The Complexity of Reachability in
 Affine Vector Addition Systems with States

Michael Blondin, michael.blondin@usherbrooke.ca
Mikhail Raskin, raskin@\{in.tum.de,mccme.ru\}

Université de Sherbrooke

Dept. of CS, TU Munich

April 1, 2019

Overview

- Context: VASS, integer relaxations, and affine VASS
- State of the art: complexity of reachability in some \mathbb{Z}-A-VASS
- Setting: Classes of \mathbb{Z}-A-VASS
- Complexity of reachability for all classes of \mathbb{Z}-A-VASS
- Folklore is right about (\mathbb{N}^{-})A-VASS
- Proof components
- Conclusion and future work

Overview

- Context: VASS, integer relaxations, and affine VASS
- State of the art: complexity of reachability in some \mathbb{Z}-A-VASS
- Setting: Classes of \mathbb{Z}-A-VASS
- Complexity of reachability for all classes of \mathbb{Z}-A-VASS
- Folklore is right about (\mathbb{N}-)A-VASS
- Proof components
- Conclusion and future work

Overview

- Context: VASS, integer relaxations, and affine VASS
- State of the art: complexity of reachability in some \mathbb{Z}-A-VASS
- Setting: Classes of \mathbb{Z}-A-VASS
- Complexity of reachability for all classes of \mathbb{Z}-A-VASS
- Folklore is right about (\mathbb{N}-)A-VASS
- Proof components
- Conclusion and future work

Overview

- Context: VASS, integer relaxations, and affine VASS
- State of the art: complexity of reachability in some \mathbb{Z}-A-VASS
- Setting: Classes of \mathbb{Z}-A-VASS
- Complexity of reachability for all classes of \mathbb{Z}-A-VASS
- Folklore is right about (\mathbb{N}-)A-VASS
- Proof components
- Conclusion and future work

Overview

- Context: VASS, integer relaxations, and affine VASS
- State of the art: complexity of reachability in some \mathbb{Z}-A-VASS
- Setting: Classes of \mathbb{Z}-A-VASS
- Complexity of reachability for all classes of \mathbb{Z}-A-VASS
- Folklore is right about (\mathbb{N}-)A-VASS
- Proof components
- Conclusion and future work

Context: VASS, integer relaxations, affine VASS

Vector Addition Systems (a.k.a. Petri Nets, etc.):

- Set of vectors (transitions) $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\} \subset \mathbb{Z}^{d}$
- Trajectory: path $\left(\bar{x}_{j}\right)$ in \mathbb{N}^{d} s.t. $\forall j: \bar{x}_{j+1}-\bar{x}_{j} \in V$

Vector Addition Systems with States

- Finite set Q of states
- Transitions: $q \xrightarrow{\bar{v}} q^{\prime}$
- Trajectories: $\left(\bar{x}_{j}, q_{j}\right) \in \mathbb{N} \times Q$ s.t. $\forall j: q_{j} \xrightarrow{\bar{x}_{j+1}-\bar{x}_{j}} q_{j+1}$ is transition
- Same expressiveness as plain VAS

Context: VASS, integer relaxations, affine VASS

Vector Addition Systems (a.k.a. Petri Nets, etc.):

- Set of vectors (transitions) $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\} \subset \mathbb{Z}^{d}$
- Trajectory: path $\left(\bar{x}_{j}\right)$ in \mathbb{N}^{d} s.t. $\forall j: \bar{x}_{j+1}-\bar{x}_{j} \in V$

Vector Addition Systems with States

- Finite set Q of states
- Transitions: $q \xrightarrow{\bar{v}} q^{\prime}$
- Trajectories: $\left(\bar{x}_{j}, q_{j}\right) \in \mathbb{N} \times Q$ s.t. $\forall j: q_{j} \xrightarrow{\bar{x}_{j+1}-\bar{x}_{j}} q_{j+1}$ is transition
- Same expressiveness as plain VAS

Context: VASS, integer relaxations, affine VASS

Vector Addition Systems (a.k.a. Petri Nets, etc.):

- Set of vectors (transitions) $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\} \subset \mathbb{Z}^{d}$
- Trajectory: path $\left(\bar{x}_{j}\right)$ in \mathbb{N}^{d} s.t. $\forall j: \bar{x}_{j+1}-\bar{x}_{j} \in V$

Vector Addition Systems with States

- Finite set Q of states
- Transitions: $q \xrightarrow{\bar{v}} q^{\prime}$
- Trajectories: $\left(\bar{x}_{j}, q_{j}\right) \in \mathbb{N} \times Q$ s.t. $\forall j: q_{j} \xrightarrow{\bar{x}_{j+1}-\bar{x}_{j}} q_{j+1}$ is transition
- Same expressiveness as plain VAS

Context: VASS, integer relaxations, affine VASS

Vector Addition Systems with States

- Finite set Q of states
- Transitions: $q \xrightarrow{\bar{v}} q^{\prime}$
- Trajectories: $\left(\bar{x}_{j}, q_{j}\right) \in \mathbb{N} \times Q$ s.t. $\forall j: q_{j} \xrightarrow{\bar{x}_{j+1}-\bar{x}_{j}} q_{j+1}$ is transition

Classical setting for verification...

- ... but hard to verify - reachability is TOWER-hard [CLLLM 2019]
- ... but hard to express some things

Context: VASS, integer relaxations, affine VASS

Vector Addition Systems with States

- Finite set Q of states
- Transitions: $q \xrightarrow{\bar{v}} q^{\prime}$
- Trajectories: $\left(\bar{x}_{j}, q_{j}\right) \in \mathbb{N} \times Q$ s.t. $\forall j: q_{j} \xrightarrow{\bar{x}_{j+1}-\bar{x}_{j}} q_{j+1}$ is transition

Classical setting for verification...

- ... but hard to verify - reachability is TOWER-hard [CLLLM 2019]
- ... but hard to express some things

Context: VASS, integer relaxations, affine VASS

VASS are useful. . .

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Overapproximation: allow negative coordinates

- Trajectory now in $\mathbb{Z}^{d} \times Q$
- Reachability is NP-complete
- \mathbb{Z}-VASS not directly modelled by \mathbb{Z}-VAS

Context: VASS, integer relaxations, affine VASS

VASS are useful...

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Overapproximation: allow negative coordinates

- Trajectory now in $\mathbb{Z}^{d} \times Q$
- Reachability is NP-complete
- \mathbb{Z}-VASS not directly modelled by \mathbb{Z}-VAS

Context: VASS, integer relaxations, affine VASS

VASS are useful. . .

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Overapproximation: allow negative coordinates

- Trajectory now in $\mathbb{Z}^{d} \times Q$
- Reachability is NP-complete
- \mathbb{Z}-VASS not directly modelled by \mathbb{Z}-VAS

Context: VASS, integer relaxations, affine VASS

VASS are useful. . .

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Overapproximation: allow negative coordinates

- Trajectory now in $\mathbb{Z}^{d} \times Q$
- Reachability is NP-complete
- \mathbb{Z}-VASS not directly modelled by \mathbb{Z}-VAS

Context: VASS, integer relaxations, affine VASS

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Allow affine transforms, not just vector addition

- Undecidable reachability

Context: VASS, integer relaxations, affine VASS

- ... but hard to verify - reachability is TOWER-hard
- ... but hard to express some things

Allow affine transforms, not just vector addition

- Undecidable reachability

Context: VASS, integer relaxations, affine VASS

- Integer relaxations: low complexity, low expressiveness
- Affine VASS: undecidability, high expressiveness

Why not both?

- Still undecidable in general case

Maybe we do not need all the affine transforms
We consider transforms $\bar{x} \mapsto A \bar{x}+\bar{b}$ for arbitrary vector \bar{b} and matrix A with some property

Context: VASS, integer relaxations, affine VASS

- Integer relaxations: low complexity, low expressiveness
- Affine VASS: undecidability, high expressiveness

Why not both?

- Still undecidable in general case

Maybe we do not need all the affine transforms
We consider transforms $\bar{x} \mapsto A \bar{x}+\bar{b}$ for arbitrary vector \bar{b} and matrix A with some property

Context: VASS, integer relaxations, affine VASS

- Integer relaxations: low complexity, low expressiveness
- Affine VASS: undecidability, high expressiveness

Why not both?

- Still undecidable in general case
[B., Haase, Mazowiecki 2018]
Maybe we do not need all the affine transforms
We consider transforms $\bar{x} \mapsto A \bar{x}+\bar{b}$ for arbitrary vector \bar{b} and matrix A with some property

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
What properties of A say about reachability problem complexity?
\mathbb{Z}-VASS extended with ...

- ... nothing (only identity matrix): NP-complete
- ... resets (diagonal matrices in $\{0,1\}^{n \times n}$): NP-complete [HH 2014] $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- ... copies or with transfers: PSPACE-complete

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \text { - not both! }
$$

- ...coordinate permutations: PSPACE-complete [BHMR, under review] $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
What properties of A say about reachability problem complexity?
\mathbb{Z}-VASS extended with ...

- ... nothing (only identity matrix): NP-complete
- ...resets (diagonal matrices in $\{0,1\}^{n \times n}$): NP-complete [HH 2014] $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- ... copies or with transfers: PSPACE-complete

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \text { - not both! }
$$

- ...coordinate permutations: PSPACE-complete [BHMR, under review] $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
What properties of A say about reachability problem complexity?
\mathbb{Z}-VASS extended with ...

- ... nothing (only identity matrix): NP-complete
[HH 2014]
- ... resets (diagonal matrices in $\{0,1\}^{n \times n}$): NP-complete [HH 2014] $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- ... copies or with transfers: PSPACE-complete
$\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ or $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ - not both!
- ...coordinate permutations: PSPACE-complete [BHMR, under review] $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
What properties of A say about reachability problem complexity?
\mathbb{Z}-VASS extended with ...

- ... nothing (only identity matrix): NP-complete
- ... resets (diagonal matrices in $\{0,1\}^{n \times n}$): NP-complete [HH 2014] $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- ... copies or with transfers: PSPACE-complete

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \text { - not both! }
$$

- ...coordinate permutations: PSPACE-complete [BHMR, under review] $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
What properties of A say about reachability problem complexity?
\mathbb{Z}-VASS extended with ...

- ... nothing (only identity matrix): NP-complete
- ... resets (diagonal matrices in $\{0,1\}^{n \times n}$): NP-complete [HH 2014] $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- ... copies or with transfers: PSPACE-complete

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \text { - not both! }
$$

- ...coordinate permutations: PSPACE-complete [BHMR, under review] $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
\mathbb{Z}-VASS extended with ...

- ... resets: NP-complete
- ... copies or with transfers: PSPACE-complete
- ...coordinate permutations: PSPACE-complete
\mathbb{Z}-A-VASS with ...
- ... matrices A_{j} generating finite monoid: EXPSPACE [BHKST 2020]
- ... only one non-identity matrix and infinite monoid: can be decidable or undecidable

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
\mathbb{Z}-VASS extended with ...

- ... resets: NP-complete
- ... copies or with transfers: PSPACE-complete
- ...coordinate permutations: PSPACE-complete
\mathbb{Z}-A-VASS with ...
- ... matrices A_{j} generating finite monoid: EXPSPACE [BHKST 2020]
- ... only one non-identity matrix and infinite monoid: can be decidable or undecidable

State of the art: known cases of \mathbb{Z}-A-VASS

$\bar{x} \mapsto A \bar{x}+\bar{b}$
\mathbb{Z}-VASS extended with ...

- ... resets: NP-complete
- ... copies or with transfers: PSPACE-complete
- ...coordinate permutations: PSPACE-complete
\mathbb{Z}-A-VASS with ...
- ... matrices A_{j} generating finite monoid: EXPSPACE [BHKST 2020]
- ... only one non-identity matrix and infinite monoid: can be decidable or undecidable

Setting: Classes of \mathbb{Z}-A-VASS

To use in modelling: characterise complexity for all classes of \mathbb{Z}-A-VASS? So what is a class?

Resets: for single counter $a_{1}: a_{1}:=0$;
can apply to any one counter, the rest does not change
Copy: for two counters $a_{1}, a_{2}: a_{1}:=a_{2}$
can pick any two counters and apply in any order
A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Setting: Classes of \mathbb{Z}-A-VASS

To use in modelling: characterise complexity for all classes of \mathbb{Z}-A-VASS? So what is a class?

Resets: for single counter $a_{1}: a_{1}:=0$;
can apply to any one counter, the rest does not change
Copy: for two counters $a_{1}, a_{2}: a_{1}:=a_{2}$
can pick any two counters and apply in any order
A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Setting: Classes of \mathbb{Z}-A-VASS

To use in modelling: characterise complexity for all classes of \mathbb{Z}-A-VASS?
So what is a class?
Resets: for single counter $a_{1}: a_{1}:=0$;
can apply to any one counter, the rest does not change
Copy: for two counters $a_{1}, a_{2}: a_{1}:=a_{2}$
can pick any two counters and apply in any order
A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Setting: Classes of \mathbb{Z}-A-VASS

A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Addition of coordinates: $A \rightsquigarrow\left(\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right)$,
where I is identity matrix of some size
Conjugation by permutation: $A \rightsquigarrow P_{\sigma} \cdot A \cdot P_{\sigma}^{-1}$,
where P_{σ} is permutation matrix
Previously discussed classes are closed under these operations

Setting: Classes of \mathbb{Z}-A-VASS

A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Addition of coordinates: $A \rightsquigarrow\left(\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right)$,
where I is identity matrix of some size
Conjugation by permutation: $A \rightsquigarrow P_{\sigma} \cdot A \cdot P_{\sigma}^{-1}$, where P_{σ} is permutation matrix

Previously discussed classes are closed under these operations

Setting: Classes of \mathbb{Z}-A-VASS

A matrix class for A-VASS is closed under

- addition of (unaffected) coordinates
- conjugation by coordinate permutations

Addition of coordinates: $A \rightsquigarrow\left(\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right)$,
where I is identity matrix of some size
Conjugation by permutation: $A \rightsquigarrow P_{\sigma} \cdot A \cdot P_{\sigma}^{-1}$, where P_{σ} is permutation matrix

Previously discussed classes are closed under these operations

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reachability complexity for various matrix classes is one of:

- NP-complete
- PSPACE-complete
- undecidable

Coincidence? No!

Theorem
 It's always one of these

... and it is easy to tell which

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reachability complexity for various matrix classes is one of:

- NP-complete
- PSPACE-complete
- undecidable

Coincidence? No!
Theorem
It's always one of these
... and it is easy to tell which

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Complexity of reachability for all classes of \mathbb{Z}-A-VASS

Reset matrices: diagonal, with only 0 and 1 entries
Pseudo-transfer matrices: at most one non-zero element per column, elements $0, \pm 1$
Pseudo-copy matrix: at most one non-zero element per row, elements $0, \pm 1$

Theorem

The \mathbb{Z} - A-VASS reachability problem for matrix class \mathcal{C} is:

- NP-complete if \mathcal{C} only contains reset matrices
- PSPACE-complete, otherwise, if \mathcal{C} contains
either only pseudo-transfer matrices or only pseudo-copy matrices
- Undecidable otherwise

Folklore is right about (\mathbb{N}-)A-VASS

State of the art: VASS with resets have undecidable reachability
[AK 1976]

Conjecture (Folklore)

Meaningful affine extension of VASS has undecidable reachability

Theorem

The A-VASS reachability problem for matrix class \mathcal{C} is

- Equivalent to (standard) VASS reachability if \mathcal{C} only contains permutation matrices
- Undecidable otherwise

Folklore is right about (\mathbb{N}-)A-VASS

State of the art: VASS with resets have undecidable reachability

Conjecture (Folklore)

Meaningful affine extension of VASS has undecidable reachability

Theorem

The A-VASS reachability problem for matrix class \mathcal{C} is

- Equivalent to (standard) VASS reachability if \mathcal{C} only contains permutation matrices
- Undecidable otherwise

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem

Turns out:

- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed (once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem

Turns out:

- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed
(once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem

Turns out:

- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed
(once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem

Turns out:

- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed
(once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem
Turns out:
- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed
(once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

Known:

- NP-completeness for resets
- PSPACE-completeness for copy/transfer/permutation guess memory contents, count guesses twice, final counts match if all guesses correct
- PSPACE-easiness for small matrix monoid
- Undecidability for doubling model Post Correspondence Problem
Turns out:
- PSPACE-easy cases are closed classes with few matrices
- Positive results are all there
- Reductions needed
(once the boundaries known!)

Proof components: \mathbb{Z}-A-VASS

- Hardness for pseudo-copy/pseudo-transfer (this includes permutations and -1 on diagonal)
- Combinatorics of non-zero matrix elements
- Choose memory cell encodings
- Undecidability for general case
- Create large matrix entry
- Boost one value using fresh auxillary counters with 0
- Reuse oldest auxillary counters - they are <almost» 0 in comparison
- Close enough to doubling

Proof components: \mathbb{Z}-A-VASS

- Hardness for pseudo-copy/pseudo-transfer (this includes permutations and -1 on diagonal)
- Combinatorics of non-zero matrix elements
- Choose memory cell encodings
- Undecidability for general case
- Create large matrix entry
- Boost one value using fresh auxillary counters with 0
- Reuse oldest auxillary counters - they are «almost» 0 in comparison
- Close enough to doubling

Proof components: \mathbb{Z}-A-VASS

- Hardness for pseudo-copy/pseudo-transfer (this includes permutations and -1 on diagonal)
- Combinatorics of non-zero matrix elements
- Choose memory cell encodings
- Undecidability for general case
- Create large matrix entry
- Boost one value using fresh auxillary counters with 0
- Reuse oldest auxillary counters - they are «almost» 0 in comparison
- Close enough to doubling

Proof components: \mathbb{Z}-A-VASS

- Hardness for pseudo-copy/pseudo-transfer (this includes permutations and -1 on diagonal)
- Combinatorics of non-zero matrix elements
- Choose memory cell encodings
- Undecidability for general case
- Create large matrix entry
- Boost one value using fresh auxillary counters with 0
- Reuse oldest auxillary counters - they are «almost» 0 in comparison
- Close enough to doubling

Proof components: A-VASS

Known: VASS with resets have undecidable reachability

- Permutations: finite number, save into state
- Negative entries: immediate zero test
- Nonnegative and undecidable for \mathbb{Z}-A-VASS: reuse construction
- Pseudo-copies/pseudo-transfers: simulate resets

Proof components: A-VASS

Known: VASS with resets have undecidable reachability

- Permutations: finite number, save into state
- Negative entries: immediate zero test
- Nonnegative and undecidable for \mathbb{Z}-A-VASS: reuse construction
- Pseudo-copies/pseudo-transfers: simulate resets

Proof components: A-VASS

Known: VASS with resets have undecidable reachability

- Permutations: finite number, save into state
- Negative entries: immediate zero test
- Nonnegative and undecidable for \mathbb{Z}-A-VASS: reuse construction
- Pseudo-copies/pseudo-transfers: simulate resets

Proof components: A-VASS

Known: VASS with resets have undecidable reachability

- Permutations: finite number, save into state
- Negative entries: immediate zero test
- Nonnegative and undecidable for \mathbb{Z}-A-VASS: reuse construction
- Pseudo-copies/pseudo-transfers: simulate resets

Proof components: A-VASS

Known: VASS with resets have undecidable reachability

- Permutations: finite number, save into state
- Negative entries: immediate zero test
- Nonnegative and undecidable for \mathbb{Z}-A-VASS: reuse construction
- Pseudo-copies/pseudo-transfers: simulate resets

Conclusion and future work

Achieved: classification of A-VASS and \mathbb{Z}-A-VASS reachability complexity for classes of matrices

What about individual instances of \mathbb{Z}-A-VASS?
(Work in progress) Arbitrary complexity at least between \mathbf{P} and undecidable

What can be reachability complexity for given matrix monoid?
Open problem

Conclusion and future work

Achieved: classification of A-VASS and \mathbb{Z}-A-VASS reachability complexity for classes of matrices

What about individual instances of \mathbb{Z}-A-VASS?
(Work in progress) Arbitrary complexity at least between \mathbf{P} and undecidable

What can be reachability complexity for given matrix monoid?
Open problem

Conclusion and future work

Achieved: classification of A-VASS and \mathbb{Z}-A-VASS reachability complexity for classes of matrices

What about individual instances of \mathbb{Z}-A-VASS?
(Work in progress) Arbitrary complexity at least between \mathbf{P} and undecidable

What can be reachability complexity for given matrix monoid?

Open problem

Thanks for your attention!

Questions?

