MA4K3

Example Sheet 1 Getting to know Hardy Spaces

Hand in solutions to at least five P-Problems of your choice. The mark will be a sum of the best five Solutions.

Deadline: 2pm, Thursday 26th of October.

Notation. \mathbb{D} stands for the open unit disk in \mathbb{C} . $\mathcal{O}(\mathbb{D})$ stands for holomorphic functions on \mathbb{D} . \mathbb{H}^2 stands for the Hardy space of functions $f \in \mathcal{O}(\mathbb{D})$, such that $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $\sum_{k=0}^{\infty} |a_k|^2$ is finite.

E1. Which of the following expressions define a holomorphic function $f : \mathbb{D} \to \mathbb{C}$?

(1)
$$f(x,y) = x^2 + iy^2$$
 (2) $f(x,y) = x^2 - y^2 + 2ixy$ (3) $f(x,y) = \sin(x^2 - y^2) + i\cos(xy)$
(4) $f(z) = \sum_{k=0}^{\infty} \frac{z^k}{2^k}$ (5) $f(z) = \sum_{k=0}^{\infty} i^k z^k$ (6) $f(z) = \sum_{k=0}^{\infty} k! z^{k-2}$

E2. Which of the following subsets are conformally equivalent to the unit disk?

 $(1) \mathbb{C} \setminus 0 \quad (2) \mathbb{C} \setminus \mathbb{R}^{-} \quad (3) \mathbb{C} \setminus \partial \mathbb{D} \quad (4) \mathbb{D} \setminus \{0\} \quad (5) \{x + iy \colon x, y \in [0, 1]\}$

P1. Let $\{a_k\}$ be a sequence of complex numbers such that one of the following holds

(1)
$$|a_k| \le \frac{1}{k+1}$$
, (2) $\lim_{k \to \infty} a_k = 0$, (3) $\lim_{k \to \infty} \frac{a_k}{k+1} = 0$.

Does the formal series $\sum_{k=0}^{\infty} a_k z^k$ define an \mathbb{H}^2 function?

P2. Show that $f(z) = (1-z)^{\alpha}$ is an \mathbb{H}^2 function for all $\alpha > \frac{1}{2}$.

P3. Let $f \in \mathcal{O}(\mathbb{D})$. Assume that one of the following holds:

$$(1) \exists C > 0 \colon \forall z \in \mathbb{D} \colon |f(z)| \le C \quad (2) f' \in \mathbb{H}^2 \quad (3) \exists g \in \mathbb{H}^2 \colon f = g'.$$

Is f an \mathbb{H}^2 function?

P4. Given p > 2 construct a sequence $\{a_k\} \in \ell^p(\mathbb{C})$ such that $\sum_{k=0}^{\infty} a_k z^k \notin \mathbb{H}^2$.

P5. Show that the monomials $\{z^k\}_{k=0}^{\infty}$ are orthogonal to each other in \mathbb{H}^2 and compute their norms. Show that \mathbb{H}^2 equipped with the inner product $\langle \cdot, \cdot \rangle$ is a Hilbert space over \mathbb{C} .

P6. Determine the type of singularities of the function f(z) given by:

(1)
$$\frac{1+z}{1-z}$$
 (2) $\left(\log\left(\frac{1+z}{1-z}\right)\right)^{-1/4}$ (3) $\exp\left(-\frac{1+z}{1-z}\right)$ (4) $\frac{\sin(1-z^2)}{1-z}$

P7. Study radial and nontangential limits of the functions from **P6**. (They may be finite, infinite, or may not exist.)

P8. Show that the weighted Hardy space \mathbb{H}^2_{ω} contains all polynomials, and that the polynomials are dense. Show that not all functions in \mathbb{H}^2_{ω} are polynomials.

P9. Show that

(1) the Hardy space \mathbb{H}^2 contains the Dirichlet space

(2) the Bergman space \mathcal{A}^2 contains the Hardy space.

P10. Given a pair of weights ω , ω' satisfying $\omega_k \leq C\omega'_k$ for some C > 0 and all k show that $\mathbb{H}^2_{\omega} \subset \mathbb{H}^2_{\omega'}$.

P11. Give an example of a function $f \in \mathcal{O}(\mathbb{D})$ for which the radial limit at 1 exists, but nontangential limit does not. Give an example of a function f for which nontangential limit at 1 exists, but $\lim_{z\to 1} f(z)$ does not.

P12. Show that for any $f \in \mathcal{O}(\mathbb{D})$ the following are equivalent:

1. $\lim_{r\to 1} \int_{\partial \mathbb{D}} |f(r \exp^{i\theta})|^2 dm(\theta)$ is finite;

2. $\sup_{0 < r < 1} \int_{\partial \mathbb{D}} |f(r \exp^{i\theta})|^2 dm(\theta)$ is finite.

P13. Let $\mathbb{H}_0^2 = \{ f \in \mathbb{H}^2 \mid f(0) = 0 \}$. Show that $L^2(\partial \mathbb{D}) = \mathbb{H}^2 \oplus \overline{\mathbb{H}_0^2}$.