MA4K3

Example Sheet 3
Functionals and Operators on Hardy Spaces

Hand in solutions to five P-Problems of your choice.
Deadline: 2pm, Tuesday 5th of December.

E1. Let $U \subset \mathbb{H}^{2}$ be a closed subspace. Show that U is shift-invariant if and only if $\mathbb{H}^{\infty} U \subset U$.

E2. Let $z_{0} \in \mathbb{D}$ and consider the Möbius transformation $\mu(z)=\frac{z-z_{0}}{1-\bar{z}_{0} z}$. Compute the pseudohyperbolic disk $K\left(z_{0}, r\right):=\mu(D(0, r))$, where $0<r<1$.

E3. Show that pseudohyperbolic distance is invariant with respect to Möbius transformations.

E4. Let $E \subset L_{2}(\partial \mathbb{D})$, with $z E \subset E, z E \neq E$. Show that there exists a measurable function φ (unique up to a constant) such that $|\varphi|=1$ a.e. on $\partial \mathbb{D}$ and $E=\varphi \mathbb{H}^{2}$.

P1. Show that the multipliers $f_{1}, f_{2} \in \mathcal{M}_{\mathbb{H}^{2}}$ are outer functions if and only if their product is an outer function.

P2. Find the smallest shift-invariant subspace U containing

$$
\text { (1) } \frac{1}{2-z} \quad \text { (2) }\left\{\sqrt[3]{1-z}, z^{2}\right\}
$$

(3) a pair of Blaschke products for some $\left\{w_{n}\right\}_{n=0}^{\infty},\left\{z_{n}\right\}_{n=0}^{\infty} \in \mathbb{D}$.

P3. Consider a function $f(z)=1-z^{n}$.

1. Find optimal approximants p_{k}^{*} to $1 / f$.
2. Compute $\left\|p_{3 n}^{*} f(z)-1\right\|$.
3. Show that f is cyclic.

P4. Consider a sequence $\left\{z_{k}\right\}_{k=0}^{\infty}$ such that $\sum_{k=0}^{\infty}\left(1-\left|z_{k}\right|^{2}\right) \delta_{z_{k}}$ is a Carleson measure. Show that the following sum is finite:

$$
\sum_{j=0}^{\infty} \frac{\left(1-\left|z_{k}\right|^{2}\right)\left(1-\left|z_{j}\right|^{2}\right)}{\left|1-\overline{z^{k}} z_{j}\right|^{2}}
$$

P5. Let ρ be the pseudohyperbolic distance. Establish the inequality

$$
\frac{\rho\left(z_{0}, z_{2}\right)-\rho\left(z_{2}, z_{1}\right)}{1-\rho\left(z_{0}, z_{2}\right) \rho\left(z_{2}, z_{1}\right)} \leq \rho\left(z_{0}, z_{1}\right) \leq \frac{\rho\left(z_{0}, z_{2}\right)+\rho\left(z_{2}, z_{1}\right)}{1+\rho\left(z_{0}, z_{2}\right) \rho\left(z_{2}, z_{1}\right)} \quad \forall z_{0}, z_{1}, z_{2} \in \mathbb{D}
$$

and prove that ρ is a metric on \mathbb{D}.

P6. Give an example of sequence $W=\left\{w_{n}\right\}_{n=0}^{\infty} \in \mathbb{D}$ such that

1. W is a sequence of interpolation and for any $0 \leq t<2 \pi$ there exists a subsequence $w_{n_{k}}$ such that $\lim _{k \rightarrow \infty} w_{n_{k}}=e^{i t}$;
2. W is a zero set for some $f \in \mathbb{H}^{2}$, but it is not a sequence of interpolation;
3. $\sum_{k=0}^{\infty}\left(1-\left|w_{k}\right|^{2}\right) \delta_{w_{k}}$ is a Carleson measure, but W is not a sequence of interpolation.

P7. Which of the following sequences are the sequences of interpolation?
(1) $1-e^{-k}$
(2) $e^{i k}\left(1-\frac{1}{k+1}\right)$
(3) $1-\frac{e^{i k}}{k+1}$
(4) $2^{2 i k}\left(1-\frac{1}{(k+1)^{2}}\right)$
(5) $e^{2 i k}\left(1-2^{-k}\right)$.

P8. Let $E \subset L_{2}(\partial \mathbb{D})$ satisfy $z E=E$. Show that there exists a unique measurable set $A \subset \partial \mathbb{D}$ such that $E=\chi_{A} L_{2}(\mathbb{D})=\left\{f \in L_{2}(\partial \mathbb{D}): f=0\right.$ a.e. outside $\left.A\right\}$, where χ_{A} is the characteristic function of A.

P9. Let a sequence $\left\{z_{n}\right\}_{n=0}^{\infty} \in \mathbb{D}$ be such that for any $\left\{a_{k}\right\}_{k=0}^{\infty} \in \ell^{\infty}$ the interpolation problem $f\left(z_{k}\right)=a_{k}$ has a solution in H^{∞}. Show that

$$
\sup _{\|a\|_{\infty} \leq 1} \inf \left\{\|f\|_{\infty}: f \in \mathbb{H}^{\infty}, f\left(z_{j}\right)=a_{j} \forall j\right\}
$$

is finite.

P10. Show that there exists $f \in \mathbb{H}^{2}$ such that

$$
\sum_{k=1}^{\infty} \frac{\left|f\left(1-k^{-2}\right)\right|^{2}}{k^{2}}=\infty
$$

P11. Assume that a sequence $z_{k} \in \mathbb{D}$ satisfies $1-\left|z_{n+1}\right| \leq c\left(1-\left|z_{n}\right|\right)$ for some $c<1$. Show that the measure μ defined by $\mu\left(z_{k}\right)=1-\left|z_{k}\right|^{2}$ is a Carleson measure.

P12. Construct a sequence $0<z_{1}<z_{2}<\ldots$ in \mathbb{D} such that the measure μ defined by $\mu\left(z_{k}\right)=1-\left|z_{k}\right|^{2}$ is not a Carleson measure.

