Schubert calculus and Gelfand-Zetlin polytopes

 (joint work with Valentina Kiritchenko and Vladlen Timorin)
Evgeny Smirnov

Higher School of Economics
Department of Mathematics
Laboratoire J.-V. Poncelet
Moscow, Russia
ICRA XIV, Tokyo, August 12, 2010

Outline

(1) Motivation: toric varieties

- Toric varieties and polytopes: a dictionary
- Pukhlikov-Khovanskii ring
(2) Definitions
- Schubert varieties and Demazure modules
- Gelfand-Zetlin polytopes
(3) Main results
- Representing Schubert classes by faces of GZ-polytopes
- Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Toric varieties and polytopes: a dictionary

Polarized projective toric varieties

$$
T=\left(\mathbb{C}^{*}\right)^{n} \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^{N} \quad \leftrightarrow \quad \text { integral polytope } P \subset \mathbb{R}^{n},
$$

X normal, $\operatorname{Im} \varphi$ dense in X

$$
\#\left(P \cap \mathbb{Z}^{n}\right)=N+1
$$

k-dimensional T-orbits in X

product in $H^{*}(X, \mathbb{Z})$
$\leftrightarrow \quad$ intersection of faces of P

Toric varieties and polytopes: a dictionary

Polarized projective toric varieties

$$
T=\left(\mathbb{C}^{*}\right)^{n} \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^{N} \quad \leftrightarrow \quad \text { integral polytope } P \subset \mathbb{R}^{n},
$$

X normal, $\operatorname{Im} \varphi$ dense in X

$$
\#\left(P \cap \mathbb{Z}^{n}\right)=N+1
$$

k-dimensional T-orbits in $X \quad \leftrightarrow \quad k$-dimensional faces of P

X is smooth

product in $H^{*}(X, \mathbb{Z})$
$\leftrightarrow \quad$ intersection of faces of P

Toric varieties and polytopes: a dictionary

Polarized projective toric varieties

$$
T=\left(\mathbb{C}^{*}\right)^{n} \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^{N}
$$

$$
X \text { normal, } \operatorname{Im} \varphi \text { dense in } X
$$

k-dimensional T-orbits in $X \quad \leftrightarrow \quad k$-dimensional faces of P
X is smooth
\leftrightarrow
P is integrally simple (in each vertex, the primitive vectors form a basis of \mathbb{Z}^{n})
product in $H^{*}(X, \mathbb{Z}) \quad \leftrightarrow \quad$ intersection of faces of P

Toric varieties and polytopes: a dictionary

Polarized projective toric varieties

$$
\begin{array}{lr}
T=\left(\mathbb{C}^{*}\right)^{n} \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^{N} \\
\text { normal, } \operatorname{Im} \varphi \text { dense in } X & \leftrightarrow \\
\text { integral polytope } P \subset \mathbb{1} \\
& \#\left(P \cap \mathbb{Z}^{n}\right)=N+1
\end{array}
$$

k-dimensional T-orbits in $X \quad \leftrightarrow \quad k$-dimensional faces of P
X is smooth $\quad \leftrightarrow \quad P$ is integrally simple (in each vertex, the primitive vectors form a basis of \mathbb{Z}^{n})
product in $H^{*}(X, \mathbb{Z}) \quad \leftrightarrow \quad$ intersection of faces of P (for X smooth)

Pukhlikov-Khovanskii ring

- Let $P \subset \mathbb{R}^{n}$ be an integral polytope with r facets F_{1}, \ldots, F_{r}.
- h_{1}, \ldots, h_{r} - support numbers: $h_{i}=\operatorname{dist}\left(0, F_{i}\right)$.
- P is uniquely determined by its normal fan and the support numbers h_{1}, \ldots, h_{r}.
- $\operatorname{vol}(P)$ is a polynomial in h_{1}

Definition

$$
R_{P}=\mathbb{Z}\left[\partial / \partial h_{1}, \ldots, \partial / \partial h_{r}\right] / A n n \operatorname{vol}(P)
$$

is called the Pukhlikov-Khovanskii ring of P.

Theorem (Pukhlikov-KhovanskiI, 1992)

Let $X=X_{P}$ be a smooth toric variety. Then

$$
H^{*}(X, \mathbb{Z}) \cong R_{P}
$$

Pukhlikov-Khovanskii ring

- Let $P \subset \mathbb{R}^{n}$ be an integral polytope with r facets F_{1}, \ldots, F_{r}.
- h_{1}, \ldots, h_{r} - support numbers: $h_{i}=\operatorname{dist}\left(0, F_{i}\right)$.
- P is uniquely determined by its normal fan and the support numbers h_{1}, \ldots, h_{r}.
- $\operatorname{vol}(P)$ is a polynomial in h_{1}, \ldots, h_{r}.

Definition
 $$
R_{P}=\mathbb{Z}\left[\partial / \partial h_{1}, \ldots, \partial / \partial h_{r}\right] / A n n \operatorname{vol}(P)
$$

is called the Pukhlikov-Khovanskii ring of P

Theorem (Pukhlikov-Khovanskii, 1992)

Let $X=X p$ be a smooth toric varietv. Then

$$
H^{*}(X, \mathbb{Z}) \cong R_{P}
$$

Pukhlikov-Khovanskii ring

- Let $P \subset \mathbb{R}^{n}$ be an integral polytope with r facets F_{1}, \ldots, F_{r}.
- h_{1}, \ldots, h_{r} - support numbers: $h_{i}=\operatorname{dist}\left(0, F_{i}\right)$.
- P is uniquely determined by its normal fan and the support numbers h_{1}, \ldots, h_{r}.
- $\operatorname{vol}(P)$ is a polynomial in h_{1}, \ldots, h_{r}.

Definition

$$
R_{P}=\mathbb{Z}\left[\partial / \partial h_{1}, \ldots, \partial / \partial h_{r}\right] / \operatorname{Ann} \operatorname{vol}(P)
$$

is called the Pukhlikov-Khovanskii ring of P.
Theorem (Puknlikov-Khovanski, 1992)
Let $X=X_{P}$ be a smooth toric variety. Then

$$
H^{*}(X, \mathbb{Z}) \cong R_{P}
$$

Pukhlikov-Khovanskii ring

- Let $P \subset \mathbb{R}^{n}$ be an integral polytope with r facets F_{1}, \ldots, F_{r}.
- h_{1}, \ldots, h_{r} - support numbers: $h_{i}=\operatorname{dist}\left(0, F_{i}\right)$.
- P is uniquely determined by its normal fan and the support numbers h_{1}, \ldots, h_{r}.
- $\operatorname{vol}(P)$ is a polynomial in h_{1}, \ldots, h_{r}.

Definition

$$
R_{P}=\mathbb{Z}\left[\partial / \partial h_{1}, \ldots, \partial / \partial h_{r}\right] / \operatorname{Ann} \operatorname{vol}(P)
$$

is called the Pukhlikov-Khovanskii ring of P.

Theorem (Pukhlikov-Khovanskii, 1992)

Let $X=X_{P}$ be a smooth toric variety. Then

$$
H^{*}(X, \mathbb{Z}) \cong R_{P}
$$

as a graded ring.

Schubert varieties: definitions

- $G=G L(V), \operatorname{dim} V=n$;
- $B \subset G$ - the group of upper-triangular matrices;
- G / B - full flag variety;
- $G / B=\bigsqcup_{w \in S_{n}} B w B / B-S c h u b e r t$ decomposition;
- $X_{w}=\overline{B w B / B}$ - Schubert varieties;
- X_{w} have many important properties; in particular, the Schubert cycles $\left[X_{w}\right]$ form a basis in $H^{*}(G / B, \mathbb{Z})$.

Main problem of Schubert calculus

How to describe the multiplication in $H^{*}(G / B, \mathbb{Z})$?

[^0]
Schubert varieties: definitions

- $G=G L(V), \operatorname{dim} V=n$;
- $B \subset G$ - the group of upper-triangular matrices;
- G / B - full flag variety;
- $G / B=\bigsqcup_{w \in S_{n}} B w B / B$ - Schubert decomposition;
- $X_{w}=\overline{B w B / B}$ - Schubert varieties;
- X_{w} have many important properties; in particular, the Schubert cycles $\left[X_{w}\right]$ form a basis in $H^{*}(G / B, \mathbb{Z})$.

Schubert varieties: definitions

- $G=G L(V), \operatorname{dim} V=n$;
- $B \subset G$ - the group of upper-triangular matrices;
- G / B - full flag variety;
- $G / B=\bigsqcup_{w \in S_{n}} B w B / B$ - Schubert decomposition;
- $X_{w}=\overline{B w B / B}$ - Schubert varieties;
- X_{w} have many important properties; in particular, the Schubert cycles $\left[X_{w}\right]$ form a basis in $H^{*}(G / B, \mathbb{Z})$.

Main problem of Schubert calculus

How to describe the multiplication in $H^{*}(G / B, \mathbb{Z})$?

$$
\left[X_{v}\right] \cdot\left[X_{w}\right]=\sum c_{V w}^{u}\left[X_{u}\right] ; \quad c_{v w}^{u}=?
$$

($c_{V w}^{u}$ are called Littlewood-Richardson coefficients.)

More definitions: Demazure modules

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}, \lambda_{1}<\cdots<\lambda_{n}$;
- $V(\lambda)$ - the irreducible G-module with highest weight λ;
- $v_{0} \in V(\lambda)$ - highest weight vector.
- $G / B \cong \mathbb{P}\left(\overline{G \cdot v_{0}}\right) \hookrightarrow \mathbb{P}(V(\lambda))$;
- For a given w,

$$
X_{w}=\mathbb{P}\left(\overline{B \cdot w v_{0}}\right)=(G / B) \cap \mathbb{P}\left(\operatorname{Span}\left(B \cdot w v_{0}\right)\right) .
$$

Definition

A B-module

$$
D_{w}(\lambda):=\operatorname{Span}\left(B \cdot w v_{0}\right) \subset V(\lambda)
$$

is called Demazure module.

More definitions: Demazure modules

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}, \lambda_{1}<\cdots<\lambda_{n}$;
- $V(\lambda)$ - the irreducible G-module with highest weight λ;
- $v_{0} \in V(\lambda)$ - highest weight vector.
- $G / B \cong \mathbb{P}\left(\bar{G} \cdot V_{0}\right) \hookrightarrow \mathbb{P}(V(\lambda))$;
- For a given w,

$$
x_{w}=\mathbb{P}\left(B \cdot w v_{0}\right)=(G / B) \cap \mathbb{P}\left(\operatorname{Span}\left(B \cdot w v_{0}\right)\right)
$$

Definition

A B-module

$$
D_{w}(\lambda):=\operatorname{Span}\left(B \cdot w v_{0}\right) \subset V(\lambda)
$$

is called Demazure module.

More definitions: Demazure modules

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}, \lambda_{1}<\cdots<\lambda_{n}$;
- $V(\lambda)$ - the irreducible G-module with highest weight λ;
- $v_{0} \in V(\lambda)$ - highest weight vector.
- $G / B \cong \mathbb{P}\left(\overline{G \cdot v_{0}}\right) \hookrightarrow \mathbb{P}(V(\lambda))$;
- For a given w,

$$
X_{w}=\mathbb{P}\left(\overline{B \cdot w v_{0}}\right)=(G / B) \cap \mathbb{P}\left(\operatorname{Span}\left(B \cdot w v_{0}\right)\right)
$$

Definition

A B-module

$$
D_{w}(\lambda):=\operatorname{Span}\left(B \cdot w v_{0}\right) \subset V(\lambda)
$$

is called Demazure module.

More definitions: Demazure modules

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}, \lambda_{1}<\cdots<\lambda_{n}$;
- $V(\lambda)$ - the irreducible G-module with highest weight λ;
- $v_{0} \in V(\lambda)$ - highest weight vector.
- $G / B \cong \mathbb{P}\left(\overline{G \cdot v_{0}}\right) \hookrightarrow \mathbb{P}(V(\lambda))$;
- For a given w,

$$
X_{w}=\mathbb{P}\left(\overline{B \cdot w v_{0}}\right)=(G / B) \cap \mathbb{P}\left(\operatorname{Span}\left(B \cdot w v_{0}\right)\right)
$$

Definition

A B-module

$$
D_{w}(\lambda):=\operatorname{Span}\left(B \cdot w v_{0}\right) \subset V(\lambda)
$$

is called Demazure module.

Gelfand-Zetlin polytopes

Consider the following table:

Definition
 For a given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$, this system of inequalities defines a (bounded) polytope $G Z(\lambda) \subset \mathbb{R}^{n(n-1) / 2}$, called the Gelfand-Zetlin polytope associated with λ.

Gelfand-Zetlin polytopes

Consider the following table:

Definition

For a given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$, this system of inequalities defines a (bounded) polytope $G Z(\lambda) \subset \mathbb{R}^{n(n-1) / 2}$, called the Gelfand-Zetlin polytope associated with λ.

Gelfand-Zetlin polytope for $n=3$

Properties of GZ-polytopes

- $G Z(\lambda)$ can be projected to the weight polytope of $V(\lambda)$:

$$
\begin{aligned}
\pi:\left(x_{11}, \ldots, x_{n-1,1}\right) \mapsto & \left(x_{11}+\cdots+x_{1, n-1}, x_{21}+\cdots+x_{2, n-2}, \ldots, x_{n-1,1}\right) \\
& \pi: G Z(\lambda) \rightarrow w t(V(\lambda))
\end{aligned}
$$

- $\operatorname{vol}(G Z(\lambda))$ is proportional to the van der Monde determinant:

- Now consider the Pukhlikov-Khovanskii ring of $G Z(\lambda)$.

Theorem (Borel)

$R_{G Z(\lambda)}=\mathbb{Z}\left[\partial / \partial \lambda_{1}, \ldots, \partial / \partial \lambda_{n}\right] / A n n$ vol $G Z(\lambda) \cong H^{*}(G / B, \mathbb{Z})$

Properties of GZ-polytopes

- $G Z(\lambda)$ can be projected to the weight polytope of $V(\lambda)$:

$$
\begin{aligned}
\pi:\left(x_{11}, \ldots, x_{n-1,1}\right) \mapsto & \left(x_{11}+\cdots+x_{1, n-1}, x_{21}+\cdots+x_{2, n-2}, \ldots, x_{n-1,1}\right) \\
& \pi: G Z(\lambda) \rightarrow w t(V(\lambda))
\end{aligned}
$$

$$
\sum \exp \pi(x)=\operatorname{ch} V(\lambda)
$$

$$
x \in G Z(\lambda) \cap \mathbb{Z}^{n(n-1) / 2}
$$

- $\operatorname{vol}(G Z(\lambda))$ is proportional to the van der Monde determinant:

$$
\operatorname{vol}(G Z(\lambda))=\text { const }
$$

- Now consider the Pukhlikov-Khovanskii ring of $G Z(\lambda)$.

Theorem (Borel)

$R_{G Z(\lambda)}=\mathbb{Z}\left[\partial / \partial \lambda_{1}, \ldots, \partial / \partial \lambda_{n}\right] / A n n \operatorname{vol} G Z(\lambda) \cong H^{*}(G / B, \mathbb{Z})$

Properties of GZ-polytopes

- $G Z(\lambda)$ can be projected to the weight polytope of $V(\lambda)$:

$$
\begin{aligned}
\pi:\left(x_{11}, \ldots, x_{n-1,1}\right) \mapsto & \left(x_{11}+\cdots+x_{1, n-1}, x_{21}+\cdots+x_{2, n-2}, \ldots, x_{n-1,1}\right) \\
& \pi: G Z(\lambda) \rightarrow w t(V(\lambda))
\end{aligned}
$$

$$
\sum \quad \exp \pi(x)=\operatorname{ch} V(\lambda)
$$

$$
x \in G Z(\lambda) \cap \mathbb{Z}^{n(n-1) / 2}
$$

- $\operatorname{vol}(G Z(\lambda))$ is proportional to the van der Monde determinant:

$$
\operatorname{vol}(G Z(\lambda))=\text { const } \cdot \prod_{i>j}\left(\lambda_{i}-\lambda_{j}\right)
$$

- Now consider the Pukhlikov-Khovanskii ring of $G Z(\lambda)$.

Theorem (Borel)

Properties of GZ-polytopes

- $G Z(\lambda)$ can be projected to the weight polytope of $V(\lambda)$:

$$
\begin{aligned}
\pi:\left(x_{11}, \ldots, x_{n-1,1}\right) \mapsto & \left(x_{11}+\cdots+x_{1, n-1}, x_{21}+\cdots+x_{2, n-2}, \ldots, x_{n-1,1}\right) \\
& \pi: G Z(\lambda) \rightarrow w t(V(\lambda))
\end{aligned}
$$

$$
\sum \quad \exp \pi(x)=\operatorname{ch} V(\lambda)
$$

$$
x \in G Z(\lambda) \cap \mathbb{Z}^{n(n-1) / 2}
$$

- $\operatorname{vol}(G Z(\lambda))$ is proportional to the van der Monde determinant:

$$
\operatorname{vol}(G Z(\lambda))=\text { const } \cdot \prod_{i>j}\left(\lambda_{i}-\lambda_{j}\right)
$$

- Now consider the Pukhlikov-Khovanskii ring of $G Z(\lambda)$.

Theorem (Borel)

$$
R_{G Z(\lambda)}=\mathbb{Z}\left[\partial / \partial \lambda_{1}, \ldots, \partial / \partial \lambda_{n}\right] / A n n \text { vol } G Z(\lambda) \cong H^{*}(G / B, \mathbb{Z})
$$

Schubert calculus and Gelfand-Zetlin polytopes

- For toric varieties, products in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ can be computed by intersecting faces in P.
- Goal: compute products in $R_{G Z} \cong H^{*}(G / B, \mathbb{Z})$ by intersecting faces of $G Z(\lambda)$.
- Problem: $G Z(\lambda)$ is not simple.
- Solution: define an $R_{G Z-m o d u l e}$

$$
\left.M_{G Z}=\left\langle\left[\Gamma_{i}\right]\right| \Gamma \text { is a face of } G Z\right\rangle / \text { (relations), }
$$

such that

$$
R_{G Z} \hookrightarrow M_{G Z} .
$$

- Regard $\left[X_{w}\right]$ as elements of $M_{G Z}$:

$$
\text { Schubert cycle }\left[X_{w}\right]>\text { set of faces } \Gamma \text { of } G Z(\lambda) \text {. }
$$

Schubert calculus and Gelfand-Zetlin polytopes

- For toric varieties, products in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ can be computed by intersecting faces in P.
- Goal: compute products in $R_{G Z} \cong H^{*}(G / B, \mathbb{Z})$ by intersecting faces of $G Z(\lambda)$.
- Problem: $G Z(\lambda)$ is not simple.
- Solution: define an $R_{G Z}$-module

$$
\left.M_{G Z}=\langle[\Gamma]| \Gamma \text { is a face of } G Z\right\rangle /(\text { relations })
$$

such that

$$
R_{G Z} \hookrightarrow M_{G Z} .
$$

- Regard $\left[X_{w}\right]$ as elements of $M_{G Z}$:

$$
\text { Schubert cycle }\left[\chi_{w}\right] \rightsquigarrow \text { set of faces } \Gamma \text { of } G Z(\lambda) \text {. }
$$

Schubert calculus and Gelfand-Zetlin polytopes

- For toric varieties, products in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ can be computed by intersecting faces in P.
- Goal: compute products in $R_{G Z} \cong H^{*}(G / B, \mathbb{Z})$ by intersecting faces of $G Z(\lambda)$.
- Problem: $G Z(\lambda)$ is not simple.
- Solution: define an $R_{G Z-m o d u l e}$

$$
\left.M_{G Z}=\left\langle\left[\Gamma_{i}\right]\right| \Gamma \text { is a face of } G Z\right\rangle /(\text { relations }),
$$

such that

$$
R_{G Z} \hookrightarrow M_{G Z} .
$$

- Regard $\left[X_{w}\right]$ as elements of $M_{G Z}$:

$$
\text { Schubert cycle }\left[X_{w}\right] \rightsquigarrow \text { set of faces } \Gamma \text { of } G Z(\lambda) \text {. }
$$

Schubert calculus and Gelfand-Zetlin polytopes

- For toric varieties, products in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ can be computed by intersecting faces in P.
- Goal: compute products in $R_{G Z} \cong H^{*}(G / B, \mathbb{Z})$ by intersecting faces of $G Z(\lambda)$.
- Problem: $G Z(\lambda)$ is not simple.
- Solution: define an $R_{G Z}$-module

$$
\left.M_{G Z}=\left\langle\left[\Gamma_{i}\right]\right| \Gamma \text { is a face of } G Z\right\rangle /(\text { relations })
$$

such that

$$
R_{G Z} \hookrightarrow M_{G Z}
$$

- Regard $\left[X_{w}\right]$ as elements of $M_{G Z}$:

$$
\text { Schubert cycle }\left[X_{w}\right] \rightsquigarrow \text { set of faces } \Gamma \text { of } G Z(\lambda) \text {. }
$$

Schubert calculus and Gelfand-Zetlin polytopes

- For toric varieties, products in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ can be computed by intersecting faces in P.
- Goal: compute products in $R_{G Z} \cong H^{*}(G / B, \mathbb{Z})$ by intersecting faces of $G Z(\lambda)$.
- Problem: $G Z(\lambda)$ is not simple.
- Solution: define an $R_{G Z}$-module

$$
\left.M_{G Z}=\left\langle\left[\Gamma_{i}\right]\right| \Gamma \text { is a face of } G Z\right\rangle /(\text { relations })
$$

such that

$$
R_{G Z} \hookrightarrow M_{G Z}
$$

- Regard $\left[X_{w}\right]$ as elements of $M_{G Z}$:

Schubert cycle $\left[X_{w}\right] \rightsquigarrow$ set of faces Γ of $G Z(\lambda)$.

Main results

- There is a combinatorial procedure mapping certain faces of the GZ-polytope (called rc-faces) to permutations:

$$
\Gamma \mapsto w(\Gamma) \in S_{n} .
$$

Theorem

The following identities hold in $M_{G Z}$

$$
\text { where the sum is taken over all rc-faces corresponding to } w \in S_{n} \text {. }
$$

> Remark
> This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994)

Main results

- There is a combinatorial procedure mapping certain faces of the GZ-polytope (called rc-faces) to permutations:

$$
\Gamma \mapsto w(\Gamma) \in S_{n}
$$

Theorem

The following identities hold in $M_{G Z}$:

$$
\left[X_{w}\right]=\sum_{w(\Gamma)=w}[\Gamma]
$$

where the sum is taken over all rc-faces corresponding to $w \in S_{n}$.

[^1]
Main results

- There is a combinatorial procedure mapping certain faces of the GZ-polytope (called rc-faces) to permutations:

$$
\Gamma \mapsto w(\Gamma) \in S_{n}
$$

Theorem

The following identities hold in $M_{G Z}$:

$$
\left[X_{w}\right]=\sum_{w(\Gamma)=w}[\Gamma]
$$

where the sum is taken over all rc-faces corresponding to $w \in S_{n}$.

Remark

This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994).

Main results

Theorem

Under the projection $\pi: G Z(\lambda) \rightarrow \omega t(V(\lambda))$,

$$
\sum_{x \in \bigcup_{w(\Gamma)=w}\left\ulcorner\cap \mathbb{Z}^{n(n-1) / 2}\right.} \exp \pi(x)=\operatorname{ch} D_{w}(\lambda) .
$$

Remark

This generalizes a result of Postnikov and Stanley (2009), who showed this for 312-avoiding permutations.

Main results

Theorem

Under the projection $\pi: G Z(\lambda) \rightarrow \omega t(V(\lambda))$,

$$
\begin{aligned}
& \sum \quad \exp \pi(x)=\operatorname{ch} D_{w}(\lambda) . \\
& x \in \underset{w(\Gamma)=w}{\bigcup} \Gamma \cap \mathbb{Z}^{n(n-1) / 2}
\end{aligned}
$$

Remark

This generalizes a result of Postnikov and Stanley (2009), who showed this for 312-avoiding permutations.

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

$$
\left[X_{s_{2} s_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)=\left[e_{6}\right]=\left[X_{s_{2}}\right] .
$$

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:

$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{s_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;$
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.

$$
\left[X_{S_{2} s_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)=\left[e_{6}\right]=\left[X_{S_{2}}\right] .
$$

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:

$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{s_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$. $\left[X_{S_{2} S_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)=\left[e_{6}\right]=\left[X_{S_{2}}\right]$.

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:

$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{S_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)$
$=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{S_{2}}\right]$
\square

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{S_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]$

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{S_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$.

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{S_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$.
$\left[X_{s_{2} s_{1}}\right]^{2}$
$\left.\left[F_{4}\right]\right)=\left[e_{6}\right]=\left[X_{S_{2}}\right]$.

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{s_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{\left.s_{2} s_{1}\right]}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$. $\left[X_{S_{2} s_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)$

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{s_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{\left.s_{2} s_{1}\right]}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$.
$\left[X_{s_{2} s_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)=\left[e_{6}\right]$

Example of computation in $H^{*}\left(G L_{3} / B, \mathbb{Z}\right)$

Relations in $M_{G Z}$:

$$
\begin{aligned}
& {\left[\Gamma_{1}\right]=\left[F_{2}\right]+\left[F_{3}\right]=\left[F_{3}\right]+\left[F_{4}\right] ;} \\
& {\left[\Gamma_{2}\right]=\left[F_{1}\right]+\left[F_{2}\right]=\left[F_{1}\right]+\left[F_{4}\right] ;} \\
& {\left[e_{1}\right]=\left[e_{3}\right]=\left[e_{5}\right] ;} \\
& {\left[e_{2}\right]=\left[e_{4}\right]=\left[e_{6}\right] .}
\end{aligned}
$$

Schubert cycles:
$\left[X_{S_{2} s_{1}}\right]=\left[\Gamma_{1}\right]$;
$\left[X_{S_{1} s_{2}}\right]=\left[F_{1}\right]+\left[F_{4}\right]$;
$\left[X_{s_{1}}\right]=\left[e_{1}\right]$;
$\left[X_{s_{2}}\right]=\left[e_{6}\right]$.
$\left[X_{s_{2} s_{1}}\right] \cdot\left[X_{s_{1} s_{2}}\right]=\left[\Gamma_{1}\right] \cdot\left(\left[F_{1}\right]+\left[F_{4}\right]\right)=\left[e_{1}\right]+\left[e_{6}\right]=\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]$. $\left[X_{s_{2} s_{1}}\right]^{2}=\left[\Gamma_{1}\right] \cdot\left(\left[F_{3}\right]+\left[F_{4}\right]\right)=\left[e_{6}\right]=\left[X_{s_{2}}\right]$.

Slogan

Multiplying Schubert cycles intersecting faces of the GZ-polytope

[^0]: ($c_{V w}^{U}$ are called Littlewood-Richardson coefficients.)

[^1]: Remark
 This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994)

