MA4K3

Example Sheet 2
Properties of Hardy Space Functions

Hand in solutions to at least five P-Problems of your choice. The mark will be a sum of the best five Solutions.
Deadline: 2pm, Tuesday 14th of November.

Notation. \mathbb{D} stands for the open unit disk in $\mathbb{C} . \mathcal{O}(\mathbb{D})$ stands for holomorphic functions on $\mathbb{D} . \mathbb{H}^{2}$ stands for the Hardy space of functions $f \in \mathcal{O}(\mathbb{D})$. For any $f \in \mathcal{O}(\mathbb{D})$ a shorthand notation $f \rightsquigarrow\left\{a_{k}\right\}_{k=0}^{\infty}$ stands for $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ in \mathbb{D}. Given $z=x+i y \in \mathbb{C}$, we denote $\bar{z}:=x-i y$. Given a Hilbert space H, \mathcal{M}_{H} stands for the algebra of multipliers in H.

E1. Show that if H is a reproducing kernel Hilbert space ($=:$ RKHS $)$ on \mathbb{C}, with reproducing kernel $K(x, y)$, then $K(y, x)=\overline{K(x, y)}$.

E2. Show that if H is a RKHS and $H_{0} \subset H$ is a closed subspace, then H_{0} is also a RKHS. Prove that the reproducing kernel for H_{0} for a point y is the function $P\left(k_{y}\right)$ where k_{y} is the reproducing kernel function for H and $P: H \rightarrow H_{0}$ denotes the orthogonal projection of H onto H_{0}.

E3. Define inner product in the Dirichlet space \mathcal{D} that is compatible with the norm (i.e. $\|f\|_{2}^{2}=\langle f, f\rangle$ for any $\left.f \in \mathcal{D}\right)$. Show that the reproducing kernel of the Dirichlet space is given by

$$
k_{\omega}(z)=\sum_{k=0}^{\infty} \frac{\bar{\omega}^{k} z^{k}}{k+1} .
$$

E4. Establish that $\mathcal{M}_{\mathbb{H}^{2}} \subset \mathcal{M}_{\mathcal{A}}$.
E5. Show that if f and $\frac{1}{f}$ belong to the Hardy space, then f is an outer function.
E6. Find the Blaschke part of the following functions, show that their singular factors are trivial and find their outer parts.

$$
\begin{array}{ll}
\text { (1) } \frac{2 z^{2}+5 z+3}{2-z} & \text { (2) } z^{5}-\frac{1}{32}
\end{array}
$$

P1. Let $\mathcal{H}_{N} \subset \mathbb{H}^{2}(\mathbb{D})$ denote the subspace consisting of all functions of the form $f(z)=$ $\sum_{n=N}^{\infty} a_{n} z^{n}$. Find the reproducing kernel for \mathcal{H}_{N}.

P2. Define inner product compatible with the norm and find reproducing kernels in

1. the Bergman space \mathcal{A};
2. a weighted Hardy space \mathbb{H}_{ω}^{2} for some $\left\{\omega_{k}\right\}_{k=1}^{\infty}$ with $\lim _{k \rightarrow \infty} \frac{\omega_{k}}{\omega_{k+1}}=1$.

P3. Show that for any $k \in N$, the operator of multiplication by z^{k} given by $f(z) \mapsto z^{k} f(z)$ is an isometry of the Hardy space. Is it true for multiplication by $1-z$?
$\mathbf{P 4}$. Show that the following functions are multipliers and find the multiplier norms.

$$
\begin{array}{lll}
\text { (1) } \exp \left(\frac{1+z}{z-1}\right) & \text { (2) } \frac{1}{2-z} & \text { (3) } \sqrt{1-z}
\end{array}
$$

P5. Let $f \in \mathcal{O}(\mathbb{D})$ and assume that $f \rightsquigarrow\left\{a_{k}\right\}_{k=0}^{\infty} \in \ell^{p}$.

1. Show that $f \in \mathcal{M}_{\mathbb{H}^{2}}$, if $p=1$.
2. Is it true that $f \in \mathcal{M}_{\mathbb{H}^{2}}$ for $1<p \leq 2$?

P6. Show that:

1. the product of two inner functions is an inner function;
2. the composition of two nonconstant inner functions is an inner function. Is it true without additional condition $f \not \equiv$ const?

P7. Let $f \in \mathbb{H}^{2}$. Assume that there exists a constant $C>0$ such that $\Re f(z)>C$. Show that f is an outer function.

P8. Show that a singular inner function $f \not \equiv$ const cannot extend continuously to the closed unit disc. Construct a function that extends continuously to $\mathbb{D} \cup \partial \mathbb{D}$ and yet has a nontrivial singular inner factor.

P9. Does there exist $f \in \mathbb{H}^{2}$ such that its zero set is
(1) $\left\{r e^{i \pi / 4} \mid r \in[1 / 3,1)\right\}$
(2) $\left\{r_{k} e^{i \varphi_{k}} \mid r_{k}=1-2^{-k}, \varphi_{k}=2^{k}\right\}_{k \in \mathbb{N}}$
(3) $\left\{r_{k} e^{i \varphi_{k}} \mid r_{k}=1-(k+1)^{-2}, \varphi_{k}=2^{k}\right\}_{k \in \mathbb{N}}$
(4) $\left\{r_{k} e^{i \varphi_{k}} \mid r_{k}=(k+1)^{-2}, \varphi_{k}=2^{k}\right\}_{k \in \mathbb{N}}$
(5) $\left\{x_{k}+i y_{k} \mid x_{k}=1-(k+1)^{-3}, y_{k}=(k+1)^{-2}\right\}$

P10. Find the canonical factorization of the following functions on the unit disc.

$$
\begin{array}{lll}
(1)(2 z-1) e^{z} & (2) \exp \left(\frac{1}{z^{2}-1}\right) \quad \text { (3) } \sin z
\end{array}
$$

P11. Construct a sequence of points $z_{n} \in \mathbb{D}$, such that there exist a Blaschke product $f \in \mathbb{H}^{2}$ satisfying $f\left(z_{n}\right)=0$ for all $n \in \mathbb{N}$ and for almost any point $e^{i \varphi} \in \partial \mathbb{D}$ there is a subsequence $z_{n_{k}} \rightarrow e^{i \varphi}$ as $k \rightarrow \infty$.

