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Theta Functions

A year ago in this calendar we portrayed Ramanujan and his mock theta functions. In his famous
last letter to Hardy, these functions were introduced and motivated by the following “genuine” theta

function: )
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Here p(n) denotes the number of partitions of the positive integer n; that is, the number of different
ways in which n may be written as a sum of positive integers, neglecting the order of the summations,
e.g.

5=4+1=34+2=3+14+1=2424+1=24+1+14+1=1+1+1+1+1,

thus p(5) = 7. This month’s phase portrait is of the theta function g. The poles of the summands
of g, the n-th roots of unity for each positive integer n, form a dense set of singularities on the unit
circle. Looking at the portrait, some singularities seem to be “worse” than others.

In what is considered one of the most important joint papers of Hardy and Ramanujan, these two
mathematicians created the “circle method” to find an asymptotic formula for p(n). At the time, the
use of analytic methods to investigate algebraic or combinatorial functions was not yet very common.
They started by applying Cauchy’s integral formula
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where I is a closed path encircling the origin exactly once in the counterclockwise direction and
lying entirely inside the unit disk. Their novel idea was to push the path I" towards the unit circle
and approximate the effect of the most influential singularities. This method, now known as Hardy-
Ramanujan-Littlewood circle method, was just the beginning. Hardy and Littlewood, as well as many
other mathematicians, extended and applied it to other problems. In the case of our theta function,
Hardy and Ramanujan used it to derive the asymptotic formula

p(n) AJ;e,’7TV2”/3 asn — oo.
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Godfrey Harold Hardy (1877 — 1947)

was educated at Winchester and Trinity College in Cambridge. He excelled in his studies and was
elected a fellow of Trinity. In 1919 he accepted the chair as Savilian Professor of Geometry in Oxford
and became a fellow of New College. He spent a year at Princeton, in an exchange with Oswald
Veblen who went to Oxford. In 1931 Hardy returned to Trinity in Cambridge as Sadleirian Professor,
arguably the most prestigious mathematical chair in Great Britain, where he remained to his death.

Hardy had two outstanding mathematical collaborations. One of them, with J.E. Littlewood,
lasted for thirty five years. Together they produced many very influential papers in function theory,
inequalities, the Riemann zeta function, and other topics in analysis. The second collaboration was
with Ramanujan. Hardy recognized the mathematical genius of Ramanujan immediately, invited him
to Cambridge, mentored him, and together they produced beautiful mathematics until the untimely
death of Ramanujan ended the collaboration.

In 1941, Hardy wrote A mathematician’s apology, a description of a mathematician’s thinking and
an ode to pure mathematics. Hardy wrote: “The mathematician’s patterns, like the painter’s or the
poet’s must be beautiful; the ideas, like the colours or the words must fit together in a harmonious
way. Beauty is the first test: there is no permanent place in this world for ugly mathematics.” To this
day, this pamphlet remains an often quoted and classic text on the work of a mathematician.

W. Duke, Almost a Century of Answering the Question: What is a Mock Theta Function? AMS Notices 2014, Vol 61, No. 11, 1314-1320. J. J. O’Connor and E. F. Robertson, G. H. Hardy,
MacTutor History of Mathematics, (University of St Andrews, Scotland, October 2003) http://www-history.mcs.st-andrews.ac.uk/Biographies/Hardy.html (accessed August, 2016).



October
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
i 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31




The Bergman Kernel (by Albrecht Béticher)

The Bergman space A%(ID) is the Hilbert space of all functions f that are analytic in the open unit
disk D and for which ||f||? := [, |f(2)|?dA(z) < oo, where dA(z) = dxdy/m is normalized area
measure. A Toeplitz equation in A%(D) is of the form

(T(a)f)(z) := /]Da(w)(l —zw) 2 f(w) dA(w) = g(z), z € D.
Here ¢ € A%(ID) and a € L®(ID) are given and f € A%(ID) is sought. The functions
Ko(z) = (1—zw)2, weD,

are called Bergman kernels. They have the reproducing property: For every f € A%(ID) the scalar
product of f with Ky, is equal to the function value f(w). The left picture below shows such a kernel.

Equations with Hardy space Toeplitz operators can be solved via Wiener-Hopf factorization. This
does not work on the Bergman space, and approximation methods are the only way we know to solve
an integral equation in the Bergman space. One such method is analytic element collocation: Look
for an approximate solution f,, as a linear combination f, = 27:1 XKz, of the “analytic elements” Kz,
and determine the coefficients x; by requiring that

(T(a)fu)(z)) = &(2), j=1,....m,

which is a linear system of n equations for the n unknowns x;. In joint work of Hartmut Wolf and the
author, this method was shown to converge if a is continuous on ID, the operator T(a) is invertible
and, in the nth step, the points z1, ..., z, are taken as the roots of z"" — r" for some fixed r € (
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In the pictures in the middle and on the right we see the sum of 4 and 50 Bergman kernels. The
picture of the month shows a linear combination of seven Bergman kernels.

Stefan Bergman (1895 — 1977)

was born in Czestochowa, then Congress Poland and part of the Russian Empire. He received his
Ph.D. from the University of Berlin in 1921 under the supervision of Richard von Mises. In 1922, he
introduced the kernel that was later named after him. In 1933, Bergman was dismissed from his post
at the University of Berlin because he was Jewish. He moved to Russia, then to Paris, and in 1939,
he eventually emigrated to the United States. Bergman taught at Stanford University from 1952 until
his retirement in 1972. He died in Palo Alto, California, aged 82.

Stephen Krantz reports the following anecdote: “Whenever someone proved a new theorem
about the Bergman kernel or the Bergman metric, Bergman made a point of inviting the mathemati-
cian to his house for supper. Bergman and his wife were a gracious host and hostess and made their
guest feel welcome. However, after supper the guest had to pay the piper by giving an impromptu
lecture about the importance of the Bergman kernel.”

Steven G. Krantz, Mathematical anecdotes. Math. Intelligencer 12 (1990), no. 4, pp 32—38.



November

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30



The Dirichlet  Function

The Dirichlet eta function is defined by the Dirichlet series:

This series converges for all complex numbers s with positive real part. This should be compared
to the Riemann zeta function defined by {(s) = Y., ;(1/n°), which converges for all s with real part
greater than 1. (See November 2011 of Complex Beauties.) The zeta function has a meromorphic
continuation to all of C and a simple pole at s = 1. In fact, the two are connected via the formula

n(s) = (1-27)4(s). (1)

From this we see that the zeros of the # function include the zeros of the  function. Riemann proved
that there are no zeros of the zeta function in the set {s € C : Re(s) > 1} and he showed that the
only zeros in the left half-plane are the negative even integers. Later, Hadamard (1896) and de la
Vallée-Poussin (1896) proved independently that no zero of  lies on the line Re (s) = 1. For the
so-called critical strip {s € C : 0 < Re(s) < 1} Riemann showed that the zeros must be located
symmetrically about Re (s) = 1/2. Thus all non-trivial zeros of the Riemann zeta function must be in
the inside of the critical strip. The Riemann hypothesis is a conjecture that says that the zeros of the
Riemann zeta function occur at the negative even integers and complex numbers z for which the real
part is equal to 1/2. Indeed, in the picture of the month, we see zeros of the Dirichlet eta function
lining up along the negative real axis (these are the trivial zeros of {) and two vertical lines consisting
of complex numbers with real part equal to 1/2 and 1. Besides the zeros of the zeta function, the
Dirichlet eta function has other zeros where the factor 1 — 215 in (1) vanishes: This happens at
points s = s, = 1+ 2nri/ log?2 for every nonzero integer n. Since these additional zeros are not
inside the critical strip, the Riemann zeta and the Dirichlet eta functions have the same zeros in the
critical strip.

Peter Gustav Lejeune Dirichlet (1805 — 1859)

was born in Diren, which was then part of the First French Empire. He attended gymnasium in Bonn
and later in Cologne. Dirichlet went to Paris in 1822, where Fourier and Poisson worked. His first
paper was recognized by Fourier and von Humboldt. In 1827, with Humboldt’s support, he obtained
a position at the University of Breslau, after earning his doctorate (honoris causa) from the University
of Bonn. In 1828, he was promoted to ausserordentlicher Professor (senior lecturer) and later that
year he took a position at the Allgemeine Kriegsschule or General Military School. While at the
school, he also taught at the University of Berlin where, in 1839, he became ordentlicher Professor
or full professor. Dirichlet married Rebecka Mendelssohn, a sister of Felix Mendelssohn-Bartholdy.

Dirichlet moved to Géttingen in 1855 as Gauss’s successor. In 1858, he traveled to Switzerland
to give a memorial speech about Gauss and it was there that he had a heart attack. He died one
year later at the age of 54. Students in Dirichlet’s lectures included Eisenstein, Kronecker, Riemann,
and Dedekind. In 1856/57, he lectured on potential theory and these notes were published in 1876,
but he is perhaps best known for his work in number theory. Dirichlet used the pigeonhole principle
in the proof of a theorem in diophantine approximation, made important progress on Fermat’s last
theorem for the cases n = 5 and n = 14 (compare to the mathematician appearing in February of
this year’s Complex Beauties), studied the first boundary value problem, and his insights are credited
with developing the definition of function that we use today. Dirichlet did not publish frequently; in
fact, Gauss declared, “Gustav Lejeune Dirichlet’s works are jewels, and jewels are not weighed with
a grocer’s scale.”

P. Gorkin and J. Smith, Dirichlet: his life, his principle, and his problem. Math. Mag. 78-4, 2005, pp. 283-296.
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Blaschke Products

The quotients of two complex linear functions have interesting properties. Functions of the form

Z— Z
= 1, c] =1, 1
fe)=cizzy  lal<Lld (1)

which are known as Blaschke factors, are of great importance. They have a unique zero at the point
zo in the unit disc (the set of all points in the plane of distance less than 1 from the origin). The
denominator vanishes at the
point 1/zy and the function f
has a pole at this point. On
the Riemann sphere the points
zp and 1/zy are symmetric with
respect to the equator. In
the plane this symmetry corre-
sponds to a reflection with re-
spect to the unit circle, also
called an inversion.

Blaschke factors are self-mappings of the unit disc ID: if the point z is in the unit disc then the

image point w = f(z) is in the unit disc and the converse also holds. In fact, every point w in ID
occurs exactly once as the im-
age of a point in ID. As seen in
the figure on the right, the point
zp is mapped to the origin. For
zo = 0 the function f reduces to
a rotation about the origin.
The lines of the phase por-
traits emphasize the conforma-
lity of the mapping: The angle
at which curves in the z-plane

intersect is the same as the angle at which their image curves in the w-plane intersect.
A product of Blaschke factors with zeros at the points z4, . . ., z;, of the unit disc,

f(z)ch—zl Z—2  Z—2Zy

—z1z 1—-2Zz 1-7z,2’

is called a (finite) Blaschke product. It also maps the unit disc ID onto itself, but in this case every
point w of ID occurs exactly n
times as the image of a point
in ID. The picture of the month
of March shows a Blaschke pro-
duct with 50 zeros arranged in
a regular pattern. The pictures
to the right depict a Blaschke
product on the Riemann sphere
and in the complex plane which
has 60 zeros arbitrarily dis-
tributed in ID.

Wilhelm Johann Eugen Blaschke (1885-1962)

was the son of a mathematics teacher in Graz. He decided early on to work in (differential) geometry
and he studied with many of the leading experts of his time (Wirtinger, Bianchi, Klein, Hilbert, Runge,
Study). After professorships in Prag, Leipzig, Kdnigsberg, and Tubingen, he settled in Hamburg in
1919.

Wilhelm Blaschke is the author of influential books such as his “Lectures on Differential Geome-
try”. Because of his extensive travels and his numerous international contacts he initially opposed
the Nazi regime. Later, he gave up his resistance and supported the political system.
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Singular Inner Functions

In complex analysis the Hardy spaces, H? (for 1 < p < o0), are classes of analytic functions on
the unit disk |z| < 1 that are important in analysis, control theory and scattering theory. They were
introduced by F. Riesz who named them after G. H. Hardy, because of Hardy’s 1915 paper On the
mean of the modulus of an analytic function.

Arne Beurling showed that every function f in H? has a factorization as f = IG where [ is
an inner function; that is, a function I analytic on |z| < 1, mapping the unit disk to itself, with the
property that for almost every 6, the values I(re?) for 0 < r < 1 tend to a value of modulus one
as r approaches 1, and G is called an outer function. Beurling was able to use inner functions to
characterize the (closed) subspaces M of H? that are invariant under multiplication by the function
¢(z) = z; that is, M has the property that whenever f € M, then gf € M.

What do inner functions look like? Every such inner func-
tion I is either determined by its zeros, an inner function with
no zeros, or a product of such functions. An inner function with
no zeros is said to be a singular inner function, and one of them
appears in the inset on the right:

S(z) =exp (ifi) ,

which is called the aftomic singular inner function and is the
simplest singular inner function. This function is continuous
everywhere except at the point z = 1, which is the point where
the lines of constant moduli intersect. Looking at the point z =
1 in the figure we see that S has constant modulus on circles
that are tangent to the unit circle at z = 1 and has constant
argument on the circles of radius r centered at the points (1,7). As a singular inner function, S is
never zero but it assumes every other value in |z| < 1 infinitely often.

The function featured this month is a singular inner function with (precisely) five points of discon-
tinuity. They appear at the five points on the unit circle at which w® = 1, points called the fifth roots
of unity.

Arne Carl-August Beurling (1905 — 1986)

was born in Géteborg, Sweden. Beurling was a professor in Uppsala from 1937 until 1954, spending
1948-49 at Harvard. In 1954 he emigrated to the United States and became a professor at the
Institute for Advanced Studies in Princeton, New Jersey. During World War I, Beurling worked on
cracking the German codes and, according to David Kahn’s book Codebreakers, “Quite possibly the
finest feat of cryptanalysis performed by the Swedes, was Arne Beurling’s solution of the German
Siemens machine.”

Lars Ahlfors and Lennart Carleson began their paper “Arne Beurling in memoriam” with the
words, “Arne Beurling’s legacy will influence mathematicians for many years to come, maybe even
for generations.” According to Carleson, Beurling’s thesis provided a proof of the Denjoy conjec-
ture about asymptotic values of an entire function but rather than publish it, Beurling went crocodile
hunting with his father. Ahlfors became the first to publish a proof. Beurling’s thesis was, how-
ever, published in 1933 and recognized as a program for research in function theory. He worked in
harmonic analysis, complex analysis and potential theory.

Beurling was awarded the first Celsius Gold Medal in mathematics in 1961, by the Vetenskapsso-
cieteten in Uppsala, he was elected to the Royal Swedish Academy of Sciences, the Finnish Academy
of Sciences, the Royal Physiographical Society in Lund, Sweden, and the Danish Academy of Sci-
ences. He was elected a Fellow of the American Academy of Arts and Sciences in 1970.
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Frostman’s Theorem

In June we saw that a bounded analytic function f can always be written as a product IG, where |
is called an inner function and G an outer function. The inner function broke down into a function
determined by its zeros and one with no zeros at all. In June we focused on the function with no
zeros. This time, we look at the function determined by its zeros. If our bounded analytic function
vanishes at one or more points, its zero sequence, {a, } with |a,| < 1, satisfies a condition known as
the Blaschke condition,

Y (1~ lay]) < 0.

n

This condition ensures that the infinite product

ﬁ |an| an_z
TZ:1 an 1_@2

converges for all z with |z| < 1. (If some a, = 0, we interpret |a,|/a, = 1.) This infinite product,
and rotations of such products, define non-zero functions known as Blaschke products. Simply
stated, finite Blaschke products map the unit disk to itself and the circle to the circle; infinite Blaschke
products almost do so. More precisely, letting B denote an infinite Blaschke product, at almost every
point of the unit circle, ¢, the limit B(re’®) — + for some |y| =1asr — 1and 0 < r < 1. Because of
the special form of Blaschke products, they are easy to study — but their behavior isn’t always simple.
Composing on the left with a disk automorphism

a—z

¢a(z) = =7y where a € D,

keeps you in the class of inner functions, but it can throw you out of the class of Blaschke products. In
his paper, Sur les produits de Blaschke, which linked function theory and potential theory, Frostman
showed that ¢, o B is a Blaschke product for “almost every” a € ID. In the accompanying figure, we
have taken an atomic singular inner function

S(z) — exp <—1 —l—iz>

1+iz

and composed it on the left with ¢, for a = .727. For this S and every a # 0, it turns out that ¢, 0 S
is a Blaschke product — a function determined by its zeros, which are located at the infinitely many
points where S(z) = a. But for a = 0 the function ¢, o S has no zeros at all.

Otto Frostman (1907 — 1977)

Otto Frostman received his first degree in mathematics from Lund University in Sweden, where he
pursued graduate studies under the younger of the two Riesz brothers, Marcel Riesz. In 1935 he
defended his thesis Potentiel d’équilibre et capacité des ensembles avec quelques applications a la
théorie des fonctions, in which he extended Gauss’s ideas on potential theory to kernels of a very
general type. Frostman maintained his interest in potential theory until his death.

Frostman received a docent position at Lund upon completion of his thesis, but no permanent
position became available and so he worked as a teacher for ten years in Halmstad and Lund. In
1952, he became professor of mathematics at what is now Stockholm University and he remained
there until retiring in 1973. He also worked with the International Mathematical Union, serving as
secretary from 1971 to 1974, and was director of the Mittag-Leffler Institute for fifteen years. He was
elected to the Royal Academy of Science in 1952.
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Littlewood Polynomials

A polynomial P(z) = auz" + ...+ a1z + ag with all coefficients a; equal to +1 or —1 is called a
Littlewood polynomial. An example with all coefficients equal to 1 is
Zn+1 -1

z—1 "~
and its zeros are the (n + 1)th roots of unity, except for 1. These all lie on the unit circle (see the
figure below on the left). We will now give an argument that the zeros of an arbitrary Littlewood

polynomial P are close to the unit circle; in fact, they are in the annulus 1/2 < |z| < 2. So suppose
that z is a zero of P that lies inside the unit circle. Since P(z) = 0 we conclude that

P(z)=zZ"4+...+z+4+1=

1— |z 2|

1=|ag| = |mz+az® + ... +a,2"| < |z| + |22+ ...+ |z|" = |z I <1_|Z|.

Thus 1 — |z| < |z| or, equivalently, |z| > 1/2. A similar argument is used if z is outside the unit
circle. This month’s title page shows a Littlewood polynomial of degree 50 with randomly chosen
coefficients. In the 1960s, J. L. Littlewood initiated an investigation of these polynomials. We now
know a lot about them. For example, P. Borwein and J. Erdélyi showed that inside any polygon with
vertices on the unit circle there are at most ¢ \/n zeros, where c is a constant that depends only on
the polygon.

The set of all zeros of Littlewood polynomials is also interesting and not fully understood. The
middle figure below shows the set of all zeros of all Littlewood polynomials of degree eleven. The
figure below on the right shows all zeros of all Littlewood polynomials of degree at most twelve.

John Edensor Littlewood (1885 — 1977)

was born in Rochester (in the southeast of England). He spent a part of his childhood (1892—-1900)
in South Africa, where his father taught mathematics. After his return to England, he was able to
improve his mathematics education at St. Paul’s School in London. He then entered Trinity College
in Cambridge and scored best in his age group in the Tripos exams. He began his mathematical
research under the guidance of E.W. Barnes (see July 2017) who gave him the Riemann conjecture
to work on (see this November). Littlewood discovered the connection to the prime number theorem
(which had long been known in continental Europe, showing the isolation of the British mathemati-
cians). Later Littlewood said that it is possible to learn a lot from a problem that is out of reach.

About 1910 his long and fruitful collaboration with G. H. Hardy began (see December 2017). The
two of them dominated British mathematics in the first half of the 20th century. Some mathemati-
cians believed that Littlewood was a pseudonym for Hardy. Other important collaborators were M.
Cartwright (see April 2016), S. Ramanujan (see December 2016 and July 2013) and R. Paley. Lit-
tlewood was athletic and remained mathematically active into old age. Throughout his life he battled
depression and it was only from 1957 on that he was able to control it with the help of medication.
He received many honors and awards (among them the Sylvester and the De Morgan medal) and
he was elected to many academies.

P. Borwein and T. Erdélyi, On the zeros of polynomials with restricted coefficients, lllinois J. Math. 41 (1997), no. 4, 667-675.
R. Reyna and St. Damelin, On the structure of the Littlewood polynomials and their zero sets. arXiv:1504.08058 [math.CV]



