Trinomials, Singular Moduli and Riffaut's Conjecture

Yuri Bilu
(joint work with Florian Luca, Amalia Pizarro-Madariaga)

Zykin memorial conference June 19, 2020

My co-authors

Singular Moduli

A singular modulus is $j(E)$, where E is elliptic curve with CM.

$$
E: y^{2}=4 x^{3}-g_{2} x-g_{3} \quad j(E)=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}} .
$$

Alternatively, a singular modulus is $j(\tau)$, where $\tau \in \mathbb{H}$ is a quadratic irrationality and $j: \mathbb{H} \rightarrow \mathbb{C}$ is the j-function

$$
j(z)=q^{-1}+744+196884 q+21493760 q^{2}+\ldots, \quad q=e^{2 \pi i z} .
$$

If $E=\mathbb{C} /\langle\tau, 1\rangle$ then $j(E)=j(\tau)$.

Discriminant of a singular modulus

The discriminant $\Delta=\Delta_{x}$ of a singular modulus $x=j(E)=j(\tau)$ is defined in two equivalent ways.

- the discriminant of the imaginary quadratic order $\operatorname{End}(E)$:

$$
\operatorname{End}(E)=\mathbb{Z}\left[\frac{\Delta+\sqrt{\Delta}}{2}\right]
$$

- the discriminant of the minimal polynomial $a T^{2}-b T+c \in \mathbb{Z}[T]$ of τ :

$$
\Delta=b^{2}-4 a c, \quad \tau=\frac{b+\sqrt{\Delta}}{2 a} .
$$

We have

$$
\Delta<0, \quad \Delta \equiv 0,1 \bmod 4,
$$

and every Δ with these properties serves as the discriminant of some singular modulus.

Degree of a singular modulus

Fundamental facts

- A singular modulus of discriminant Δ is an algebraic integer of degree $h(\Delta)$, the class number of Δ.
- All singular moduli of discriminant Δ form a Galois orbit over \mathbb{Q}; in particular there are $h(\Delta)$ singular moduli of discriminant Δ.

In particular, there exist 13 singular moduli in \mathbb{Q} :

Δ	-3	-4	-7	-8	-11	-12	-16	-19	-27
x	0	1728	-3375	8000	-32768	54000	287496	-884736	-12288000
Δ	-28	-43		-67		-163			
x	16581375	-884736000	-147197952000	-262537412640768000					

Similarly, there are:

- 29 pairs of singular moduli of degree 2;
- 25 triples of singular moduli of degree 3;
- etc.

Riffaut's conjecture

Conjecture (A. Riffaut, 2019) A singular modulus of degree $h \geq 3$ cannot be a root of a trinomial with rational coefficients.

A trinomial is $X^{m}+A X^{n}+B$, where $m>n>0$ and $B \neq 0$.
We do not formally assume $A \neq 0$, but for "trinomials" with $A=0$ the conjecture is very easy.

Motivation: equations with singular moduli

Theorem (André, 1998) If $F(X, Y) \in \mathbb{C}[X, Y]$ is irreducible and not "special" then $F(x, y)=0$ has at most finitely many solutions in singular moduli x, y.

Special polynomials

- $X-\alpha$, where α is a singular modulus
- $Y-\beta$, where β is a singular modulus
- $\Phi_{N}(X, Y)$ the modular polynomial of level N (the irreducible polynomial in $\mathbb{Z}[X, Y]$ satisfying $\left.\Phi_{N}(j(z), j(N z))=0\right)$

$$
\begin{aligned}
\Phi_{1}(X, Y)= & X-Y \\
\Phi_{2}(X, Y)= & X^{3}-X^{2} Y^{2}+1488 X^{2} Y-162000 X^{2}+1488 X Y^{2} \\
& +40773375 X Y+8748000000 X+Y^{3}-162000 Y^{2} \\
& +8748000000 Y-157464000000000
\end{aligned}
$$

Motivation: equations with singular moduli

Theorem (André, 1998) If $F(X, Y) \in \mathbb{C}[X, Y]$ is irreducible and not "special" then $F(x, y)=0$ has at most finitely many solutions in singular moduli x, y.

Proofs:

- André (1998): non-effective
- Edixhoven (1998): GRH
- Pila (2009): non-effective
- Kühne (2012), B., Masser, Zannier (2013): effective
- Kühne (2013): very effective

Linear equations

Kühne (2013): $x+y=1$ has no solutions
Allombert, B., Pizarro-Madariaga (2015): $A, B, C \in \mathbb{Q}, \quad A B \neq 0$
$A x+B y=C$ has only "obvious" solutions:

- The "diagonal" case: any point with $x=y$ is a solution if $A+B=C=0$;
- The "rational" case: $x, y \in \mathbb{Q}$
- The "quadratic case $\mathbb{Q}(x)=\mathbb{Q}(y)$ is of degree 2 over \mathbb{Q}
(No solutions of degree 3 or higher.)

Diagonal

Rational

Quadratic

Riffaut's work

Riffaut (and Luca), 2019: equation $A x^{m}+B y^{n}=C$, where $A, B, C \in \mathbb{Q}, \quad A B \neq 0, \quad m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions

Riffaut's work

Riffaut (and Luca), 2019: equation $A x^{m}+B y^{n}=C$, where $A, B, C \in \mathbb{Q}, \quad A B \neq 0, \quad m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut's work

Riffaut (and Luca), 2019: equation $A x^{m}+B y^{n}=C$, where $A, B, C \in \mathbb{Q}, \quad A B \neq 0, \quad m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut's argument fails for $x=y$.

Riffaut's work

Riffaut (and Luca), 2019: equation $A x^{m}+B y^{n}=C$,
where $A, B, C \in \mathbb{Q}, \quad A B \neq 0, \quad m, n \in \mathbb{Z}_{>0}$ has only "obvious" solutions with $x \neq y$ ("rational" case and "quadratic" case)

Riffaut's argument fails for $x=y$.

The case $x=y$ reduces to the following problem:
Determine singular moduli which are roots of trinomials
This is the case for singular moduli of degree $h=1$ or $h=2$.
Riffaut conjectured that there are no others.
much about trinomials is known, but this knowledge is still insufficient to rule out such a possibility

Riffaut (2019)

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial / \mathbb{Q} cannot vanish at a singular modulus of degree $h \geq 3$. (GRH \Rightarrow Riffaut's conjecture)

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial / \mathbb{Q} cannot vanish at a singular modulus of degree $h \geq 3$. (GRH \Rightarrow Riffaut's conjecture)

Call Δ trinomial discriminant if $h(\Delta) \geq 3$ and some singular modulus of discriminant Δ is a root of a trinomial $/ \mathbb{Q}$. (\Leftrightarrow All singular moduli of discriminant Δ are.)

Riffaut's conjecture: trinomial discriminants do not exist.

Our results

B., Luca, Pizarro-Madariaga arXiv:2003.06547 (March 2020)

Theorem 1: Assume GRH. Then a trinomial $/ \mathbb{Q}$ cannot vanish at a singular modulus of degree $h \geq 3$. (GRH \Rightarrow Riffaut's conjecture)

Call Δ trinomial discriminant if $h(\Delta) \geq 3$ and some singular modulus of discriminant Δ is a root of a trinomial $/ \mathbb{Q}$. $(\Leftrightarrow$ All singular moduli of discriminant Δ are.)

Theorem 2: Every trinomial discriminant satisfies $|\Delta|>10^{11}$.
Theorem 3: Every trinomial discriminant, with at most one exception, satisfies $|\Delta|<10^{160}$. In particular, the set of trinomial discriminants is finite.

Theorem 4: A trinomial discriminant is of the form $-p$ or $-p q$, where p, q are (distinct) odd prime numbers.

Theorem 5: If $X^{m}+A X^{n}+B$ vanishes at a singular modulus of discriminant $>10^{40}$ then $m-n \leq 2$.

Roots of trinomials

Proposition: Let $w, x, y \in \mathbb{C}$ be roots of $X^{m}+A X^{n}+B \in \mathbb{C}[X]$ with $|w| \geq|x| \geq|y|$. Then

$$
0 \leq 1-|y / x| \leq 4|x / w|^{m-n} \leq 4|x / w|
$$

Informally: if $|w|$ is "much bigger" than $|x|,|y|$ then x and y have "almost the same" absolute value.

Proof We have

$$
\left|\begin{array}{lll}
w^{m} & w^{n} & 1 \\
x^{m} & x^{n} & 1 \\
y^{m} & y^{n} & 1
\end{array}\right|=0
$$

Expanding the determinant, we obtain

$$
\begin{aligned}
|w|^{m}\left|x^{n}-y^{n}\right| & \leq|w|^{n}|x|^{m}+|w|^{n}|y|^{m}+|x|^{m}|y|^{n}+|x|^{n}|y|^{m} \\
& \leq 4|w|^{n}|x|^{m} .
\end{aligned}
$$

Dividing by $|w|^{m}|x|^{n}$, we obtain

$$
\left|1-(y / x)^{n}\right| \leq 4|x / z|^{m-n}
$$

But

$$
\left|1-(y / x)^{n}\right| \geq 1-|y / x|^{n} \geq 1-|y / x| \geq 0
$$

Gauss reduction theory

T_{Δ} the set of triples $(a, b, c) \in \mathbb{Z}^{3}$ such that

$$
\begin{align*}
& \Delta=b^{2}-4 a c, \quad \operatorname{gcd}(a, b, c)=1 \\
& \text { either }-a<b \leq a<c \text { or } 0 \leq b \leq a=c . \tag{*}
\end{align*}
$$

Remark: $(*)$ is equivalent to " $\frac{b+\sqrt{\Delta}}{2 a}$ belongs to the standard fundamental domain".
Gauss: there is a bijection

$$
\begin{aligned}
T_{\Delta} & \leftrightarrow \quad\{\text { singular moduli of discriminant } \Delta\} \\
(a, b, c) & \mapsto j\left(\frac{b+\sqrt{\Delta}}{2 a}\right)
\end{aligned}
$$

In particular, $h(\Delta)=\# T_{\Delta}$.
Crucial: there is exactly one $(a, b, c) \in T_{\Delta}$ with $a=1$:

$$
\begin{array}{ll}
(1,1,(1-\Delta) / 4) & \text { if } \Delta \equiv 1 \bmod 4 \\
(1,0,-\Delta / 4) & \text { if } \Delta \equiv 0 \bmod 4
\end{array}
$$

We call the corresponding singular modulus dominant.

Size of singular moduli

- We have

$$
j(z)=q^{-1}+744+196884 q+\ldots, \quad q=e^{2 \pi i z}
$$

- If $\operatorname{Im} z \geq \varepsilon>0$ then $j(z)=q^{-1}+O_{\varepsilon}(1)$.

Size of singular moduli

- We have

$$
j(z)=q^{-1}+744+196884 q+\ldots, \quad q=e^{2 \pi i z}
$$

- If $\operatorname{Im} z \geq \varepsilon>0$ then $|j(z)|=\left|q^{-1}\right|+O_{\varepsilon}(1)$.

Size of singular moduli

- We have

$$
j(z)=q^{-1}+744+196884 q+\ldots, \quad q=e^{2 \pi i z} .
$$

- If $\operatorname{Im} z \geq \varepsilon>0$ then $|j(z)|=\left|q^{-1}\right|+O_{\varepsilon}(1)$.
- If $(a, b, c) \in T_{\Delta}$ then $|b| \leq a \leq c$. We obtain

$$
|\Delta|=4 a c-b^{2} \geq 4 a^{2}-a^{2}=3 a^{2} ; \quad a \leq|\Delta / 3|^{1 / 2} ;
$$

In particular $\operatorname{Im}\left(\frac{b+\sqrt{\Delta}}{2 a}\right) \geq \frac{\sqrt{3}}{2}$.

- Hence $x=j\left(\frac{b+\sqrt{\Delta}}{2 a}\right)$ satisfies $|x|=e^{\pi|\Delta|^{1 / 2} / a}+O(1)$.
- In particular:

$$
\begin{array}{ll}
|x|=e^{\pi|\Delta|^{1 / 2}}+O(1) & \text { if } x \text { is dominant }, \\
|x| \leq e^{\pi|\Delta|^{1 / 2} / 2}+O(1) & \text { if not. }
\end{array}
$$

Singular moduli on the complex plane

Arbitrary discriminant: one (dominant) very big $\left(\approx e^{\pi|\Delta|^{1 / 2}}\right.$) and real, others much smaller $\left(\ll e^{\pi|\Delta|^{1 / 2} / 2}\right)$

Trinomial discriminant: one (dominant) very big ($\approx e^{\pi|\Delta|^{1 / 2}}$) and real, others much smaller $\left(\leq|\Delta|^{0.8}\right)$ and of almost the same absolute value

Suitable integers

Call a positive integer a suitable for the discriminant Δ if there exist $b, c \in \mathbb{Z}$ such that $(a, b, c) \in T_{\Delta}$.

Some properties:

- 1 is suitable for any discriminant.
- If a is suitable for Δ then $a \leq|\Delta / 3|^{1 / 2}$.
- If $\Delta \equiv 0 \bmod 4$ and $|\Delta|>220$ then 2 or 4 or 8 is suitable for Δ.
- If p is a prime number such $(\Delta / p)=1$ and $|\Delta| \geq 4 p^{2}$ then p is suitable for Δ.
- In particular, 2 is suitable for Δ if $\Delta \equiv 1 \bmod 8$ and $\Delta \neq-7$.
- Let a be an odd divisor of Δ satisfying $\operatorname{gcd}(a, \Delta / a)=1$ and $|\Delta| \geq 3 a^{2}$. Then a is suitable for Δ.

Suitable integers for trinomial discriminants

Proposition: Let Δ be a trinomial discriminant, $|\Delta| \geq 10^{5}$, and $a>1$ suitable for Δ. Then $a>3|\Delta|^{1 / 2} / \log |\Delta|$.
"Proof": Let a be the smallest suitable >1. Let $a^{\prime}>a$ be another suitable (it exists!), and x, x^{\prime} corresponding singular moduli. Then $|x| \approx\left|x^{\prime}\right|$. Recall that

$$
\begin{aligned}
|x| & =e^{\pi|\Delta|^{1 / 2} / a}+O(1) \\
\left|x^{\prime}\right| & =e^{\pi|\Delta|^{1 / 2} / a^{\prime}}+O(1) \leq e^{\pi|\Delta|^{1 / 2} /(a+1)}+O(1)
\end{aligned}
$$

However, if a is small, then $e^{\pi|\Delta|^{1 / 2} / a}$ is "much bigger" than $e^{\pi|\Delta|^{1 / 2} /(a+1)}$.

A lower bound for trinomial discriminants

Theorem 2: Every trinomial discriminant satisfies $|\Delta|>10^{11}$.
We prove this by running several PARI scripts.

- For Δ in the range $10^{5} \leq|\Delta| \leq 10^{11}$ we use a sieving procedure to show that each such Δ admits a prime p with

$$
(\Delta / p)=1, \quad p<3|\Delta|^{1 / 2} / \log |\Delta| .
$$

- For Δ with $|\Delta| \leq 10^{5}$ and $h(\Delta)>3$ we find singular moduli w, x, y of discriminant Δ such that $|w| \geq|x| \geq|y|$ but the inequality

$$
1-|y / x| \leq 4|x / w|
$$

is not satisfied.

- The 25 discriminants with $h=3$ require special treatment.

The total computational time was about 10 minutes on modern laptop. The bottleneck was not the processor time, but the memory: sieving requires dealing with big lists.

Structure of trinomial discriminants

Theorem 4: A trinomial discriminant is of the form $-p$ or $-p q$, where p, q are (distinct) odd prime numbers.

We prove this by showing that in all other cases there is a "small" suitable integer.

- Step 1: A trinomial discriminant cannot be even, because an even discriminant admits 2,4 or 8 as a suitable integer.
- Step 2: A trinomial discriminant cannot have more than 2 distinct prime divisors.
Write $\Delta=-p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}}$ with $k \geq 3$ and $p_{1}^{\nu_{1}}<\ldots<p_{k}^{\nu_{k}}$. Then $a=p_{1}^{\nu_{1}}$ is suitable and $a<|\Delta|^{1 / 3}<3|\Delta|^{1 / 2} / \log |\Delta|$.
- Step 3: A trinomial discriminant is not a -square.

Assume $\Delta=-\square$. One of the primes $5,13,17$ (call it q) does not divide Δ, and $(\Delta / q)=1$.

The conditional result

Theorem 1: Assume GRH. Then trinomial discriminants do not exist. In other words, $\mathrm{GRH} \Rightarrow$ Riffaut's conjecture

Let χ be a primitive real Dirichlet character $\bmod m$.
Lamzouri, Li, Soundararajan (2015): Assume GRH. Then there exists a prime p such that $\chi(p)=1$ and

$$
p \leq \max \left\{10^{9},\left(\log m+\frac{5}{2}(\log \log m)^{2}+6\right)^{2}\right\}
$$

If Δ is a trinomial discriminant and $m=|\Delta|$ then $\chi=(\Delta / \cdot)$ is a primitive real character $\bmod m$. We obtain a contradiction if the rhs is smaller than $3 m^{1 / 2} / \log m$, which is true for $m \geq 10^{21}$. However, we only know that $m>10^{11} \ldots$

We slightly adapted their argument and obtained what we wanted: if Δ is trinomial, the previous statement holds with $\chi=(\Delta / \cdot)$ and $3 m^{1 / 2} / \log m$ in the rhs.

The upper bound for all but one

Theorem 3: Every trinomial discriminant, with at most one exception, satisfies $|\Delta|<10^{160}$. In particular, the set of trinomial discriminants is finite.

Let χ be a primitive real Dirichlet character $\bmod m$.
Linnik-Vinogradov (1966): there exists $p \ll_{\varepsilon} m^{1 / 4+\varepsilon}$ with $\chi(p)=1$.
Good news: $m^{1 / 4+\varepsilon}<m^{1 / 2} / \log m$ for big m. Bad news: the implied constant is not effective.

Two ingredients:

- Burgess estimate for short character sums (effective);
- Siegel's theorem $L(1, \chi) \gg_{\varepsilon} m^{-\varepsilon}$ (non-effective);

Replace Siegel by Tatuzawa: $L(1, \chi) \geq 0.655 \varepsilon m^{-\varepsilon}$ for all m with at most one exception.

Result: with at most one exception, for each trinomial Δ satisfying $|\Delta| \geq 10^{160}$ there exists p such that $(\Delta / p)=1$ and $p \leq 3|\Delta|^{1 / 2} / \log |\Delta|$.

The trinomial

Theorem 5: If $X^{m}+A X^{n}+B$ vanishes at a singular modulus of discriminant Δ satisfying $|\Delta|>10^{40}$ then $m-n \leq 2$.

We will prove that $m-n \leq 4$.

- We have $h(\Delta)>6$ (even >100, by the work of Watkins). Since a trinomial has ≤ 4 real roots, there exist non-real singular moduli x, y of discriminant Δ such that $y \neq x, \bar{x}$.
- Set $z=x \bar{x}-y \bar{y}=|x|^{2}-|y|^{2}$. It is a non-zero(!) real algebraic integer, satisfying $|z| \leq e^{-(m-n-0.01) \pi|\Delta|^{1 / 2}}$.
- The \mathbb{Q}-conjugates of z are of the form $x_{1} x_{2}-y_{1} y_{2}$, where $x_{1}, x_{2}, y_{1}, y_{2}$ are distinct singular moduli of discriminant Δ.
- There are exactly 4 conjugates such that one of $x_{1}, x_{2}, y_{1}, y_{2}$ is dominant. Hence

$$
|\mathcal{N}(z)| \leq e^{4.01 \pi|\Delta|^{1 / 2}-(m-n-0.01) \pi|\Delta|^{1 / 2}}
$$

- But $|\mathcal{N}(z)| \geq 1$ because z is algebraic integer. Hence $m-n \leq 4.02$.
- To prove $m-n \leq 2$ we use a p-adic argument to show that $|\mathcal{N}(z)| \geq e^{1.99 \pi|\Delta|^{1 / 2}}$.

Thanks!

