MA4K3

Example Sheet 3 Functionals and Operators on Hardy Spaces

Hand in solutions to five P-Problems of your choice. Deadline: 2pm, Tuesday 5th of December.

E1. Let $U \subset \mathbb{H}^2$ be a closed subspace. Show that U is shift-invariant if and only if $\mathbb{H}^{\infty}U \subset U$.

E2. Let $z_0 \in \mathbb{D}$ and consider the Möbius transformation $\mu(z) = \frac{z-z_0}{1-\overline{z_0}z}$. Compute the pseudohyperbolic disk $K(z_0, r)$: $= \mu(D(0, r))$, where 0 < r < 1.

E3. Show that pseudohyperbolic distance is invariant with respect to Möbius transformations.

E4. Let $E \subset L_2(\partial \mathbb{D})$, with $zE \subset E$, $zE \neq E$. Show that there exists a measurable function φ (unique up to a constant) such that $|\varphi| = 1$ a.e. on $\partial \mathbb{D}$ and $E = \varphi \mathbb{H}^2$.

P1. Show that the multipliers $f_1, f_2 \in \mathcal{M}_{\mathbb{H}^2}$ are outer functions if and only if their product is an outer function.

P2. Find the smallest shift-invariant subspace U containing

(1)
$$\frac{1}{2-z}$$
 (2) $\left\{\sqrt[3]{1-z}, z^2\right\}$

(3) a pair of Blaschke products for some $\{w_n\}_{n=0}^{\infty}, \{z_n\}_{n=0}^{\infty} \in \mathbb{D}.$

- **P3.** Consider a function $f(z) = 1 z^n$.
 - 1. Find optimal approximants p_k^* to 1/f.
 - 2. Compute $||p_{3n}^*f(z) 1||$.
 - 3. Show that f is cyclic.

P4. Consider a sequence $\{z_k\}_{k=0}^{\infty}$ such that $\sum_{k=0}^{\infty} (1-|z_k|^2)\delta_{z_k}$ is a Carleson measure. Show that the following sum is finite:

$$\sum_{j=0}^{\infty} \frac{(1-|z_k|^2)(1-|z_j|^2)}{|1-\overline{z^k}z_j|^2}$$

P5. Let ρ be the pseudohyperbolic distance. Establish the inequality

$$\frac{\rho(z_0, z_2) - \rho(z_2, z_1)}{1 - \rho(z_0, z_2)\rho(z_2, z_1)} \le \rho(z_0, z_1) \le \frac{\rho(z_0, z_2) + \rho(z_2, z_1)}{1 + \rho(z_0, z_2)\rho(z_2, z_1)} \qquad \forall z_0, \, z_1, \, z_2 \in \mathbb{D},$$

and prove that ρ is a metric on \mathbb{D} .

P6. Give an example of sequence $W = \{w_n\}_{n=0}^{\infty} \in \mathbb{D}$ such that

- 1. W is a sequence of interpolation and for any $0 \le t < 2\pi$ there exists a subsequence w_{n_k} such that $\lim_{k\to\infty} w_{n_k} = e^{it}$;
- 2. W is a zero set for some $f \in \mathbb{H}^2$, but it is not a sequence of interpolation;
- 3. $\sum_{k=0}^{\infty} (1 |w_k|^2) \delta_{w_k}$ is a Carleson measure, but W is not a sequence of interpolation.
- **P7.** Which of the following sequences are the sequences of interpolation?

(1)
$$1 - e^{-k}$$
 (2) $e^{ik} \left(1 - \frac{1}{k+1} \right)$ (3) $1 - \frac{e^{ik}}{k+1}$ (4) $2^{2ik} \left(1 - \frac{1}{(k+1)^2} \right)$ (5) $e^{2ik} \left(1 - 2^{-k} \right)$.

P8. Let $E \subset L_2(\partial \mathbb{D})$ satisfy zE = E. Show that there exists a unique measurable set $A \subset \partial \mathbb{D}$ such that $E = \chi_A L_2(\mathbb{D}) = \{f \in L_2(\partial \mathbb{D}) : f = 0 \text{ a.e. outside } A\}$, where χ_A is the characteristic function of A.

P9. Let a sequence $\{z_n\}_{n=0}^{\infty} \in \mathbb{D}$ be such that for any $\{a_k\}_{k=0}^{\infty} \in \ell^{\infty}$ the interpolation problem $f(z_k) = a_k$ has a solution in H^{∞} . Show that

$$\sup_{\|a\|_{\infty} \le 1} \inf\{\|f\|_{\infty} \colon f \in \mathbb{H}^{\infty}, \, f(z_j) = a_j \,\forall j\}$$

is finite.

P10. Show that there exists $f \in \mathbb{H}^2$ such that

$$\sum_{k=1}^{\infty} \frac{|f(1-k^{-2})|^2}{k^2} = \infty$$

P11. Assume that a sequence $z_k \in \mathbb{D}$ satisfies $1 - |z_{n+1}| \leq c(1 - |z_n|)$ for some c < 1. Show that the measure μ defined by $\mu(z_k) = 1 - |z_k|^2$ is a Carleson measure.

P12. Construct a sequence $0 < z_1 < z_2 < \dots$ in \mathbb{D} such that the measure μ defined by $\mu(z_k) = 1 - |z_k|^2$ is not a Carleson measure.