MA4K3

Example Sheet 1
 Getting to know Hardy Spaces

Hand in solutions to at least five P-Problems of your choice. The mark will be a sum of the best five Solutions.
Deadline: 2 pm , Thursday 26th of October.

Notation. \mathbb{D} stands for the open unit disk in \mathbb{C}. $\mathcal{O}(\mathbb{D})$ stands for holomorphic functions on $\mathbb{D} . \mathbb{H}^{2}$ stands for the Hardy space of functions $f \in \mathcal{O}(\mathbb{D})$, such that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}$ is finite.

E1. Which of the following expressions define a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$?
(1) $f(x, y)=x^{2}+i y^{2}$
(2) $f(x, y)=x^{2}-y^{2}+2 i x y$
(3) $f(x, y)=\sin \left(x^{2}-y^{2}\right)+i \cos (x y)$
(4) $f(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{2^{k}}$
(5) $f(z)=\sum_{k=0}^{\infty} i^{k} z^{k}$
(6) $f(z)=\sum_{k=0}^{\infty} k!z^{k-2}$

E2. Which of the following subsets are conformally equivalent to the unit disk?
(1) $\mathbb{C} \backslash 0$
(2) $\mathbb{C} \backslash \mathbb{R}^{-}$
(3) $\mathbb{C} \backslash \partial \mathbb{D}$
(4) $\mathbb{D} \backslash\{0\}$
(5) $\{x+i y: x, y \in[0,1]\}$

P1. Let $\left\{a_{k}\right\}$ be a sequence of complex numbers such that one of the following holds

$$
\text { (1) }\left|a_{k}\right| \leq \frac{1}{k+1}, \quad \text { (2) } \lim _{k \rightarrow \infty} a_{k}=0, \quad \text { (3) } \lim _{k \rightarrow \infty} \frac{a_{k}}{k+1}=0
$$

Does the formal series $\sum_{k=0}^{\infty} a_{k} z^{k}$ define an \mathbb{H}^{2} function?
P2. Show that $f(z)=(1-z)^{\alpha}$ is an \mathbb{H}^{2} function for all $\alpha>\frac{1}{2}$.

P3. Let $f \in \mathcal{O}(\mathbb{D})$. Assume that one of the following holds:

$$
\text { (1) } \exists C>0: \forall z \in \mathbb{D}:|f(z)| \leq C \quad \text { (2) } f^{\prime} \in \mathbb{H}^{2} \quad \text { (3) } \exists g \in \mathbb{H}^{2}: f=g^{\prime} .
$$

Is f an \mathbb{H}^{2} function?

P4. Given $p>2$ construct a sequence $\left\{a_{k}\right\} \in \ell^{p}(\mathbb{C})$ such that $\sum_{k=0}^{\infty} a_{k} z^{k} \notin \mathbb{H}^{2}$.
P5. Show that the monomials $\left\{z^{k}\right\}_{k=0}^{\infty}$ are orthogonal to each other in \mathbb{H}^{2} and compute their norms. Show that \mathbb{H}^{2} equipped with the inner product $\langle\cdot, \cdot\rangle$ is a Hilbert space over \mathbb{C}.

P6. Determine the type of singularities of the function $f(z)$ given by:
(1) $\frac{1+z}{1-z}$
(2) $\left(\log \left(\frac{1+z}{1-z}\right)\right)^{-1 / 4}$
(3) $\exp \left(-\frac{1+z}{1-z}\right)$
(4) $\frac{\sin \left(1-z^{2}\right)}{1-z}$

P7. Study radial and nontangential limits of the functions from P6. (They may be finite, infinite, or may not exist.)

P8. Show that the weigthed Hardy space \mathbb{H}_{ω}^{2} contains all polynomials, and that the polynomials are dense. Show that not all functions in \mathbb{H}_{ω}^{2} are polynomials.

P9. Show that
(1) the Hardy space \mathbb{H}^{2} contains the Dirichlet space
(2) the Bergman space \mathcal{A}^{2} contains the Hardy space.

P10. Given a pair of weights ω, ω^{\prime} satisfying $\omega_{k} \leq C \omega_{k}^{\prime}$ for some $C>0$ and all k show that $\mathbb{H}_{\omega}^{2} \subset \mathbb{H}_{\omega^{\prime}}^{2}$.

P11. Give an example of a function $f \in \mathcal{O}(\mathbb{D})$ for which the radial limit at 1 exists, but nontangential limit does not. Give an example of a function f for which nontangential limit at 1 exists, but $\lim _{z \rightarrow 1} f(z)$ does not.

P12. Show that for any $f \in \mathcal{O}(\mathbb{D})$ the following are equivalent:

1. $\lim _{r \rightarrow 1} \int_{\partial \mathbb{D}}\left|f\left(r \exp ^{i \theta}\right)\right|^{2} d m(\theta)$ is finite;
2. $\sup _{0<r<1} \int_{\partial \mathbb{D}}\left|f\left(r \exp ^{i \theta}\right)\right|^{2} d m(\theta)$ is finite.

P13. Let $\mathbb{H}_{0}^{2}=\left\{f \in \mathbb{H}^{2} \mid f(0)=0\right\}$. Show that $L^{2}(\partial \mathbb{D})=\mathbb{H}^{2} \oplus \overline{\mathbb{H}_{0}^{2}}$.

