Berkovich spaces over \mathbf{Z} and Schottky spaces

Jérôme Poineau
Université de Caen Normandie ERC TOSSIBERG 637027

Alexey Zykin memorial conference June 18, 2020

Outline

(1) Uniformization of curves
(2) Berkovich spaces over Z
(3) Schottky spaces over Z
(4) Applications

Outline

（1）Uniformization of curves
（2）Berkovich spaces over Z
（3）Schottky spaces over Z

4 Applications

Koebe's theorem

Theorem (Koebe, 1907)

Up to isomorphism, there are exactly three possibilities for the universal cover of a compact Riemann surface:

- the projective line;
- the affine line;
- the open unit disc.

Koebe's theorem

Theorem (Koebe, 1907)

Up to isomorphism, there are exactly three possibilities for the universal cover of a compact Riemann surface:

- the projective line;
- the affine line;
- the open unit disc.

What happens in the p-adic setting?

Elliptic curves

Over C,

$$
E(\mathbf{C}) \simeq \mathbf{C} /\left(\mathbf{Z}+\mathbf{Z}_{\tau}\right)
$$

with $\operatorname{Im}(\tau)>0$.

Elliptic curves

Over C,

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau)
$$

with $\operatorname{Im}(\tau)>0$.
Over \mathbf{Q}_{p}, lattices are not discrete.

Elliptic curves

J. Tate's idea: use a partial uniformization

Over C,

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / q^{\mathbf{Z}}
$$

with $\operatorname{lm}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.
Over \mathbf{Q}_{p}, lattices are not discrete.

Elliptic curves

J. Tate's idea: use a partial uniformization

Over C,

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / q^{\mathbf{Z}}
$$

with $\operatorname{Im}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.
Over \mathbf{Q}_{p}, lattices are not discrete, but

$$
\mathrm{Q}_{p}^{*} / q^{\mathrm{Z}}
$$

still makes sense for $q \in \mathbf{Q}_{p}^{*}$ with $|q|_{p}<1$ and it is then (the set of \mathbf{Q}_{p}-points of an) elliptic curve.

Elliptic curves

J. Tate's idea: use a partial uniformization

Over C,

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / q^{\mathbf{Z}}
$$

with $\operatorname{Im}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.
Over \mathbf{Q}_{p}, lattices are not discrete, but

$$
\mathrm{Q}_{p}^{*} / q^{\mathrm{Z}}
$$

still makes sense for $q \in \mathbf{Q}_{p}^{*}$ with $|q|_{p}<1$ and it is then (the set of \mathbf{Q}_{p}-points of an) elliptic curve.

Remark

Over \mathbf{Q}_{p}, not all elliptic curves arise this way: only those with split multiplicative reduction (Tate curves).

Schottky uniformization: setting

Let $g \geqslant 1$. Let $D_{ \pm 1}, \ldots, D_{ \pm g}$ be disjoint open discs in $\mathrm{P}^{1}(\mathrm{C})$. Let $\gamma_{1}, \ldots, \gamma_{g} \in \operatorname{PGL}_{2}(\mathbf{C})$ such that, setting $\gamma_{-i}:=\gamma_{i}^{-1}$, we have

$$
\forall i, \gamma_{i}\left(\mathbf{P}^{1}(\mathbf{C})-D_{-i}\right)=\overline{D_{i}} .
$$

Schottky uniformization: setting

Let $g \geqslant 1$. Let $D_{ \pm 1}, \ldots, D_{ \pm g}$ be disjoint open discs in $\mathrm{P}^{1}(\mathrm{C})$. Let $\gamma_{1}, \ldots, \gamma_{g} \in \operatorname{PGL}_{2}(\mathbf{C})$ such that, setting $\gamma_{-i}:=\gamma_{i}^{-1}$, we have

$$
\forall i, \gamma_{i}\left(\mathbf{P}^{1}(\mathbf{C})-D_{-i}\right)=\overline{D_{i}} .
$$

Schottky uniformization: setting

Let $g \geqslant 1$. Let $D_{ \pm 1}, \ldots, D_{ \pm g}$ be disjoint open discs in $\mathrm{P}^{1}(\mathrm{C})$. Let $\gamma_{1}, \ldots, \gamma_{g} \in \operatorname{PGL}_{2}(\mathbf{C})$ such that, setting $\gamma_{-i}:=\gamma_{i}^{-1}$, we have

$$
\forall i, \gamma_{i}\left(\mathbf{P}^{1}(\mathbf{C})-D_{-i}\right)=\overline{D_{i}}
$$

Schottky uniformization: setting

Let $g \geqslant 1$. Let $D_{ \pm 1}, \ldots, D_{ \pm g}$ be disjoint open discs in $\mathrm{P}^{1}(\mathrm{C})$. Let $\gamma_{1}, \ldots, \gamma_{g} \in \operatorname{PGL}_{2}(\mathbf{C})$ such that, setting $\gamma_{-i}:=\gamma_{i}^{-1}$, we have

$$
\forall i, \gamma_{i}\left(\mathbf{P}^{1}(\mathbf{C})-D_{-i}\right)=\overline{D_{i}} .
$$

Schottky uniformization: setting

Let $g \geqslant 1$. Let $D_{ \pm 1}, \ldots, D_{ \pm g}$ be disjoint open discs in $\mathrm{P}^{1}(\mathrm{C})$. Let $\gamma_{1}, \ldots, \gamma_{g} \in \operatorname{PGL}_{2}(\mathbf{C})$ such that, setting $\gamma_{-i}:=\gamma_{i}^{-1}$, we have

$$
\forall i, \gamma_{i}\left(\mathbf{P}^{1}(\mathbf{C})-D_{-i}\right)=\overline{D_{i}}
$$

Schottky uniformization: properties

Set $\Gamma:=\left\langle\gamma_{1}, \ldots, \gamma_{g}\right\rangle$. It is a free group of rank g, called

Schottky group.

There exists a compact subset \mathcal{L} of $\mathrm{P}^{1}(\mathrm{C})$ such that
(1) the action of Γ on $\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}$ is properly discontinuous;
(2) $\left(\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}\right) / \Gamma$ is a compact Riemann surface of genus g.

Schottky uniformization: properties

Set $\Gamma:=\left\langle\gamma_{1}, \ldots, \gamma_{g}\right\rangle$. It is a free group of rank g, called

Schottky group.

There exists a compact subset \mathcal{L} of $\mathrm{P}^{1}(\mathrm{C})$ such that
(1) the action of Γ on $\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}$ is properly discontinuous;
(2) $\left(\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}\right) / \Gamma$ is a compact Riemann surface of genus g.

- Every compact Riemann surface of genus g may be obtained this way, possibly replacing the discs by domains bounded by Jordan curves.

Schottky uniformization: properties

Set $\Gamma:=\left\langle\gamma_{1}, \ldots, \gamma_{g}\right\rangle$. It is a free group of rank g, called

Schottky group.

There exists a compact subset \mathcal{L} of $\mathbf{P}^{1}(\mathbf{C})$ such that
(1) the action of Γ on $\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}$ is properly discontinuous;
(2) $\left(\mathrm{P}^{1}(\mathrm{C})-\mathcal{L}\right) / \Gamma$ is a compact Riemann surface of genus g.

- Every compact Riemann surface of genus g may be obtained this way, possibly replacing the discs by domains bounded by Jordan curves.
- D. Mumford (1972) adapted the theory to the non-archimedean setting. The resulting curves are called Mumford curves.

Outline

（1）Uniformization of curves
（2）Berkovich spaces over Z

3 Schottky spaces over Z

4 Applications

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: definition

Definition

The analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is the set of multiplicative seminorms

$$
|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{\geqslant 0} .
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: definition

Definition

The analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is the set of multiplicative seminorms

$$
|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{\geqslant 0} .
$$

It is endowed with the topology generated by the subsets of the form

$$
\left\{x \in \mathbf{A}_{\mathbf{Z}}^{n, \text { an }}: r<|P|_{x}<s\right\}
$$

for $P \in \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right]$ and $r, s \in \mathbf{R}$.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: structure sheaf

To each $x \in \mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$, we associate a complete residue field
$\mathcal{H}(x):=$ completion of the fraction field of $\mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] / \operatorname{Ker}\left(|\cdot|_{x}\right)$ and an evaluation map

$$
\chi_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathcal{H}(x)
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: structure sheaf

To each $x \in \mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$, we associate a complete residue field
$\mathcal{H}(x):=$ completion of the fraction field of $\mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] / \operatorname{Ker}\left(|\cdot|_{x}\right)$ and an evaluation map

$$
\chi_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathcal{H}(x)
$$

For every open subset U of $A_{\mathbf{Z}}^{n, \text { an }}, \mathcal{O}(U)$ is the set of maps

$$
f: U \rightarrow \bigsqcup_{x \in U} \mathcal{H}(x)
$$

such that

- $\forall x \in U, f(x) \in \mathcal{H}(x)$;
- f is locally a uniform limit of rational functions without poles.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, a n}$: examples of points

$$
\mathbf{A}_{\mathbf{Z}}^{n \text {,an }}=\left\{|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R} \geqslant 0\right\}
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: examples of points

$$
\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{\geqslant 0}\right\}
$$

(1) For $\mathbf{t} \in \mathbf{C}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{t})|_{\infty} .
$$

Note that t and $\overline{\mathrm{t}}$ give rise to the same seminorm.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: examples of points

$$
\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R} \geqslant 0\right\}
$$

(1) For $\mathbf{t} \in \mathbf{C}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{t})|_{\infty} .
$$

Note that \mathbf{t} and $\overline{\mathbf{t}}$ give rise to the same seminorm.
(2) For $\mathbf{u} \in \mathbf{Q}_{p}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{u})|_{p}
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: examples of points

$$
\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R} \geqslant 0\right\}
$$

(1) For $\mathbf{t} \in \mathbf{C}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{t})|_{\infty} .
$$

Note that \mathbf{t} and $\overline{\mathrm{t}}$ give rise to the same seminorm.
(2) For $\mathbf{u} \in \mathbf{Q}_{p}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{u})|_{p}
$$

Also: supremum norms on closed polydiscs in \mathbf{Q}_{p}^{n}.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: examples of points

$$
\mathbf{A}_{\mathbf{Z}}^{n \text {,an }}=\left\{|\cdot|_{x}: \mathbf{Z}\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R} \geqslant 0\right\}
$$

(1) For $\mathbf{t} \in \mathbf{C}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{t})|_{\infty} .
$$

Note that \mathbf{t} and $\overline{\mathrm{t}}$ give rise to the same seminorm.
(2) For $\mathbf{u} \in \mathbf{Q}_{p}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{u})|_{p} .
$$

Also: supremum norms on closed polydiscs in \mathbf{Q}_{p}^{n}.
(0) For $\mathbf{v} \in \mathrm{F}_{p}^{n}$,

$$
P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto|P(\mathbf{v})|_{0} .
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: the \mathbf{Q}_{p}-points
$\mathrm{A}_{\mathrm{Q}_{p}}^{1, \mathrm{an}}$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: picture

$$
\mathcal{M}(\mathbf{Z}):=\mathbf{A}_{\mathbf{Z}}^{0, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z} \rightarrow \mathbf{R} \geqslant 0\right\}
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: picture

$$
\mathcal{M}(\mathbf{Z}):=\mathbf{A}_{\mathbf{Z}}^{0, \text { an }}=\left\{|\cdot|_{\chi}: \mathbf{Z} \rightarrow \mathbf{R} \geqslant 0\right\}
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: picture

$$
\mathcal{M}(\mathbf{Z}):=\mathbf{A}_{\mathbf{Z}}^{0, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z} \rightarrow \mathbf{R} \geqslant 0\right\}
$$

We have a projection morphism $\pi: \mathbf{A}_{\mathbf{Z}}^{n, \text { an }} \rightarrow \mathbf{A}_{\mathbf{Z}}^{0, \text { an }}$.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: picture

$$
\mathcal{M}(\mathbf{Z}):=\mathbf{A}_{\mathbf{Z}}^{0, \text { an }}=\left\{|\cdot|_{x}: \mathbf{Z} \rightarrow \mathbf{R} \geqslant 0\right\}
$$

We have a projection morphism $\pi: \mathbf{A}_{\mathbf{Z}}^{n, \text { an }} \rightarrow \mathbf{A}_{\mathbf{Z}}^{0, \text { an }}$.

- $\pi^{-1}\left(|\cdot|_{\infty}\right)=\mathbf{C}^{n} / \operatorname{Gal}(\mathbf{C} / \mathrm{R})$
- $\pi^{-1}\left(|\cdot|_{p}\right)=\mathbf{A}_{\mathbf{Q}_{p}}^{n, \text { an }}$ usual Berkovich analytic space

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: functions

Let \mathbf{D} be the open unit disk in $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$. Then $H^{0}(\mathbf{D}, \mathcal{O})$ is a ring of convergent arithmetic power series (D. Harbater):

$$
\begin{aligned}
H^{0}(\mathbf{D}, \mathcal{O}) & =\mathbf{Z} \llbracket T_{1}, \ldots, T_{n} \rrbracket_{1^{-}} \\
& =\{f \in \mathbf{Z} \llbracket T \rrbracket \text { with complex radius of convergence } \geqslant 1\}
\end{aligned}
$$

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$: functions

Let \mathbf{D} be the open unit disk in $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$. Then $H^{0}(\mathbf{D}, \mathcal{O})$ is a ring of convergent arithmetic power series (D. Harbater):
$H^{0}(\mathbf{D}, \mathcal{O})=\mathbf{Z} \llbracket T_{1}, \ldots, T_{n} \rrbracket_{1^{-}}$ $=\{f \in \mathbf{Z} \llbracket T \rrbracket$ with complex radius of convergence $\geqslant 1\}$.

The local ring at the point 0 over $|\cdot|_{0}$ is the subring of $\mathbf{Q} \llbracket T_{1}, \ldots, T_{n} \rrbracket$ consisting of the power series f such that
i) $\exists N \in \mathbf{N}^{*}, f \in \mathbf{Z}\left[\frac{1}{N}\right] \llbracket T_{1}, \ldots, T_{n} \rrbracket$;
ii) the complex radius of convergence of f is >0;
iii) for each $p \mid N$, the p-adic radius of convergence of f is >0.

Properties of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$

Theorem (V. Berkovich)
The space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is Hausdorff and locally compact.

Properties of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$

Theorem (V. Berkovich)
The space $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is Hausdorff and locally compact.
Theorem (T. Lemanissier - J. P.)
The space $\mathbf{A}_{\mathbf{Z}}^{\text {n,an }}$ is locally path-connected.

Properties of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$

Theorem (V. Berkovich)
The space $\mathbf{A}_{\mathbf{z}}^{\text {n,an }}$ is Hausdorff and locally compact.
Theorem (T. Lemanissier - J. P.)
The space $\mathbf{A}_{\mathbf{Z}}^{\text {n,an }}$ is locally path-connected.
Theorem (J. P.)

- For every x in $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$, the local ring \mathcal{O}_{x} is Henselian, Noetherian, regular, excellent.
- The structure sheaf of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is coherent.

Properties of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$

Theorem (V. Berkovich)
The space $\mathbf{A}_{\mathbf{z}}^{\text {n,an }}$ is Hausdorff and locally compact.
Theorem (T. Lemanissier - J. P.)
The space $\mathbf{A}_{\mathbf{Z}}^{\text {n,an }}$ is locally path-connected.
Theorem (J. P.)

- For every x in $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$, the local ring \mathcal{O}_{x} is Henselian, Noetherian, regular, excellent.
- The structure sheaf of $\mathbf{A}_{\mathbf{Z}}^{n, \text { an }}$ is coherent.

Theorem (T. Lemanissier - J. P.)
Relative closed and open discs over \mathbf{Z} are Stein.

Outline

(1) Uniformization of curves

(2) Berkovich spaces over Z
(3) Schottky spaces over Z

4 Applications

Koebe coordinates

Let $(k,|\cdot|)$ be a complete valued field, Archimedean or not.

Koebe coordinates

Let $(k,|\cdot|)$ be a complete valued field, Archimedean or not.
To $\gamma \in \mathrm{PGL}_{2}(k)$ hyperbolic, we associate

- $\alpha \in \mathbf{P}^{1}(k)$ its attracting fixed point;
- $\alpha^{\prime} \in \mathbf{P}^{1}(k)$ its repelling fixed point;
- $\beta \in k$ the quotient of its eigenvalues with absolute value <1.

Koebe coordinates

Let $(k,|\cdot|)$ be a complete valued field, Archimedean or not.
To $\gamma \in \mathrm{PGL}_{2}(k)$ hyperbolic, we associate

- $\alpha \in \mathbf{P}^{1}(k)$ its attracting fixed point;
- $\alpha^{\prime} \in \mathbf{P}^{1}(k)$ its repelling fixed point;
- $\beta \in k$ the quotient of its eigenvalues with absolute value <1.

For $\alpha, \alpha^{\prime}, \beta \in k$ with $|\beta| \in(0,1)$, we have

$$
M\left(\alpha, \alpha^{\prime}, \beta\right)=\left(\begin{array}{cc}
\alpha-\beta \alpha^{\prime} & (\beta-1) \alpha \alpha^{\prime} \\
1-\beta & \beta \alpha-\alpha^{\prime}
\end{array}\right) .
$$

Schottky space

Definition

For $g \geqslant 2$, the Schottky space \mathcal{S}_{g} is the subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ consisting of the points

$$
z=\left(x_{3}, \ldots, x_{g}, x_{2}^{\prime}, \ldots, x_{g}^{\prime}, y_{1}, \ldots, y_{g}\right)
$$

such that the subgroup of $\mathrm{PGL}_{2}(\mathcal{H}(z))$ defined by

$$
\Gamma_{z}:=\left\langle M\left(0, \infty, y_{1}\right), M\left(1, x_{2}^{\prime}, y_{2}\right), M\left(x_{3}, x_{3}^{\prime}, y_{3}\right), \ldots, M\left(x_{g}, x_{g}^{\prime}, y_{g}\right)\right\rangle
$$

is a Schottky group.

Schottky space

Definition

For $g \geqslant 2$, the Schottky space \mathcal{S}_{g} is the subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ consisting of the points

$$
z=\left(x_{3}, \ldots, x_{g}, x_{2}^{\prime}, \ldots, x_{g}^{\prime}, y_{1}, \ldots, y_{g}\right)
$$

such that the subgroup of $\mathrm{PGL}_{2}(\mathcal{H}(z))$ defined by

$$
\Gamma_{z}:=\left\langle M\left(0, \infty, y_{1}\right), M\left(1, x_{2}^{\prime}, y_{2}\right), M\left(x_{3}, x_{3}^{\prime}, y_{3}\right), \ldots, M\left(x_{g}, x_{g}^{\prime}, y_{g}\right)\right\rangle
$$

is a Schottky group.

Theorem (J. P. - D. Turchetti)

The Schottky space \mathcal{S}_{g} is a connected open subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$.

Universal Mumford curve

Denote by $\left(X_{3}, \ldots, X_{g}, X_{2}^{\prime}, \ldots, X_{g}^{\prime}, Y_{1}, \ldots, Y_{g}\right)$ the coordinates on $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ and consider the subgroup of $\mathrm{PGL}_{2}\left(\mathcal{O}\left(\mathcal{S}_{g}\right)\right)$:

$$
\Gamma=\left\langle M\left(0, \infty, Y_{1}\right), M\left(1, X_{2}^{\prime}, Y_{2}\right), M\left(X_{3}, X_{3}^{\prime}, Y_{3}\right), \ldots, M\left(X_{g}, X_{g}^{\prime}, Y_{g}\right)\right\rangle
$$

There exists a closed subset \mathcal{L} of $\mathcal{S}_{g} \times_{\mathcal{M}(\mathbf{Z})} \mathbf{P}_{\mathbf{Z}}^{1, \text { an }}$ such that
(1) for each $z \in \mathcal{S}_{g}, \mathcal{L} \cap \operatorname{pr}_{1}^{-1}(z)$ is the limit set of Γ_{z};
(2) we have a commutative diagram of analytic morphisms

$$
\mathcal{S}_{g} \times_{\mathcal{M}(\mathbf{Z})} \mathrm{P}_{\mathbf{Z}}^{1, \text { an }}-\mathcal{L}
$$

Outline

(1) Uniformization of curves
(2) Berkovich spaces over Z
(3) Schottky spaces over Z
(4) Applications

Teichmüller modular forms

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\bigwedge^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$

Teichmüller modular forms

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\bigwedge^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$

Definition

A Teichmüller modular form of genus g and weight h over a ring R is an element of

$$
T_{g, h}(R):=\Gamma\left(M_{g} \otimes R, \lambda^{\otimes h}\right)
$$

Teichmüller modular forms

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\bigwedge^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$
Definition
A Teichmüller modular form of genus g and weight h over a ring R is an element of

$$
T_{g, h}(R):=\Gamma\left(M_{g} \otimes R, \lambda^{\otimes h}\right)
$$

The Torelli map τ gives rise to

$$
\tau^{*}: S_{g, h}(R) \rightarrow T_{g, h}(R)
$$

where $S_{g, h}(R)$ denotes Siegel modular forms.

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- could be upgraded to

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- could be upgraded to

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

- related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of p-adic Schottky groups", 1972)

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- could be upgraded to

$$
\kappa_{R}: T_{g, h}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

- related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of p-adic Schottky groups", 1972)
- may be helpful for the Schottky problem (characterizing Jacobian varieties among Abelian varieties)

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2}
$$

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2}
$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)
Let $k \subset \mathbf{C}$. Let A / k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over C.

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2}
$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)
Let $k \subset \mathbf{C}$. Let A / k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over C. Then, A is isomorphic to a Jacobian over k if, and only if,

$$
\chi_{18}(A) \in k^{2} .
$$

Schottky groups

Let $(k,|\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_{k}^{1, \text { an }}$

- the Berkovich projective line if k is non-archimedean;
- $\mathrm{P}^{1}(\mathrm{C})$ if $k=\mathrm{C}$;
- $\mathbf{P}^{1}(\mathbf{C}) / \operatorname{Gal}(\mathbf{C} / \mathbf{R})$ if $k=\mathbf{R}$.

Let Γ be a subgroup of $\mathrm{PGL}_{2}(k)$. It acts on $\mathbf{P}_{k}^{1, \text { an }}$.

Schottky groups

Let $(k,|\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_{k}^{1, \text { an }}$

- the Berkovich projective line if k is non-archimedean;
- $\mathrm{P}^{1}(\mathrm{C})$ if $k=\mathrm{C}$;
- $\mathbf{P}^{1}(\mathbf{C}) / \operatorname{Gal}(\mathbf{C} / \mathbf{R})$ if $k=\mathbf{R}$.

Let Γ be a subgroup of $\mathrm{PGL}_{2}(k)$. It acts on $\mathrm{P}_{k}^{1, \text { an }}$.
We say that Γ acts discontinuously at $x \in \mathbf{P}_{k}^{1, \text { an }}$ if there exists a neighborhood U_{x} of x such that

$$
\left\{\gamma \in \Gamma \mid \gamma\left(U_{x}\right) \cap U_{x} \neq \emptyset\right\} \text { is finite. }
$$

Schottky groups

Let $(k,|\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_{k}^{1, \text { an }}$

- the Berkovich projective line if k is non-archimedean;
- $\mathrm{P}^{1}(\mathrm{C})$ if $k=\mathrm{C}$;
- $\mathbf{P}^{1}(\mathbf{C}) / \operatorname{Gal}(\mathbf{C} / \mathbf{R})$ if $k=\mathbf{R}$.

Let Γ be a subgroup of $\mathrm{PGL}_{2}(k)$. It acts on $\mathbf{P}_{k}^{1, \text { an }}$.
We say that Γ acts discontinuously at $x \in \mathbf{P}_{k}^{1, \text { an }}$ if there exists a neighborhood U_{x} of x such that

$$
\left\{\gamma \in \Gamma \mid \gamma\left(U_{x}\right) \cap U_{x} \neq \emptyset\right\} \text { is finite. }
$$

A Schottky group over k is a finitely generated free subgroup of $P G L_{2}(k)$ containing only hyperbolic elements and with a nonempty discontinuity locus.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$ is

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma
For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$ is

- the space of Mumford curves (inside Mg_{g}) on the non-Archimedean part;

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma
For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$ is

- the space of Mumford curves (inside Mg_{g}) on the non-Archimedean part;
- the whole M_{g} on the Archimedean part.

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Let $(k,|\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Let $(k,|\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.
We have a continuous surjective map

$$
\mathcal{S}_{g, k} \rightarrow C V_{g} \times_{M_{g}^{\text {trop }}} \operatorname{Mumf}_{g, k}
$$

See also M. Ulirsch "Non-Archimedean Schottky Space and its Tropicalization", 2020

