap \overline{B} = \emptyset$.
- 3. Show that a subspace $Y \subset X$ is disconnected if and only if there are nonempty sets $A, B \subset Y$ such that $Y = A \cup B$ and $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

• P12. Show that there is no continuous injective map $f : \mathbb{R}^2 \to \mathbb{R}$.

▶ **P13.** Divide the unit ball $B(0,1) \subset \mathbb{R}^n$ into two disjoint everywhere dense connected sets, considering the metrics induced by the following norms.

- 1. n = 2 and $||x||_{\infty} = \max\{|x_1|, |x_2|\}.$
- 2. n = 2 and with the Euclidean norm.

3. n = 3 with $||x||_1 = |x_1| + |x_2| + |x_3|$.

\overset{\bullet}{\amalg} P14. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that the graph of f' is connected. The first student sending me a correct solution to this problem will receive a chocolate bar.

¹We say that a subset of \mathbb{R}^n is *n*-dimensional, if it is not contained in any *k*-dimensional subset for k < n.