MA448
 Example Sheet 2
 Classification of Isometries

In what follows, $F P_{j}$ stands for the set of fixed points of $T_{j} \in \operatorname{Aut}(\hat{\mathbb{C}}) ; I d$ stands for the identity transformation and I for its matrix.

Given a circle centred at O with radius r the inverse of a point P with respect to the circle is the unique point P^{\prime} on the ray $O P$ such that $|O P| \cdot\left|O P^{\prime}\right|=r^{2}$.

For any group G the commutator of $g, h \in G$ is $[g, h]=g h g^{-1} h^{-1} \in G$.
P1. Show that

1. $T_{1}, T_{2} \in \operatorname{Aut}(\hat{\mathbb{C}})$ have a common fixed point if and only if $\operatorname{Tr}\left[T_{1}, T_{2}\right]=2$.
2. If $T_{1}, T_{2} \in \operatorname{Aut}(\hat{\mathbb{C}})$ have a common fixed point in $\hat{\mathbb{C}}$ then either
(a) $\left[T_{1}, T_{2}\right]=I d$ and $F P_{1}=F P_{2}$;
(b) $\left[T_{1}, T_{2}\right]$ is parabolic, and $F P_{1} \neq F P_{2}$.

P2. Let $T_{1}, T_{2} \in \operatorname{Aut}(\hat{\mathbb{C}})$ be different from identity. Show that the following are equivalent

1. $T_{1} T_{2}=T_{2} T_{1}$
2. $T_{1}\left(F P_{2}\right)=F P_{2}$ and $T_{2}\left(F P_{1}\right)=F P_{1}$.

P3. Let $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ be parabolic with fixed point w. Show that for all $z \in \hat{\mathbb{C}}$ we have $T^{n}(z) \rightarrow w$ as $n \rightarrow \infty$ uniformly on compact subsets of $\hat{\mathbb{C}}$.

P4. Let $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ be loxodromic with fixed point w_{1} and w_{2}. Show that $T^{n}(z) \rightarrow w_{1}$ as $n \rightarrow \infty$ for all $z \neq w_{2}$ uniformly on compact subsets of $\widehat{\mathbb{C}} \backslash\left\{w_{2}\right\}$ (up to the labeling of w_{1} and w_{2}).

P5. Let $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ be elliptic with fixed points $w_{1,2}$. Prove that any circle for which w_{1} and w_{2} are the inverse points (to each other) is invariant with respect to T.

P6. Show that if $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ is such that $T^{k}=I d$ for some $k>1$ then T is elliptic and $\operatorname{Tr}^{2}(T) \leq 4 \cos ^{2}(\pi / k)$. Prove that the inequality becomes an equality if and only if T is the rotation by angle $\pm 2 \pi / k$.

P7. Find two transformations $T_{1}, T_{2} \in \operatorname{Aut}(\hat{\mathbb{C}})$ such that $\operatorname{Tr}\left[T_{1}, T_{2}\right]=-2$ and T_{1} and T_{2} have no common fixed points in $\widehat{\mathbb{C}}$.

P8. Let $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ be such that $T(\infty) \neq \infty$. Show that $T=T_{1} T_{2} T_{3}$, where T_{1} and T_{3} are parabolic transformations fixing ∞ and $T_{2}^{2}=I d$.

P9. An nth root of an automorhism of \mathbb{C} is any $T \in \operatorname{Aut}(\hat{\mathbb{C}})$ such that $T^{n}=I d$. Show that

1. If $T=I d$ then T has infinitely many nth roots.
2. If T is parabolic then T has a unique nth root.
3. In all other cases, T has exactly $n n$th roots.

P10. Show that if $A, B \in S L(2, \mathbb{C})$ then (1) $\operatorname{det}(A-I)=2-\operatorname{Tr}(A)$ and $\operatorname{det}(A B-B A)=$ $2-\operatorname{Tr}[A, B]$. Deduce that if Möbius transformations given by A and B don't have a common fixed point in $\widehat{\mathbb{C}}$, then $(A B-B A)^{2}=I$.

P11. Let T be a Möbius transformation. Show that if $T(z) \neq z$ then the cross-ratio $\left[z, T z, T^{2} z, T^{3} z\right]$ is independent on z and compute it in terms of $\operatorname{Tr}^{2} T$.

P12. Let us define the norm on the space of matrices by $\left\|\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\right\|=\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}\right)^{1 / 2}$. Let T_{1}, T_{2}, \ldots be Möbius transformations and suppose that $g_{n}(w) \rightarrow w$ for $w=0,1, \infty$. Prove that

1. There exist matrices A_{n} representing T_{n} which converge to I;
2. $T_{n} \rightarrow I$ uniformly in $\hat{\mathbb{C}}$.

P13. Show that a sequence T_{n} of loxodromic transformations can converge to an elliptic element (in the topology induced by the norm defined in P 12) and if this is so then T_{n} is strictly loxodromic for almost all n.

P14. Show that a sequence of elliptic elements cannot converge to a loxodromic element (in the topology induced by the norm defined in P12).

