Schubert calculus and Gelfand-Zetlin polytopes (joint work with Valentina Kiritchenko and Vladlen Timorin)

Evgeny Smirnov

Higher School of Economics Department of Mathematics

Laboratoire J.-V. Poncelet Moscow, Russia

ICRA XIV, Tokyo, August 12, 2010

Outline

Motivation: toric varieties

- Toric varieties and polytopes: a dictionary
- Pukhlikov–Khovanskii ring

Definitions

- Schubert varieties and Demazure modules
- Gelfand–Zetlin polytopes

Main results

- Representing Schubert classes by faces of GZ-polytopes
- Example of computation in H[∗](GL₃/B, ℤ)

Polarized projective toric varieties

- $T = (\mathbb{C}^*)^n \xrightarrow{\varphi} X \hookrightarrow \mathbb{P}^N$ X normal, Im φ dense in X
- integral polytope $P \subset \mathbb{R}^n$, $\#(P \cap \mathbb{Z}^n) = N + 1$
- -dimensional T-orbits in $X \leftrightarrow k$ -dimensional faces of

 \leftrightarrow

X is smooth \leftrightarrow

P is integrally simple (in each vertex, the primitive vectors form a basis of \mathbb{Z}^n)

product in $H^*(X, \mathbb{Z})$ (for X smooth) intersection of faces of P

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \leftrightarrow

Polarized projective toric varieties

- $\mathcal{T} = (\mathbb{C}^*)^n \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^N$ X normal, Im φ dense in X
- k-dimensional T-orbits in $X \leftarrow$
 - X is smooth \leftrightarrow

- integral polytope $P \subset \mathbb{R}^n$, $\#(P \cap \mathbb{Z}^n) = N + 1$
- \leftrightarrow k-dimensional faces of P
 - *P* is integrally simple (in each vertex, the primitive vectors form a basis of \mathbb{Z}^n)

product in $H^*(X, \mathbb{Z})$ (for X smooth) intersection of faces of P

Evgeny Smirnov (HSE & Labo Poncelet)

Schubert calculus and GZ-polytopes

ICRA XIV, August 12, 2010 3 / 14

< ロ > < 同 > < 回 > < 回 >

Polarized projective toric varieties

- $\mathcal{T} = (\mathbb{C}^*)^n \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^N$ X normal, Im φ dense in X
- k-dimensional T-orbits in $X \leftarrow$
 - $X ext{ is smooth } \leftrightarrow$

integral polytope $P \subset \mathbb{R}^n$, $\#(P \cap \mathbb{Z}^n) = N + 1$

- \leftrightarrow k-dimensional faces of P
 - *P* is integrally simple (in each vertex, the primitive vectors form a basis of \mathbb{Z}^n)

product in $H^*(X, \mathbb{Z}) \leftrightarrow$ intersection of faces of *P* (for *X* smooth)

 \leftrightarrow

< ロ > < 同 > < 回 > < 回 >

 \leftrightarrow

Polarized projective toric varieties

- $T = (\mathbb{C}^*)^n \stackrel{\varphi}{\hookrightarrow} X \hookrightarrow \mathbb{P}^N$ X normal, Im φ dense in X
- k-dimensional T-orbits in $X \leftarrow$
 - $X ext{ is smooth } \leftrightarrow$

- integral polytope $P \subset \mathbb{R}^n$, $\#(P \cap \mathbb{Z}^n) = N + 1$
- \leftrightarrow k-dimensional faces of P
 - $\leftrightarrow \qquad P \text{ is integrally simple} \\ (in each vertex, the primitive vectors form a basis of <math>\mathbb{Z}^n$)

product in $H^*(X, \mathbb{Z})$ (for X smooth) \leftrightarrow intersection of faces of *P*

Evgeny Smirnov (HSE & Labo Poncelet) Schubert calculu

- Let $P \subset \mathbb{R}^n$ be an integral polytope with *r* facets F_1, \ldots, F_r .
- h_1, \ldots, h_r support numbers: $h_i = dist(0, F_i)$.
- *P* is uniquely determined by its normal fan and the support numbers *h*₁,..., *h*_r.
- vol(P) is a polynomial in h_1, \ldots, h_r .

Definition

$$R_P = \mathbb{Z}[\partial/\partial h_1, \ldots, \partial/\partial h_r]/Ann \ vol(P).$$

is called the Pukhlikov–Khovanskii ring of P.

Theorem (Pukhlikov–Khovanskii, 1992)

Let $X = X_P$ be a smooth toric variety. Then

 $H^*(X,\mathbb{Z})\cong R_P$

as a graded ring.

Evgeny Smirnov (HSE & Labo Poncelet) Schubert calculus and GZ-polytopes ICRA XIV, Aug

- Let $P \subset \mathbb{R}^n$ be an integral polytope with *r* facets F_1, \ldots, F_r .
- h_1, \ldots, h_r support numbers: $h_i = dist(0, F_i)$.
- *P* is uniquely determined by its normal fan and the support numbers *h*₁,..., *h*_r.
- vol(P) is a polynomial in h_1, \ldots, h_r .

Definition

$$R_P = \mathbb{Z}[\partial/\partial h_1, \ldots, \partial/\partial h_r]/Ann \ vol(P).$$

is called the Pukhlikov–Khovanskii ring of P.

Theorem (Pukhlikov–Khovanskii, 1992)

Let $X = X_P$ be a smooth toric variety. Then

 $H^*(X,\mathbb{Z})\cong R_P$

as a graded ring.

Evgeny Smirnov (HSE & Labo Poncelet) Schubert calculus and GZ-polytopes ICRA XIV, Augus

- Let $P \subset \mathbb{R}^n$ be an integral polytope with *r* facets F_1, \ldots, F_r .
- h_1, \ldots, h_r support numbers: $h_i = dist(0, F_i)$.
- *P* is uniquely determined by its normal fan and the support numbers *h*₁,..., *h*_r.
- vol(P) is a polynomial in h_1, \ldots, h_r .

Definition

$$R_P = \mathbb{Z}[\partial/\partial h_1, \ldots, \partial/\partial h_r] / Ann \ vol(P).$$

is called the Pukhlikov–Khovanskii ring of P.

Theorem (Pukhlikov–Khovanskii, 1992)

Let $X = X_P$ be a smooth toric variety. Then

 $H^*(X,\mathbb{Z})\cong R_P$

as a graded ring.

Evgeny Smirnov (HSE & Labo Poncelet) Schubert calculus and GZ-polytopes ICRA XIV, Aug

- Let $P \subset \mathbb{R}^n$ be an integral polytope with *r* facets F_1, \ldots, F_r .
- h_1, \ldots, h_r support numbers: $h_i = dist(0, F_i)$.
- *P* is uniquely determined by its normal fan and the support numbers *h*₁,..., *h*_r.
- vol(P) is a polynomial in h_1, \ldots, h_r .

Definition

$$R_P = \mathbb{Z}[\partial/\partial h_1, \ldots, \partial/\partial h_r] / Ann \ vol(P).$$

is called the Pukhlikov–Khovanskii ring of P.

Theorem (Pukhlikov–Khovanskii, 1992)

Let $X = X_P$ be a smooth toric variety. Then

$$H^*(X,\mathbb{Z})\cong R_P$$

as a graded ring.

Evgeny Smirnov (HSE & Labo Poncelet)

Schubert varieties: definitions

- G = GL(V), dim V = n;
- $B \subset G$ the group of upper-triangular matrices;
- G/B full flag variety;
- $G/B = \bigsqcup_{w \in S_n} BwB/B$ Schubert decomposition;
- $X_w = \overline{BwB/B}$ Schubert varieties;
- X_w have many important properties; in particular, the Schubert cycles [X_w] form a basis in H^{*}(G/B, ℤ).

Main problem of Schubert calculus

How to describe the multiplication in $H^*(G/B, \mathbb{Z})$?

$$[X_V] \cdot [X_W] = \sum C_{VW}^U [X_U]; \qquad C_{VW}^U = ?$$

(*c*^{*U*}_{*vw*} are called *Littlewood–Richardson coefficients*.)

Schubert varieties: definitions

- G = GL(V), dim V = n;
- $B \subset G$ the group of upper-triangular matrices;
- *G*/*B* full flag variety;
- $G/B = \bigsqcup_{w \in S_n} BwB/B$ Schubert decomposition;
- $X_w = \overline{BwB/B}$ Schubert varieties;
- X_w have many important properties; in particular, the Schubert cycles [X_w] form a basis in H^{*}(G/B, ℤ).

Main problem of Schubert calculus

How to describe the multiplication in $H^*(G/B, \mathbb{Z})$?

$$[X_v] \cdot [X_w] = \sum c^u_{vw}[X_u]; \qquad c^u_{vw} = ?$$

(c^u_{vw} are called Littlewood–Richardson coefficients.)

Schubert varieties: definitions

- G = GL(V), dim V = n;
- $B \subset G$ the group of upper-triangular matrices;
- *G*/*B* full flag variety;
- $G/B = \bigsqcup_{w \in S_n} BwB/B$ Schubert decomposition;
- $X_w = \overline{BwB/B}$ Schubert varieties;
- X_w have many important properties; in particular, the Schubert cycles [X_w] form a basis in H^{*}(G/B, ℤ).

Main problem of Schubert calculus

How to describe the multiplication in $H^*(G/B, \mathbb{Z})$?

$$[X_v] \cdot [X_w] = \sum c^u_{vw}[X_u]; \qquad c^u_{vw} = ?$$

(*c^u_{vw}* are called *Littlewood–Richardson coefficients*.)

•
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n, \, \lambda_1 < \dots < \lambda_n;$$

- $V(\lambda)$ the irreducible *G*-module with highest weight λ ;
- $v_0 \in V(\lambda)$ highest weight vector.
- $G/B \cong \mathbb{P}(\overline{G \cdot v_0}) \hookrightarrow \mathbb{P}(V(\lambda));$
- For a given w,

$$X_w = \mathbb{P}(\overline{B \cdot wv_0}) = (G/B) \cap \mathbb{P}(Span(B \cdot wv_0)).$$

Definition

A B-module

$$D_w(\lambda) := Span(B \cdot wv_0) \subset V(\lambda)$$

is called Demazure module.

< ロ > < 同 > < 回 > < 回 >

•
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n, \lambda_1 < \dots < \lambda_n;$$

- $V(\lambda)$ the irreducible *G*-module with highest weight λ ;
- $v_0 \in V(\lambda)$ highest weight vector.
- $G/B \cong \mathbb{P}(\overline{G \cdot v_0}) \hookrightarrow \mathbb{P}(V(\lambda));$
- For a given w,

$$X_w = \mathbb{P}(\overline{B \cdot wv_0}) = (G/B) \cap \mathbb{P}(Span(B \cdot wv_0)).$$

Definition

A B-module

$$D_w(\lambda) := Span (B \cdot wv_0) \subset V(\lambda)$$

< ロ > < 同 > < 回 > < 回 >

6/14

is called Demazure module.

•
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n, \lambda_1 < \dots < \lambda_n;$$

- $V(\lambda)$ the irreducible *G*-module with highest weight λ ;
- $v_0 \in V(\lambda)$ highest weight vector.
- $G/B \cong \mathbb{P}(\overline{G \cdot v_0}) \hookrightarrow \mathbb{P}(V(\lambda));$
- For a given w,

$$X_w = \mathbb{P}(\overline{B \cdot wv_0}) = (G/B) \cap \mathbb{P}(Span(B \cdot wv_0)).$$

Definition

A B-module

$$D_w(\lambda) := Span (B \cdot wv_0) \subset V(\lambda)$$

< ロ > < 同 > < 回 > < 回 >

6/14

is called Demazure module.

•
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n, \lambda_1 < \dots < \lambda_n;$$

- $V(\lambda)$ the irreducible *G*-module with highest weight λ ;
- $v_0 \in V(\lambda)$ highest weight vector.
- $G/B \cong \mathbb{P}(\overline{G \cdot v_0}) \hookrightarrow \mathbb{P}(V(\lambda));$
- For a given w,

$$X_w = \mathbb{P}(\overline{B \cdot wv_0}) = (G/B) \cap \mathbb{P}(Span(B \cdot wv_0)).$$

Definition

A B-module

$$D_w(\lambda) := Span \left(B \cdot wv_0
ight) \subset V(\lambda)$$

is called Demazure module.

< ロ > < 同 > < 回 > < 回 >

Consider the following table:

Definition

For a given $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, this system of inequalities defines a (bounded) polytope $GZ(\lambda) \subset \mathbb{R}^{n(n-1)/2}$, called the *Gelfand–Zetlin* polytope associated with λ .

< ロ > < 同 > < 回 > < 回 >

Consider the following table:

Definition

For a given $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, this system of inequalities defines a (bounded) polytope $GZ(\lambda) \subset \mathbb{R}^{n(n-1)/2}$, called the *Gelfand–Zetlin* polytope associated with λ .

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gelfand-Zetlin polytope for n = 3

2

8/14

Evgeny Smirnov (HSE & Labo Poncelet) Schubert calculus and GZ-polytopes ICRA XIV, August 12, 2010

• $GZ(\lambda)$ can be projected to the weight polytope of $V(\lambda)$: $\pi : (x_{11}, \dots, x_{n-1,1}) \mapsto (x_{11} + \dots + x_{1,n-1}, x_{21} + \dots + x_{2,n-2}, \dots, x_{n-1,1});$ $\pi : GZ(\lambda) \to wt(V(\lambda));$

$$\sum_{x \in GZ(\lambda) \cap \mathbb{Z}^{n(n-1)/2}} \exp \pi(x) = ch \ V(\lambda).$$

- $vol(GZ(\lambda))$ is proportional to the van der Monde determinant: $vol(GZ(\lambda)) = const \cdot \prod_{i>i} (\lambda_i - \lambda_j).$
- Now consider the Pukhlikov–Khovanskii ring of $GZ(\lambda)$.

Theorem (Borel)

 $R_{GZ(\lambda)} = \mathbb{Z}[\partial/\partial\lambda_1, \dots, \partial/\partial\lambda_n] / Ann \text{ vol } GZ(\lambda) \cong H^*(G/B, \mathbb{Z}).$

Evgeny Smirnov (HSE & Labo Poncelet)

• $GZ(\lambda)$ can be projected to the weight polytope of $V(\lambda)$: $\pi : (x_{11}, \dots, x_{n-1,1}) \mapsto (x_{11} + \dots + x_{1,n-1}, x_{21} + \dots + x_{2,n-2}, \dots, x_{n-1,1});$ $\pi : GZ(\lambda) \to wt(V(\lambda));$

$$\sum_{x \in GZ(\lambda) \cap \mathbb{Z}^{n(n-1)/2}} \exp \pi(x) = ch \ V(\lambda).$$

• $vol(GZ(\lambda))$ is proportional to the van der Monde determinant: $vol(GZ(\lambda)) = const \cdot \prod_{i>i} (\lambda_i - \lambda_j).$

• Now consider the Pukhlikov–Khovanskii ring of $GZ(\lambda)$.

Theorem (Borel)

 $\mathsf{R}_{GZ(\lambda)} = \mathbb{Z}[\partial/\partial\lambda_1, \dots, \partial/\partial\lambda_n]/A$ nn vol $GZ(\lambda) \cong H^*(G/B, \mathbb{Z}).$

Evgeny Smirnov (HSE & Labo Poncelet)

• $GZ(\lambda)$ can be projected to the weight polytope of $V(\lambda)$: $\pi : (x_{11}, \ldots, x_{n-1,1}) \mapsto (x_{11} + \cdots + x_{1,n-1}, x_{21} + \cdots + x_{2,n-2}, \ldots, x_{n-1,1});$ $\pi : GZ(\lambda) \to wt(V(\lambda));$

$$\sum_{x\in GZ(\lambda)\cap\mathbb{Z}^{n(n-1)/2}}\exp\pi(x)=ch\ V(\lambda).$$

• $vol(GZ(\lambda))$ is proportional to the van der Monde determinant: $vol(GZ(\lambda)) = const \cdot \prod_{i>i} (\lambda_i - \lambda_j).$

• Now consider the Pukhlikov–Khovanskii ring of $GZ(\lambda)$.

Theorem (Borel)

 $\mathsf{R}_{GZ(\lambda)} = \mathbb{Z}[\partial/\partial\lambda_1, \dots, \partial/\partial\lambda_n]/A$ nn vol $GZ(\lambda) \cong H^*(G/B, \mathbb{Z}).$

Evgeny Smirnov (HSE & Labo Poncelet)

• $GZ(\lambda)$ can be projected to the weight polytope of $V(\lambda)$: $\pi : (x_{11}, \ldots, x_{n-1,1}) \mapsto (x_{11} + \cdots + x_{1,n-1}, x_{21} + \cdots + x_{2,n-2}, \ldots, x_{n-1,1});$ $\pi : GZ(\lambda) \rightarrow wt(V(\lambda));$

$$\sum_{x\in GZ(\lambda)\cap\mathbb{Z}^{n(n-1)/2}}\exp\pi(x)=ch\ V(\lambda).$$

• $vol(GZ(\lambda))$ is proportional to the van der Monde determinant:

$$vol(GZ(\lambda)) = const \cdot \prod_{i>j} (\lambda_i - \lambda_j).$$

• Now consider the Pukhlikov–Khovanskii ring of $GZ(\lambda)$.

Theorem (Borel)

 $R_{GZ(\lambda)} = \mathbb{Z}[\partial/\partial\lambda_1, \dots, \partial/\partial\lambda_n] / Ann \text{ vol } GZ(\lambda) \cong H^*(G/B, \mathbb{Z}).$

- For toric varieties, products in H^{*}(X_P, ℤ) can be computed by intersecting faces in P.
- Goal: compute products in R_{GZ} ≃ H^{*}(G/B, Z) by intersecting faces of GZ(λ).
- Problem: $GZ(\lambda)$ is not simple.
- Solution: define an *R_{GZ}*-module

 $M_{GZ} = \langle [\Gamma_i] | \Gamma$ is a face of $GZ \rangle / (relations)$,

such that

$$R_{GZ} \hookrightarrow M_{GZ}.$$

• Regard $[X_w]$ as elements of M_{GZ} :

Schubert cycle $[X_w] \rightsquigarrow$ set of faces Γ of $GZ(\lambda)$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- For toric varieties, products in H^{*}(X_P, ℤ) can be computed by intersecting faces in P.
- Goal: compute products in R_{GZ} ≃ H^{*}(G/B, Z) by intersecting faces of GZ(λ).
- Problem: $GZ(\lambda)$ is not simple.
- Solution: define an *R_{GZ}*-module

 $M_{GZ} = \langle [\Gamma_i] | \Gamma$ is a face of $GZ \rangle / (relations)$,

such that

$$R_{GZ} \hookrightarrow M_{GZ}.$$

• Regard $[X_w]$ as elements of M_{GZ} :

Schubert cycle $[X_w] \rightsquigarrow$ set of faces Γ of $GZ(\lambda)$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- For toric varieties, products in H^{*}(X_P, ℤ) can be computed by intersecting faces in P.
- Goal: compute products in R_{GZ} ≃ H^{*}(G/B, Z) by intersecting faces of GZ(λ).
- Problem: $GZ(\lambda)$ is not simple.

• Solution: define an *R_{GZ}*-module

 $M_{GZ} = \langle [\Gamma_i] | \Gamma$ is a face of $GZ \rangle / (relations)$,

such that

 $R_{GZ} \hookrightarrow M_{GZ}.$

• Regard $[X_w]$ as elements of M_{GZ} :

Schubert cycle $[X_w] \rightsquigarrow$ set of faces Γ of $GZ(\lambda)$.

3

イロト 不得 トイヨト イヨト

- For toric varieties, products in H^{*}(X_P, ℤ) can be computed by intersecting faces in P.
- Goal: compute products in R_{GZ} ≃ H^{*}(G/B, Z) by intersecting faces of GZ(λ).
- Problem: $GZ(\lambda)$ is not simple.
- Solution: define an *R_{GZ}*-module

$$M_{GZ} = \langle [\Gamma_i] | \Gamma$$
 is a face of $GZ \rangle / (relations)$,

such that

$$R_{GZ} \hookrightarrow M_{GZ}.$$

• Regard $[X_w]$ as elements of M_{GZ} :

Schubert cycle $[X_w] \rightsquigarrow$ set of faces Γ of $GZ(\lambda)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For toric varieties, products in H^{*}(X_P, ℤ) can be computed by intersecting faces in P.
- Goal: compute products in R_{GZ} ≃ H^{*}(G/B, Z) by intersecting faces of GZ(λ).
- Problem: $GZ(\lambda)$ is not simple.
- Solution: define an *R_{GZ}*-module

$$M_{GZ} = \langle [\Gamma_i] | \Gamma$$
 is a face of $GZ \rangle / (relations)$,

such that

$$R_{GZ} \hookrightarrow M_{GZ}$$
.

• Regard $[X_w]$ as elements of M_{GZ} :

Schubert cycle $[X_w] \rightsquigarrow$ set of faces Γ of $GZ(\lambda)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results

• There is a combinatorial procedure mapping *certain* faces of the GZ-polytope (called *rc-faces*) to permutations:

 $\Gamma \mapsto w(\Gamma) \in S_n.$

Theorem

The following identities hold in M_{GZ} :

$$[X_w] = \sum_{w(\Gamma)=w} [\Gamma],$$

where the sum is taken over all rc-faces corresponding to $w \in S_n$.

Remark

This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994).

Evgeny Smirnov (HSE & Labo Poncelet)

Main results

• There is a combinatorial procedure mapping *certain* faces of the GZ-polytope (called *rc-faces*) to permutations:

 $\Gamma \mapsto w(\Gamma) \in S_n.$

Theorem

The following identities hold in M_{GZ} :

$$[X_w] = \sum_{w(\Gamma)=w} [\Gamma],$$

where the sum is taken over all rc-faces corresponding to $w \in S_n$.

Remark

This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994).

Evgeny Smirnov (HSE & Labo Poncelet)

Main results

• There is a combinatorial procedure mapping *certain* faces of the GZ-polytope (called *rc-faces*) to permutations:

 $\Gamma \mapsto w(\Gamma) \in S_n.$

Theorem

The following identities hold in M_{GZ} :

$$[X_w] = \sum_{w(\Gamma)=w} [\Gamma],$$

where the sum is taken over all rc-faces corresponding to $w \in S_n$.

Remark

This theorem is formally equivalent to (but not implied by) the theorem of Fomin and An. Kirillov on Schubert polynomials and "pipe dreams" (1994).

Evgeny Smirnov (HSE & Labo Poncelet)

Theorem

Under the projection π : $GZ(\lambda) \rightarrow wt(V(\lambda))$,

$$\sum_{\substack{x \in \bigcup \\ w(\Gamma)=w}} \operatorname{F} \cap \mathbb{Z}^{n(n-1)/2} \exp \pi(x) = ch \, D_w(\lambda).$$

Remark

This generalizes a result of Postnikov and Stanley (2009), who showed this for 312-avoiding permutations.

イロト イ理ト イヨト イヨト

Theorem

Under the projection π : $GZ(\lambda) \rightarrow wt(V(\lambda))$,

$$\sum_{\substack{x \in \bigcup \\ w(\Gamma)=w}} \operatorname{Fn} \mathbb{Z}^{n(n-1)/2} \exp \pi(x) = ch D_w(\lambda).$$

Remark

This generalizes a result of Postnikov and Stanley (2009), who showed this for 312-avoiding permutations.

イロト イポト イヨト イヨ

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles: $[X_{s_2s_1}] = [\Gamma_1];$ $[X_{s_1s_2}] = [F_1] + [F_4]$ $[X_{s_1}] = [e_1];$ $[X_{s_2}] = [e_6].$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}] \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles: $[X_{s_2s_1}] = [\Gamma_1];$ $[X_{s_1s_2}] = [F_1] + [F_4];$ $[X_{s_1}] = [e_1];$

 $[X_{s_2}] = [e_6].$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

▶ < @ ▶ < E ▶ < E ▶ E ICRA XIV, August 12, 2010

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles: $[X_{s_2s_1}] = [\Gamma_1];$ $[X_{s_1s_2}] = [F_1] + [F_4];$ $[X_{s_1}] = [e_1];$

 $[X_{s_2}] = [e_6].$

$$\begin{aligned} [X_{s_2s_1}] \cdot [X_{s_1s_2}] &= [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}], \\ [X_{s_2s_1}]^2 &= [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{aligned}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles: $[X_{s_2s_1}] = [\Gamma_1];$ $[X_{s_1s_2}] = [F_1] + [F_4];$

 $[X_{s_1}] = [e_1];$

$$[X_{s_2}] = [e_6].$$

$$[X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}].$$

$$[X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}].$$

Evgeny Smirnov (HSE & Labo Poncelet)

ICRA XIV, August 12, 2010

13/14

A .

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles: $[X_{0,0}] = [\Gamma_1]^{\cdot}$

$$[X_{s_1s_2}] = [F_1] + [F_4];$$

 $[X_{s_1}] = [e_1];$
 $[X_{s_2}] = [e_6].$

 $\begin{aligned} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{aligned}$

13/14

A .

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles:

$$\begin{aligned} [X_{s_2s_1}] &= [I_1]; \\ [X_{s_1s_2}] &= [F_1] + [F_4]; \\ [X_{s_1}] &= [e_1]; \\ [X_{s_2}] &= [e_6]. \end{aligned}$$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles:

$$\begin{aligned} &[X_{s_2s_1}] = [I_1]; \\ &[X_{s_1s_2}] = [F_1] + [F_4]; \\ &[X_{s_1}] = [e_1]; \\ &[X_{s_2}] = [e_6]. \end{aligned}$$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4];\\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4];\\ [e_1] &= [e_3] = [e_5];\\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles:

$$\begin{aligned} &[X_{s_2s_1}] = [\Gamma_1]; \\ &[X_{s_1s_2}] = [F_1] + [F_4]; \\ &[X_{s_1}] = [e_1]; \\ &[X_{s_2}] = [e_6]. \end{aligned}$$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4]; \\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4]; \\ [e_1] &= [e_3] = [e_5]; \\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles:

$$\begin{array}{l} X_{s_2s_1} = [I_1]; \\ X_{s_1s_2} = [F_1] + [F_4]; \\ X_{s_1} = [e_1]; \\ X_{s_2} = [e_6]. \end{array}$$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Relations in M_{GZ} :

$$\begin{split} [\Gamma_1] &= [F_2] + [F_3] = [F_3] + [F_4]; \\ [\Gamma_2] &= [F_1] + [F_2] = [F_1] + [F_4]; \\ [e_1] &= [e_3] = [e_5]; \\ [e_2] &= [e_4] = [e_6]. \end{split}$$

Schubert cycles:

$$\begin{split} & [X_{s_2s_1}] = [\Gamma_1]; \\ & [X_{s_1s_2}] = [F_1] + [F_4]; \\ & [X_{s_1}] = [e_1]; \\ & [X_{s_2}] = [e_6]. \end{split}$$

$$\begin{split} & [X_{s_2s_1}] \cdot [X_{s_1s_2}] = [\Gamma_1] \cdot ([F_1] + [F_4]) = [e_1] + [e_6] = [X_{s_1}] + [X_{s_2}]. \\ & [X_{s_2s_1}]^2 = [\Gamma_1] \cdot ([F_3] + [F_4]) = [e_6] = [X_{s_2}]. \end{split}$$

Multiplying Schubert cycles = intersecting faces of the GZ-polytope

(4) (5) (4) (5)