MA222

Example Sheet 8 Path-Connected and Complete Spaces

Hand in solutions to the Problems P3, P8 and P10. Deadline: 2pm, Thursday 14th of March. We consider the space \mathbb{R}^n with the Euclidean topology, unless stated otherwise. Problems P11–P14 are for *independent practice*.

P1. Let \mathbb{N} be equipped with the metric

$$d(m,n) = \begin{cases} 0, & \text{if } m=n, \\ 1-\frac{1}{100(m+n)}, & \text{if } m\neq n \end{cases}$$

Show that (\mathbb{N}, d) is a complete metric space. Define $S_n = \{m \in \mathbb{N} \mid m > n\}$. Prove that $\{S_n\}_{n=1}^{\infty}$ is a nested sequence of closed sets whose intersection is empty.

P2. Let (X, d) be a metric space, and d(A, B) > 0 for any pair of disjoint closed sets $A, B \subset X$. Prove that (X, d) is complete.

P3. Show that the open interval $(-1, 1) \subset \mathbb{R}$ is not complete with respect to the topology induced by Euclidean metric. Show that the metric $d_{\text{hyp}}(a, b) = \left| \int_a^b \frac{dt}{1-t^2} \right|$ induces the same topology on (-1, 1), and that (-1, 1) is complete with respect to d_{hyp} .

P4. Consider topological space $(\mathbb{R}, \mathcal{T})$ with the basis of intervals [a, b). Establish the following facts.

- 1. The topology \mathcal{T} is Hausdorff
- 2. The connected components of $(\mathbb{R}, \mathcal{T})$ are the one point sets $\{x\}$.
- 3. The intervals [a, b] with a < b are not compact in \mathcal{T} .
- 4. The space \mathbb{R}^2 with the product topology has a countable dense subset.
- 5. The subspace topology on $\{(x, -x) \mid x \in \mathbb{R}\}$ induced by the product topology is discrete.

P5. Decide which of the following metric spaces are path-connected and which are complete. Consider the same question for a closed unit ball in each of the spaces.

$$\begin{array}{ll} (1) \left(\ell_{\infty}(\mathbb{C}), \|\cdot\|_{\infty} \right) & (2) \left(\ell_{1}(\mathbb{C}), \|\cdot\|_{\infty} \right) & (3) \left(\ell_{2}(\mathbb{C}), \|\cdot\|_{\infty} \right) \\ (4) \left(\ell_{1}(\mathbb{C}), \|\cdot\|_{1} \right) & (5) \left(\ell_{1}(\mathbb{C}), \|\cdot\|_{2} \right) & (6) \left(\ell_{2}(\mathbb{C}), \|\cdot\|_{2} \right) \end{array}$$

P7. Let $C \subset \ell_{\infty}(\mathbb{C})$ be the subset of convergent subsequences. Is it true that C complete?

P6. Show that the space of continuous functions C([a, b]) is complete with respect to the metric induced by the norm $\|\cdot\|_{\infty}$ but not complete with respect to the topology induced by $\|\cdot\|_1$ or $\|\cdot\|_2$.

P8. Consider the space of sequences $X = \{0, 1\}^{\mathbb{N}}$ with the Hausdorff distance. Establish the following facts.

- 1. X is a complete compact metric space.
- 2. The single point sets are not open in X.
- 3. Connected components of X are the single point sets.
- 4. $X \times X$ with the product topology is homeomorphic to X.

P9. Let X be a vector space equipped with a norm $\|\cdot\|$. Show that X is complete with respect to the metric induced by the norm $\|\cdot\|$ if and only if for any sequence $\{x_n\}_{n=1}^{\infty} \subset X$ such that $\sum_{j=1}^{\infty} \|x_j\|$ is finite we have that there exist $\tilde{x} = \sum_{j=1}^{\infty} x_n \in X$.

P10. Show that the set of polynomials isn't complete in C([a, b]) with respect to $\|\cdot\|_{\infty}$. Is it path-connected?

▶ **P11.** Prove that a metric space is complete if and only if the intersection of every nested sequence of non-empty closed balls with radii tending to zero is non-empty.

■ **P12.** Find the connected components of a closed unit ball in the following spaces. (Hint: first check if any of the balls is path-connected).

- 1. The spaces of *p*-adic rationals and *p*-adic integers \mathbb{Z}_p with respect to *p*-adic norm.
- 2. The space of subsets of a finite set with the Hamming distance.
- ▶ P13. Establish the following facts.
 - 1. If (X, \mathcal{T}_X) is a path-connected topological space and \sim is an equivalence relation on X, then X/\sim with the quotient topology is path-connected.
 - 2. If $A \subset (X, \mathcal{T}_X) \times (Y, \mathcal{T}_Y)$ with the product topology is path-connected, then the projection $\pi_X(A) \subset X$ is connected.
 - 3. If (X, \mathcal{T}_X) is a path-connected topological space and $E \subset X$, then E with the subspace topology may not be path-connected.

▶ **P14.** Find the connected components of $\{0\} \cup \{\frac{1}{n^2} \mid n \in \mathbb{Z} \setminus \{0\}\}$. Which are open in the subspace topology and which are not? Consider the same question with the finite complement topology.