MA4K3

Example Sheet 2 Properties of Hardy Space Functions

Hand in solutions to at least five P-Problems of your choice. The mark will be a sum of the best five Solutions.

Deadline: 2pm, Tuesday 14th of November.

Notation. \mathbb{D} stands for the open unit disk in \mathbb{C} . $\mathcal{O}(\mathbb{D})$ stands for holomorphic functions on \mathbb{D} . \mathbb{H}^2 stands for the Hardy space of functions $f \in \mathcal{O}(\mathbb{D})$. For any $f \in \mathcal{O}(\mathbb{D})$ a shorthand notation $f \rightsquigarrow \{a_k\}_{k=0}^{\infty}$ stands for $f(z) = \sum_{k=0}^{\infty} a_k z^k$ in \mathbb{D} . Given $z = x + iy \in \mathbb{C}$, we denote $\overline{z} := x - iy$. Given a Hilbert space H, \mathcal{M}_H stands for the algebra of multipliers in H.

E1. Show that if H is a reproducing kernel Hilbert space (=: RKHS) on \mathbb{C} , with reproducing kernel K(x, y), then $K(y, x) = \overline{K(x, y)}$.

E2. Show that if H is a RKHS and $H_0 \subset H$ is a closed subspace, then H_0 is also a RKHS. Prove that the reproducing kernel for H_0 for a point y is the function $P(k_y)$ where k_y is the reproducing kernel function for H and $P: H \to H_0$ denotes the orthogonal projection of H onto H_0 .

E3. Define inner product in the Dirichlet space \mathcal{D} that is compatible with the norm (i.e. $\|f\|_2^2 = \langle f, f \rangle$ for any $f \in \mathcal{D}$). Show that the reproducing kernel of the Dirichlet space is given by

$$k_{\omega}(z) = \sum_{k=0}^{\infty} \frac{\bar{\omega}^k z^k}{k+1}.$$

E4. Establish that $\mathcal{M}_{\mathbb{H}^2} \subset \mathcal{M}_{\mathcal{A}}$.

E5. Show that if f and $\frac{1}{f}$ belong to the Hardy space, then f is an outer function.

E6. Find the Blaschke part of the following functions, show that their singular factors are trivial and find their outer parts.

(1)
$$\frac{2z^2 + 5z + 3}{2 - z}$$
 (2) $z^5 - \frac{1}{32}$

P1. Let $\mathcal{H}_N \subset \mathbb{H}^2(\mathbb{D})$ denote the subspace consisting of all functions of the form $f(z) = \sum_{n=N}^{\infty} a_n z^n$. Find the reproducing kernel for \mathcal{H}_N .

P2. Define inner product compatible with the norm and find reproducing kernels in

- 1. the Bergman space \mathcal{A} ;
- 2. a weighted Hardy space \mathbb{H}^2_{ω} for some $\{\omega_k\}_{k=1}^{\infty}$ with $\lim_{k\to\infty} \frac{\omega_k}{\omega_{k+1}} = 1$.

P3. Show that for any $k \in N$, the operator of multiplication by z^k given by $f(z) \mapsto z^k f(z)$ is an isometry of the Hardy space. Is it true for multiplication by 1 - z?

P4. Show that the following functions are multipliers and find the multiplier norms.

(1)
$$\exp\left(\frac{1+z}{z-1}\right)$$
 (2) $\frac{1}{2-z}$ (3) $\sqrt{1-z}$

P5. Let $f \in \mathcal{O}(\mathbb{D})$ and assume that $f \rightsquigarrow \{a_k\}_{k=0}^{\infty} \in \ell^p$.

- 1. Show that $f \in \mathcal{M}_{\mathbb{H}^2}$, if p = 1.
- 2. Is it true that $f \in \mathcal{M}_{\mathbb{H}^2}$ for 1 ?

P6. Show that:

- 1. the product of two inner functions is an inner function;
- 2. the composition of two nonconstant inner functions is an inner function. Is it true without additional condition $f \not\equiv const$?

P7. Let $f \in \mathbb{H}^2$. Assume that there exists a constant C > 0 such that $\Re f(z) > C$. Show that f is an outer function.

P8. Show that a singular inner function $f \not\equiv const$ cannot extend continuously to the closed unit disc. Construct a function that extends continuously to $\mathbb{D} \cup \partial \mathbb{D}$ and yet has a nontrivial singular inner factor.

P9. Does there exist $f \in \mathbb{H}^2$ such that its zero set is

 $(1) \{ re^{i\pi/4} \mid r \in [1/3, 1) \}$ $(2) \{ r_k e^{i\varphi_k} \mid r_k = 1 - 2^{-k}, \varphi_k = 2^k \}_{k \in \mathbb{N}}$ $(3) \{ r_k e^{i\varphi_k} \mid r_k = 1 - (k+1)^{-2}, \varphi_k = 2^k \}_{k \in \mathbb{N}}$ $(4) \{ r_k e^{i\varphi_k} \mid r_k = (k+1)^{-2}, \varphi_k = 2^k \}_{k \in \mathbb{N}}$ $(5) \{ x_k + iy_k \mid x_k = 1 - (k+1)^{-3}, y_k = (k+1)^{-2} \}$

P10. Find the canonical factorization of the following functions on the unit disc.

(1)
$$(2z-1)e^z$$
 (2) $\exp\left(\frac{1}{z^2-1}\right)$ (3) $\sin z$

P11. Construct a sequence of points $z_n \in \mathbb{D}$, such that there exist a Blaschke product $f \in \mathbb{H}^2$ satisfying $f(z_n) = 0$ for all $n \in \mathbb{N}$ and for almost any point $e^{i\varphi} \in \partial \mathbb{D}$ there is a subsequence $z_{n_k} \to e^{i\varphi}$ as $k \to \infty$.