Trinomials, Singular Moduli and Riffaut's Conjecture

Yuri Bilu (joint work with Florian Luca, Amalia Pizarro-Madariaga)

> Zykin memorial conference June 19, 2020

My co-authors

・ロ・・ (日・・ ヨ・・ ヨ・ のへぐ

Singular Moduli

A singular modulus is j(E), where E is elliptic curve with CM.

$$E: y^2 = 4x^3 - g_2x - g_3$$
 $j(E) = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}.$

Alternatively, a singular modulus is $j(\tau)$, where $\tau \in \mathbb{H}$ is a quadratic irrationality and $j : \mathbb{H} \to \mathbb{C}$ is the *j*-function

$$j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots, \quad q = e^{2\pi i z}$$

If $E = \mathbb{C}/\langle \tau, 1 \rangle$ then $j(E) = j(\tau)$.

Discriminant of a singular modulus

The discriminant $\Delta = \Delta_x$ of a singular modulus $x = j(E) = j(\tau)$ is defined in two equivalent ways.

the discriminant of the imaginary quadratic order End(E):

$$\operatorname{End}(E) = \mathbb{Z}\left[\frac{\Delta+\sqrt{\Delta}}{2}\right]$$

▶ the discriminant of the minimal polynomial $aT^2 - bT + c \in \mathbb{Z}[T]$ of τ :

$$\Delta = b^2 - 4ac, \qquad au = rac{b + \sqrt{\Delta}}{2a}.$$

We have

$$\Delta < 0, \qquad \Delta \equiv 0, 1 \, \, \text{mod} \, \, 4,$$

and every Δ with these properties serves as the discriminant of some singular modulus.

Degree of a singular modulus

Fundamental facts

- A singular modulus of discriminant Δ is an algebraic integer of degree h(Δ), the class number of Δ.
- All singular moduli of discriminant Δ form a Galois orbit over Q; in particular there are h(Δ) singular moduli of discriminant Δ.

In particular, there exist 13 singular moduli in \mathbb{Q} :

Δ	-3	-4	-7	-8	-11	-12	-16	-19	-27	
x	0	1728	-3375	8000	-32768	54000	287496	-884736	-12288000	
 Δ	-28		-43	-6	7	- 163				
x	16581375		-884736000	- 14	17197952000	-262537412640768000				

Similarly, there are:

- 29 pairs of singular moduli of degree 2;
- 25 triples of singular moduli of degree 3;
- etc.

Conjecture (A. Riffaut, 2019) A singular modulus of degree $h \ge 3$ cannot be a root of a trinomial with rational coefficients.

A trinomial is $X^m + AX^n + B$, where m > n > 0 and $B \neq 0$.

We do not formally assume $A \neq 0$, but for "trinomials" with A = 0 the conjecture is very easy.

Motivation: equations with singular moduli

Theorem (André, 1998) If $F(X, Y) \in \mathbb{C}[X, Y]$ is irreducible and not "special" then F(x, y) = 0 has at most finitely many solutions in singular moduli x, y.

Special polynomials

- $X \alpha$, where α is a singular modulus
- $Y \beta$, where β is a singular modulus

• $\Phi_N(X, Y)$ the modular polynomial of level N (the irreducible polynomial in $\mathbb{Z}[X, Y]$ satisfying $\Phi_N(j(z), j(Nz)) = 0$)

$$\begin{split} \Phi_1(X, Y) &= X - Y \\ \Phi_2(X, Y) &= X^3 - X^2 Y^2 + 1488 X^2 Y - 162000 X^2 + 1488 X Y^2 \\ &+ 40773375 X Y + 874800000 X + Y^3 - 162000 Y^2 \\ &+ 8748000000 Y - 157464000000000 \end{split}$$

Motivation: equations with singular moduli

Theorem (André, 1998) If $F(X, Y) \in \mathbb{C}[X, Y]$ is irreducible and not "special" then F(x, y) = 0 has at most finitely many solutions in singular moduli x, y.

Proofs:

- André (1998): non-effective
- Edixhoven (1998): GRH
- Pila (2009): non-effective
- Kühne (2012), B., Masser, Zannier (2013): effective
- Kühne (2013): very effective

Linear equations

Kühne (2013): *x* + *y* = 1 has no solutions

Allombert, B., Pizarro-Madariaga (2015): $A, B, C \in \mathbb{Q}$, $AB \neq 0$ Ax + By = C has only "obvious" solutions:

• The "diagonal" case: any point with x = y is a solution if A + B = C = 0;

- ▶ The "rational" case: $x, y \in \mathbb{Q}$
- ▶ The "quadratic case Q(x) = Q(y) is of degree 2 over Q

(No solutions of degree 3 or higher.)

Riffaut (and Luca), 2019: equation $Ax^m + By^n = C$, where $A, B, C \in \mathbb{Q}$, $AB \neq 0$, $m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions

Riffaut (and Luca), 2019: equation $Ax^m + By^n = C$, where $A, B, C \in \mathbb{Q}$, $AB \neq 0$, $m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut (and Luca), 2019: equation $Ax^m + By^n = C$, where $A, B, C \in \mathbb{Q}$, $AB \neq 0$, $m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut's argument fails for x = y.

Riffaut (and Luca), 2019: equation $Ax^m + By^n = C$, where $A, B, C \in \mathbb{Q}$, $AB \neq 0$, $m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut's argument fails for x = y.

The case x = y reduces to the following problem: Determine singular moduli which are roots of trinomials

This is the case for singular moduli of degree h = 1 or h = 2.

Riffaut conjectured that there are no others.

much about trinomials is known, but this knowledge is still insufficient to rule out such a possibility

Riffaut (2019)

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial $/\mathbb{Q}$ cannot vanish at a singular modulus of degree $h \ge 3$. (GRH \Rightarrow Riffaut's conjecture)

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial $/\mathbb{Q}$ cannot vanish at a singular modulus of degree $h \ge 3$. (GRH \Rightarrow Riffaut's conjecture)

Call Δ trinomial discriminant if $h(\Delta) \geq 3$ and some singular modulus of discriminant Δ is a root of a trinomial $/\mathbb{Q}$. (\Leftrightarrow All singular moduli of discriminant Δ are.)

Riffaut's conjecture: trinomial discriminants do not exist.

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial $/\mathbb{Q}$ cannot vanish at a singular modulus of degree $h \ge 3$. (GRH \Rightarrow Riffaut's conjecture)

Call Δ trinomial discriminant if $h(\Delta) \geq 3$ and some singular modulus of discriminant Δ is a root of a trinomial $/\mathbb{Q}$. (\Leftrightarrow All singular moduli of discriminant Δ are.)

Theorem 2: Every trinomial discriminant satisfies $|\Delta| > 10^{11}$.

Theorem 3: Every trinomial discriminant, with at most one exception, satisfies $|\Delta| < 10^{160}$. In particular, the set of trinomial discriminants is finite.

Theorem 4: A trinomial discriminant is of the form -p or -pq, where p, q are (distinct) odd prime numbers.

Theorem 5: If $X^m + AX^n + B$ vanishes at a singular modulus of discriminant $> 10^{40}$ then $m - n \le 2$.

Roots of trinomials

Proposition: Let $w, x, y \in \mathbb{C}$ be roots of $X^m + AX^n + B \in \mathbb{C}[X]$ with $|w| \ge |x| \ge |y|$. Then

$$0 \le 1 - |y/x| \le 4|x/w|^{m-n} \le 4|x/w|$$

Informally: if |w| is "much bigger" than |x|, |y| then x and y have "almost the same" absolute value.

Proof We have

$$\begin{vmatrix} w^m & w^n & 1 \\ x^m & x^n & 1 \\ y^m & y^n & 1 \end{vmatrix} = 0.$$

Expanding the determinant, we obtain

$$|w|^{m}|x^{n} - y^{n}| \le |w|^{n}|x|^{m} + |w|^{n}|y|^{m} + |x|^{m}|y|^{n} + |x|^{n}|y|^{m} \le 4|w|^{n}|x|^{m}.$$

Dividing by $|w|^m |x|^n$, we obtain

$$|1 - (y/x)^n| \le 4|x/z|^{m-n}$$
.

But

$$|1 - (y/x)^n| \ge 1 - |y/x|^n \ge 1 - |y/x| \ge 0.$$

(ロ) (四) (三) (三) (三)

Gauss reduction theory

 \mathcal{T}_{Δ} the set of triples $(a,b,c)\in\mathbb{Z}^3$ such that

$$\begin{split} \Delta &= b^2 - 4ac, \qquad \gcd(a,b,c) = 1, \\ \text{either} &-a < b \leq a < c \quad \text{or} \quad 0 \leq b \leq a = c. \quad (*) \end{split}$$

Remark: (*) is equivalent to " $\frac{b+\sqrt{\Delta}}{2a}$ belongs to the standard fundamental domain".

Gauss: there is a bijection

$$T_{\Delta} \leftrightarrow \{ \text{singular moduli of discriminant } \Delta \}$$

 $(a, b, c) \mapsto j\left(\frac{b + \sqrt{\Delta}}{2a}\right)$

In particular, $h(\Delta) = \# T_{\Delta}$.

Crucial: there is exactly one $(a, b, c) \in T_{\Delta}$ with a = 1:

$(1, 1, (1 - \Delta)/4)$	$\text{if } \Delta \equiv 1 \text{ mod } 4$
$(1,0,-\Delta/4)$	$\text{if }\Delta\equiv 0 \text{ mod } 4$

We call the corresponding singular modulus dominant.

Size of singular moduli

We have

$$j(z) = q^{-1} + 744 + 196884q + \dots, \quad q = e^{2\pi i z}.$$

• If $\operatorname{Im} z \ge \varepsilon > 0$ then $j(z) = q^{-1} + O_{\varepsilon}(1)$.

Size of singular moduli

We have

$$j(z) = q^{-1} + 744 + 196884q + \dots, \quad q = e^{2\pi i z}.$$

• If $\operatorname{Im} z \ge \varepsilon > 0$ then $|j(z)| = |q^{-1}| + O_{\varepsilon}(1)$.

Size of singular moduli

We have

$$j(z) = q^{-1} + 744 + 196884q + \dots, \quad q = e^{2\pi i z}$$

• If
$$\operatorname{Im} z \ge \varepsilon > 0$$
 then $|j(z)| = |q^{-1}| + O_{\varepsilon}(1)$.

▶ If $(a, b, c) \in T_{\Delta}$ then $|b| \le a \le c$. We obtain

$$|\Delta| = 4ac - b^2 \ge 4a^2 - a^2 = 3a^2;$$
 $a \le |\Delta/3|^{1/2}$

In particular Im
$$\left(\frac{b+\sqrt{\Delta}}{2a}\right) \ge \frac{\sqrt{3}}{2}$$
.
Hence $x = j\left(\frac{b+\sqrt{\Delta}}{2a}\right)$ satisfies $|x| = e^{\pi |\Delta|^{1/2}/a} + O(1)$.

In particular:

$$\begin{aligned} |x| &= e^{\pi |\Delta|^{1/2}} + O(1) & \text{if } x \text{ is dominant,} \\ |x| &\leq e^{\pi |\Delta|^{1/2}/2} + O(1) & \text{if not.} \end{aligned}$$

Singular moduli on the complex plane

Trinomial discriminant: one (dominant) very big ($\approx e^{\pi |\Delta|^{1/2}}$) and real, others much smaller $(\leq |\Delta|^{0.8})$ and of almost the same absolute value

Suitable integers

Call a positive integer *a* suitable for the discriminant Δ if there exist $b, c \in \mathbb{Z}$ such that $(a, b, c) \in T_{\Delta}$.

Some properties:

- 1 is suitable for any discriminant.
- If *a* is suitable for Δ then $a \leq |\Delta/3|^{1/2}$.
- If $\Delta \equiv 0 \mod 4$ and $|\Delta| > 220$ then 2 or 4 or 8 is suitable for Δ .
- If *p* is a prime number such (Δ/*p*) = 1 and |Δ| ≥ 4*p*² then *p* is suitable for Δ.
- In particular, 2 is suitable for Δ if $\Delta \equiv 1 \mod 8$ and $\Delta \neq -7$.
- Let *a* be an odd divisor of Δ satisfying gcd(*a*, Δ/*a*) = 1 and |Δ| ≥ 3*a*². Then *a* is suitable for Δ.

Suitable integers for trinomial discriminants

Proposition: Let Δ be a trinomial discriminant, $|\Delta| \ge 10^5$, and a > 1 suitable for Δ . Then $a > 3|\Delta|^{1/2}/\log |\Delta|$.

"Proof": Let *a* be the smallest suitable > 1. Let a' > a be another suitable (it exists!), and x, x' corresponding singular moduli. Then $|x| \approx |x'|$. Recall that

$$\begin{aligned} |x| &= e^{\pi |\Delta|^{1/2}/a} + O(1), \\ |x'| &= e^{\pi |\Delta|^{1/2}/a'} + O(1) \le e^{\pi |\Delta|^{1/2}/(a+1)} + O(1) \end{aligned}$$

However, if *a* is small, then $e^{\pi |\Delta|^{1/2}/a}$ is "much bigger" than $e^{\pi |\Delta|^{1/2}/(a+1)}$.

A lower bound for trinomial discriminants

Theorem 2: Every trinomial discriminant satisfies $|\Delta| > 10^{11}$.

We prove this by running several PARI scripts.

For Δ in the range 10⁵ ≤ |Δ| ≤ 10¹¹ we use a sieving procedure to show that each such Δ admits a prime *p* with

$$(\Delta/p) = 1, \qquad p < 3|\Delta|^{1/2}/\log|\Delta|.$$

For Δ with |Δ| ≤ 10⁵ and h(Δ) > 3 we find singular moduli w, x, y of discriminant Δ such that |w| ≥ |x| ≥ |y| but the inequality

$$1-|y/x|\leq 4|x/w|$$

is not satisfied.

• The 25 discriminants with h = 3 require special treatment.

The total computational time was about 10 minutes on modern laptop. The bottleneck was not the processor time, but the memory: sieving requires dealing with big lists.

Structure of trinomial discriminants

Theorem 4: A trinomial discriminant is of the form -p or -pq, where p, q are (distinct) odd prime numbers.

We prove this by showing that in all other cases there is a "small" suitable integer.

- Step 1: A trinomial discriminant cannot be even, because an even discriminant admits 2, 4 or 8 as a suitable integer.
- Step 2: A trinomial discriminant cannot have more than 2 distinct prime divisors.

Write $\Delta = -p_1^{\nu_1} \cdots p_k^{\nu_k}$ with $k \ge 3$ and $p_1^{\nu_1} < \ldots < p_k^{\nu_k}$. Then $a = p_1^{\nu_1}$ is suitable and $a < |\Delta|^{1/3} < 3|\Delta|^{1/2}/\log|\Delta|$.

Step 3: A trinomial discriminant is not a −square. Assume Δ = −□. One of the primes 5, 13, 17 (call it q) does not divide Δ, and (Δ/q) = 1.

...

The conditional result

Theorem 1: Assume GRH. Then trinomial discriminants do not exist. In other words, GRH Riffaut's conjecture

Let χ be a primitive real Dirichlet character mod *m*.

Lamzouri, Li, Soundararajan (2015): Assume GRH. Then there exists a prime *p* such that $\chi(p) = 1$ and

$$p \leq \max\left\{10^9, \left(\log m + \frac{5}{2}(\log \log m)^2 + 6\right)^2\right\}.$$

If Δ is a trinomial discriminant and $m = |\Delta|$ then $\chi = (\Delta/\cdot)$ is a primitive real character mod m. We obtain a contradiction if the rhs is smaller than $3m^{1/2}/\log m$, which is true for $m \ge 10^{21}$. However, we only know that $m > 10^{11}...$

We slightly adapted their argument and obtained what we wanted: if Δ is trinomial, the previous statement holds with $\chi = (\Delta/\cdot)$ and $3m^{1/2}/\log m$ in the rhs.

The upper bound for all but one

Theorem 3: Every trinomial discriminant, with at most one exception, satisfies $|\Delta| < 10^{160}$. In particular, the set of trinomial discriminants is finite.

Let χ be a primitive real Dirichlet character mod m.

Linnik-Vinogradov (1966): there exists $p \ll_{\varepsilon} m^{1/4+\varepsilon}$ with $\chi(p) = 1$.

Good news: $m^{1/4+\varepsilon} < m^{1/2}/\log m$ for big *m*. **Bad news:** the implied constant is not effective.

Two ingredients:

- Burgess estimate for short character sums (effective);
- Siegel's theorem $L(1, \chi) \gg_{\varepsilon} m^{-\varepsilon}$ (non-effective);

Replace Siegel by Tatuzawa: $L(1, \chi) \ge 0.655 \varepsilon m^{-\varepsilon}$ for all *m* with at most one exception.

Result: with at most one exception, for each trinomial Δ satisfying $|\Delta| \ge 10^{160}$ there exists *p* such that $(\Delta/p) = 1$ and $p \le 3|\Delta|^{1/2}/\log|\Delta|$.

The trinomial

Theorem 5: If $X^m + AX^n + B$ vanishes at a singular modulus of discriminant Δ satisfying $|\Delta| > 10^{40}$ then $m - n \le 2$.

We will prove that $m - n \le 4$.

- We have h(Δ) > 6 (even > 100, by the work of Watkins). Since a trinomial has ≤ 4 real roots, there exist non-real singular moduli x, y of discriminant Δ such that y ≠ x, x̄.
- Set $z = x\bar{x} y\bar{y} = |x|^2 |y|^2$. It is a non-zero(!) real algebraic integer, satisfying $|z| \le e^{-(m-n-0.01)\pi |\Delta|^{1/2}}$.
- The Q-conjugates of z are of the form $x_1x_2 y_1y_2$, where x_1, x_2, y_1, y_2 are distinct singular moduli of discriminant Δ .
- There are exactly 4 conjugates such that one of x₁, x₂, y₁, y₂ is dominant. Hence

$$|\mathcal{N}(z)| \leq e^{4.01\pi |\Delta|^{1/2} - (m-n-0.01)\pi |\Delta|^{1/2}}$$

- ▶ But $|\mathcal{N}(z)| \ge 1$ because z is algebraic integer. Hence $m n \le 4.02$. □
- ► To prove $m n \le 2$ we use a *p*-adic argument to show that $|\mathcal{N}(z)| \ge e^{1.99\pi |\Delta|^{1/2}}$.

Thanks!