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Toric varieties and polytopes: a dictionary

Polarized projective toric varieties

T = (C∗)n ϕ
↪→ X ↪→ PN ↔ integral polytope P ⊂ Rn,

X normal, Im ϕ dense in X #(P ∩ Zn) = N + 1

k -dimensional T -orbits in X ↔ k -dimensional faces of P

X is smooth ↔ P is integrally simple
(in each vertex, the primitive
vectors form a basis of Zn)

product in H∗(X ,Z) ↔ intersection of faces of P
(for X smooth)
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Pukhlikov–Khovanskii ring

Let P ⊂ Rn be an integral polytope with r facets F1, . . . ,Fr .
h1, . . . ,hr — support numbers: hi = dist(0,Fi).
P is uniquely determined by its normal fan and the support
numbers h1, . . . ,hr .
vol(P) is a polynomial in h1, . . . ,hr .

Definition

RP = Z[∂/∂h1, . . . , ∂/∂hr ]/Ann vol(P).

is called the Pukhlikov–Khovanskii ring of P.

Theorem (Pukhlikov–Khovanskii, 1992)
Let X = XP be a smooth toric variety. Then

H∗(X ,Z) ∼= RP

as a graded ring.
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Schubert varieties: definitions

G = GL(V ), dim V = n;
B ⊂ G — the group of upper-triangular matrices;
G/B — full flag variety;
G/B =

⊔
w∈Sn

BwB/B — Schubert decomposition;

Xw = BwB/B — Schubert varieties;
Xw have many important properties; in particular, the Schubert
cycles [Xw ] form a basis in H∗(G/B,Z).

Main problem of Schubert calculus
How to describe the multiplication in H∗(G/B,Z)?

[Xv ] · [Xw ] =
∑

cu
vw [Xu]; cu

vw =?

(cu
vw are called Littlewood–Richardson coefficients.)
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More definitions: Demazure modules

λ = (λ1, λ2, . . . , λn) ∈ Zn, λ1 < · · · < λn;
V (λ) — the irreducible G-module with highest weight λ;
v0 ∈ V (λ) — highest weight vector.
G/B ∼= P(G · v0) ↪→ P(V (λ));
For a given w ,

Xw = P(B · wv0) = (G/B) ∩ P(Span (B · wv0)).

Definition
A B-module

Dw (λ) := Span (B · wv0) ⊂ V (λ)

is called Demazure module.
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Gelfand–Zetlin polytopes

Consider the following table:

λ1 λ2 . . . λn−1 λn
x11 x12 . . . x1,n−1

x21 x22 . . . x2,n−2
. . . . . .

xn−1,1

where the notation
a b

c
means a ≤ c ≤ b.

Definition
For a given λ = (λ1, . . . , λn) ∈ Zn, this system of inequalities defines a
(bounded) polytope GZ (λ) ⊂ Rn(n−1)/2, called the Gelfand–Zetlin
polytope associated with λ.
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Gelfand-Zetlin polytope for n = 3

a b c
x y

z
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Properties of GZ-polytopes

GZ (λ) can be projected to the weight polytope of V (λ):

π : (x11, . . . , xn−1,1) 7→ (x11+· · ·+x1,n−1, x21+· · ·+x2,n−2, . . . , xn−1,1);

π : GZ (λ)→ wt(V (λ));∑
x∈GZ (λ)∩Zn(n−1)/2

expπ(x) = ch V (λ).

vol(GZ (λ)) is proportional to the van der Monde determinant:

vol(GZ (λ)) = const ·
∏
i>j

(λi − λj).

Now consider the Pukhlikov–Khovanskii ring of GZ (λ).

Theorem (Borel)

RGZ (λ) = Z[∂/∂λ1, . . . , ∂/∂λn]/Ann vol GZ (λ) ∼= H∗(G/B,Z).
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Schubert calculus and Gelfand–Zetlin polytopes

For toric varieties, products in H∗(XP ,Z) can be computed by
intersecting faces in P.
Goal: compute products in RGZ

∼= H∗(G/B,Z) by intersecting
faces of GZ (λ).
Problem: GZ (λ) is not simple.
Solution: define an RGZ -module

MGZ = 〈[Γi ] | Γ is a face of GZ 〉/(relations),

such that
RGZ ↪→ MGZ .

Regard [Xw ] as elements of MGZ :

Schubert cycle [Xw ] set of faces Γ of GZ (λ).
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Main results

There is a combinatorial procedure mapping certain faces of the
GZ-polytope (called rc-faces) to permutations:

Γ 7→ w(Γ) ∈ Sn.

Theorem
The following identities hold in MGZ :

[Xw ] =
∑

w(Γ)=w

[Γ],

where the sum is taken over all rc-faces corresponding to w ∈ Sn.

Remark
This theorem is formally equivalent to (but not implied by) the theorem
of Fomin and An. Kirillov on Schubert polynomials and “pipe dreams”
(1994).
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Main results

Theorem
Under the projection π : GZ (λ)→ wt(V (λ)),∑

x∈
⋃

w(Γ)=w
Γ∩Zn(n−1)/2

expπ(x) = ch Dw (λ).

Remark
This generalizes a result of Postnikov and Stanley (2009), who showed
this for 312-avoiding permutations.
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Example of computation in H∗(GL3/B,Z)

e1

e2

e3

e4

e5

e6

Γ1

Γ2

F1

F2 F3

F4

Relations in MGZ :

[Γ1] = [F2] + [F3] = [F3] + [F4];
[Γ2] = [F1] + [F2] = [F1] + [F4];
[e1] = [e3] = [e5];
[e2] = [e4] = [e6].

Schubert cycles:
[Xs2s1 ] = [Γ1];
[Xs1s2 ] = [F1] + [F4];
[Xs1 ] = [e1];
[Xs2 ] = [e6].

[Xs2s1 ] · [Xs1s2 ] = [Γ1] · ([F1] + [F4]) = [e1] + [e6] = [Xs1 ] + [Xs2 ].

[Xs2s1 ]2 = [Γ1] · ([F3] + [F4]) = [e6] = [Xs2 ].
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Slogan

Multiplying Schubert cycles
=

intersecting faces of the GZ-polytope
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