Berkovich spaces over Z and Schottky spaces

Jérôme Poineau

Université de Caen Normandie ERC TOSSIBERG 637027

Alexey Zykin memorial conference June 18, 2020

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Uniformization of curves

|▲□▶ ▲圖▶ ★필▶ ★필▶ | ヨーの��

Outline

Schottky spaces over Z

▲□▶ ▲圖▶ ▲필▶ ▲필▶ · 필 · のQ@

Koebe's theorem

Theorem (Koebe, 1907)

Up to isomorphism, there are exactly three possibilities for the universal cover of a compact Riemann surface:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- the projective line;
- the affine line;
- the open unit disc.

Koebe's theorem

Theorem (Koebe, 1907)

Up to isomorphism, there are exactly three possibilities for the universal cover of a compact Riemann surface:

- the projective line;
- the affine line;
- the open unit disc.

What happens in the *p*-adic setting?

Over C, $E(\mathbf{C})\simeq \mathbf{C}/(\mathbf{Z}+\mathbf{Z} au)$ with ${\sf Im}(au)>0.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

Over C, $E({f C})\simeq {f C}/({f Z}+{f Z} au)$ with Im(au)>0.

Over \mathbf{Q}_p , lattices are not discrete.

J. Tate's idea: use a partial uniformization $\ensuremath{\mathsf{Over}}\xspace \ensuremath{\mathsf{C}}\xspace,$

$$E(\mathsf{C})\simeq\mathsf{C}/(\mathsf{Z}+\mathsf{Z} au) \xrightarrow[\sim]{} \mathbb{C}^*/q^{\mathsf{Z}}$$

with $Im(\tau) > 0$ and $q = exp(2\pi i \tau)$.

Over \mathbf{Q}_p , lattices are not discrete.

J. Tate's idea: use a partial uniformization Over $\ensuremath{\textbf{C}}$,

$$E(\mathsf{C})\simeq \mathsf{C}/(\mathsf{Z}+\mathsf{Z} au) \xrightarrow[\sim]{\exp(2\pi i \cdot)}{\sim} \mathsf{C}^*/q^\mathsf{Z}$$

with $Im(\tau) > 0$ and $q = exp(2\pi i \tau)$.

Over \mathbf{Q}_p , lattices are not discrete, but

$$\mathbf{Q}_p^*/q^{\mathbf{Z}}$$

still makes sense for $q \in \mathbf{Q}_p^*$ with $|q|_p < 1$ and it is then (the set of \mathbf{Q}_p -points of an) elliptic curve.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

J. Tate's idea: use a partial uniformization Over $\ensuremath{\textbf{C}}$,

$$E(\mathsf{C})\simeq \mathsf{C}/(\mathsf{Z}+\mathsf{Z} au) \xrightarrow[\sim]{\exp(2\pi i \cdot)}{\sim} \mathsf{C}^*/q^\mathsf{Z}$$

with $Im(\tau) > 0$ and $q = exp(2\pi i \tau)$.

Over \mathbf{Q}_p , lattices are not discrete, but

$$\mathbf{Q}_p^*/q^{\mathbf{Z}}$$

still makes sense for $q \in \mathbf{Q}_p^*$ with $|q|_p < 1$ and it is then (the set of \mathbf{Q}_p -points of an) elliptic curve.

Remark

Over Q_p , not all elliptic curves arise this way: only those with split multiplicative reduction (Tate curves).

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $P^1(C)$. Let $\gamma_1, \ldots, \gamma_g \in PGL_2(C)$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

$$\forall i, \ \gamma_i(\mathbf{P}^1(\mathbf{C}) - D_{-i}) = \overline{D_i}.$$

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $\mathbf{P}^1(\mathbf{C})$. Let $\gamma_1, \ldots, \gamma_g \in \mathrm{PGL}_2(\mathbf{C})$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

$$\forall i, \ \gamma_i(\mathbf{P}^1(\mathbf{C}) - D_{-i}) = \overline{D_i}.$$

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $P^1(C)$. Let $\gamma_1, \ldots, \gamma_g \in PGL_2(C)$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

$$\forall i, \ \gamma_i(\mathbf{P}^1(\mathbf{C}) - D_{-i}) = \overline{D_i}.$$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $P^1(C)$. Let $\gamma_1, \ldots, \gamma_g \in PGL_2(C)$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

$$\forall i, \ \gamma_i(\mathbf{P}^1(\mathbf{C}) - D_{-i}) = \overline{D_i}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $P^1(C)$. Let $\gamma_1, \ldots, \gamma_g \in PGL_2(C)$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

$$\forall i, \ \gamma_i(\mathsf{P}^1(\mathsf{C}) - D_{-i}) = \overline{D_i}.$$

Schottky uniformization: properties

Set
$$\Gamma := \langle \gamma_1, \ldots, \gamma_g \rangle$$
. It is a free group of rank g , called Schottky group.

There exists a compact subset \mathcal{L} of $P^1(C)$ such that

- **1** the action of Γ on $P^1(C) \mathcal{L}$ is properly discontinuous;
- **2** $(\mathbf{P}^1(\mathbf{C}) \mathcal{L})/\Gamma$ is a compact Riemann surface of genus g.

Schottky uniformization: properties

Set
$$\Gamma := \langle \gamma_1, \ldots, \gamma_g \rangle$$
. It is a free group of rank g , called Schottky group.

There exists a compact subset \mathcal{L} of $P^1(C)$ such that

- **1** the action of Γ on $P^1(C) \mathcal{L}$ is properly discontinuous;
- **2** $(\mathbf{P}^1(\mathbf{C}) \mathcal{L})/\Gamma$ is a compact Riemann surface of genus g.
- Every compact Riemann surface of genus g may be obtained this way, possibly replacing the discs by domains bounded by Jordan curves.

Schottky uniformization: properties

Set
$$\Gamma := \langle \gamma_1, \ldots, \gamma_g \rangle$$
. It is a free group of rank g , called Schottky group.

There exists a compact subset \mathcal{L} of $P^1(C)$ such that

- **1** the action of Γ on $P^1(C) \mathcal{L}$ is properly discontinuous;
- **2** $(\mathbf{P}^1(\mathbf{C}) \mathcal{L})/\Gamma$ is a compact Riemann surface of genus g.
 - Every compact Riemann surface of genus g may be obtained this way, possibly replacing the discs by domains bounded by Jordan curves.
 - D. Mumford (1972) adapted the theory to the non-archimedean setting. The resulting curves are called Mumford curves.

Outline

Uniformization of curves

The Berkovich analytic space $A_Z^{n,an}$: definition

Definition

The analytic space $A_z^{n,an}$ is the set of multiplicative seminorms

 $|\cdot|_x \colon \mathbf{Z}[T_1,\ldots,T_n] \to \mathbf{R}_{\geq 0}.$

The Berkovich analytic space $A_Z^{n,an}$: definition

Definition

The analytic space $A_Z^{n,an}$ is the set of multiplicative seminorms

 $|\cdot|_x \colon \mathbf{Z}[T_1,\ldots,T_n] \to \mathbf{R}_{\geq 0}.$

It is endowed with the topology generated by the subsets of the form $% \left({{{\mathbf{x}}_{i}}} \right)$

$$\{x \in \mathbf{A}^{n,\mathrm{an}}_{\mathbf{Z}} : r < |P|_x < s\},\$$

ション ふゆ く 山 マ チャット しょうくしゃ

for $P \in \mathbf{Z}[T_1, \ldots, T_n]$ and $r, s \in \mathbf{R}$.

The Berkovich analytic space $A_z^{n,an}$: structure sheaf

To each $x \in \mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}}$, we associate a complete residue field

 $\mathcal{H}(x) :=$ completion of the fraction field of $\mathbf{Z}[T_1, \ldots, T_n]/\mathrm{Ker}(|\cdot|_x)$

and an evaluation map

$$\chi_x \colon \mathbf{Z}[T_1,\ldots,T_n] \to \mathcal{H}(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Berkovich analytic space $A_z^{n,an}$: structure sheaf

To each $x \in \mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}}$, we associate a complete residue field

 $\mathcal{H}(x):= \text{ completion of the fraction field of } \textbf{Z}[\mathit{T}_1,\ldots,\mathit{T}_n]/\mathrm{Ker}(|\cdot|_x)$

and an evaluation map

$$\chi_x \colon \mathbf{Z}[T_1,\ldots,T_n] \to \mathcal{H}(x).$$

For every open subset U of $\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}}$, $\mathcal{O}(U)$ is the set of maps

$$f: U \to \bigsqcup_{x \in U} \mathcal{H}(x)$$

such that

 $\blacktriangleright \forall x \in U, f(x) \in \mathcal{H}(x);$

► *f* is locally a uniform limit of rational functions without poles.

The Berkovich analytic space $\mathbf{A}_{\mathbf{Z}}^{n,an}$: examples of points

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} = \{|\cdot|_{x} \colon \mathbf{Z}[T_{1},\ldots,T_{n}] \to \mathbf{R}_{\geq 0}\}$$

The Berkovich analytic space $A_z^{n,an}$: examples of points

$$\begin{aligned} \mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} &= \{|\cdot|_{\mathsf{x}} \colon \mathbf{Z}[T_1,\ldots,T_n] \to \mathbf{R}_{\geqslant 0} \} \\ & \bullet \quad \text{For } \mathbf{t} \in \mathbf{C}^n, \\ & P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto |P(\mathbf{t})|_{\infty}. \end{aligned}$$

Note that \mathbf{t} and $\mathbf{\bar{t}}$ give rise to the same seminorm.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The Berkovich analytic space $A_z^{n,an}$: examples of points

$$\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} = \{|\cdot|_{x} \colon \mathbf{Z}[T_{1},\ldots,T_{n}] \to \mathbf{R}_{\geq 0}\}$$

• For $\mathbf{t} \in \mathbf{C}^n$, $P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto |P(\mathbf{t})|_\infty.$

Note that \mathbf{t} and $\mathbf{\bar{t}}$ give rise to the same seminorm.

2 For $\mathbf{u} \in \mathbf{Q}_p^n$,

 $P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto |P(\mathbf{u})|_{p}.$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The Berkovich analytic space $A_{Z}^{n,an}$: examples of points

$$\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} = \{|\cdot|_{x} \colon \mathbf{Z}[T_{1},\ldots,T_{n}] \to \mathbf{R}_{\geq 0}\}$$

 $\textbf{ For } t \in \textbf{C}^n, \\ P(\textbf{T}) \in \textbf{Z}[\textbf{T}] \mapsto |P(\textbf{t})|_\infty.$

Note that t and \overline{t} give rise to the same seminorm.

2 For
$$\mathbf{u} \in \mathbf{Q}_p^n$$
,

$$P(\mathsf{T}) \in \mathsf{Z}[\mathsf{T}] \mapsto |P(\mathsf{u})|_{p}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Also: supremum norms on closed polydiscs in \mathbf{Q}_{p}^{n} .

The Berkovich analytic space $A_z^{n,an}$: examples of points

$$\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} = \{|\cdot|_{x} \colon \mathbf{Z}[T_{1},\ldots,T_{n}] \to \mathbf{R}_{\geq 0}\}$$

• For $\mathbf{t} \in \mathbf{C}^n$, $P(\mathbf{T}) \in \mathbf{Z}[\mathbf{T}] \mapsto |P(\mathbf{t})|_\infty.$

Note that t and \bar{t} give rise to the same seminorm.

P(T) ∈ Z[T] → |P(u)|_p.
Also: supremum norms on closed polydiscs in Qⁿ_p.
For v ∈ Fⁿ_p,
P(T) ∈ Z[T] → |P(v)|₀.

The Berkovich analytic space $A_Z^{n,an}$: the Q_p -points

The Berkovich analytic space $A_Z^{n,an}$: picture

$$\mathcal{M}(\boldsymbol{Z}):=\boldsymbol{A}_{\boldsymbol{Z}}^{0,\mathrm{an}}=\{|\cdot|_{x}\colon\boldsymbol{Z}\to\boldsymbol{R}_{\geqslant0}\}$$

The Berkovich analytic space $A_Z^{n,an}$: picture $\mathcal{M}(Z) := A_Z^{0,an} = \{|\cdot|_x : Z \to R_{\geq 0}\}$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

The Berkovich analytic space $A_Z^{n,an}$: picture

$$\mathcal{M}(Z):=\boldsymbol{A}_{\boldsymbol{Z}}^{0,\mathrm{an}}=\{|\cdot|_{x}\colon \boldsymbol{Z}\to\boldsymbol{R}_{\geqslant0}\}$$

イロト 不得下 不同下 不同下

э

We have a projection morphism $\pi: \mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} \to \mathbf{A}_{\mathbf{Z}}^{0,\mathrm{an}}$.

The Berkovich analytic space $A_Z^{n,an}$: picture

$$\mathcal{M}(\mathsf{Z}) := \mathsf{A}^{0,\mathrm{an}}_{\mathsf{Z}} = \{|\cdot|_x \colon \mathsf{Z} \to \mathsf{R}_{\geqslant 0}\}$$

イロト 不得下 不同下 不同下

We have a projection morphism $\pi: \mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}} \to \mathbf{A}_{\mathbf{Z}}^{0,\mathrm{an}}$.

The Berkovich analytic space $A_Z^{n,an}$: functions

Let **D** be the open unit disk in $A_Z^{n,an}$. Then $H^0(D, \mathcal{O})$ is a ring of convergent arithmetic power series (D. Harbater):

 $\begin{aligned} H^{0}(\mathbf{D},\mathcal{O}) &= \mathbf{Z}\llbracket T_{1},\ldots,T_{n}\rrbracket_{1^{-}} \\ &= \{f \in \mathbf{Z}\llbracket T \rrbracket \text{ with complex radius of convergence } \geqslant 1\}. \end{aligned}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The Berkovich analytic space $A_Z^{n,an}$: functions

Let D be the open unit disk in $A_Z^{n,an}$. Then $H^0(D, \mathcal{O})$ is a ring of convergent arithmetic power series (D. Harbater):

$$\begin{aligned} H^{0}(\mathbf{D},\mathcal{O}) &= \mathbf{Z}\llbracket T_{1},\ldots,T_{n}\rrbracket_{1^{-}} \\ &= \{f \in \mathbf{Z}\llbracket T\rrbracket \text{ with complex radius of convergence } \geqslant 1\}. \end{aligned}$$

The local ring at the point 0 over $|\cdot|_0$ is the subring of $\mathbf{Q}[\![T_1, \ldots, T_n]\!]$ consisting of the power series f such that i) $\exists N \in \mathbf{N}^*, f \in \mathbf{Z}[\frac{1}{N}][\![T_1, \ldots, T_n]\!];$ ii) the complex radius of convergence of f is > 0;

iii) for each p|N, the *p*-adic radius of convergence of *f* is > 0.

Properties of $A_Z^{n,an}$

Theorem (V. Berkovich)

The space $A_z^{n,an}$ is Hausdorff and locally compact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of $A_Z^{n,an}$

Theorem (V. Berkovich)

The space $A_{z}^{n,an}$ is Hausdorff and locally compact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (T. Lemanissier - J. P.)

The space $A_{Z}^{n,an}$ is locally path-connected.

Properties of $A_Z^{n,an}$

Theorem (V. Berkovich)

The space $A_{z}^{n,an}$ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space $A_Z^{n,an}$ is locally path-connected.

Theorem (J. P.)

► For every × in A^{n,an}, the local ring O_× is Henselian, Noetherian, regular, excellent.

ション ふゆ く 山 マ チャット しょうくしゃ

► The structure sheaf of **A**^{*n*,an} is coherent.

Properties of $A_Z^{n,an}$

Theorem (V. Berkovich)

The space $A_{z}^{n,an}$ is Hausdorff and locally compact.

Theorem (T. Lemanissier - J. P.)

The space $A_Z^{n,an}$ is locally path-connected.

Theorem (J. P.)

- ► For every × in A^{n,an}, the local ring O_× is Henselian, Noetherian, regular, excellent.
- The structure sheaf of $A_z^{n,an}$ is coherent.

Theorem (T. Lemanissier - J. P.)

Relative closed and open discs over Z are Stein.

Outline

Uniformization of curves

Koebe coordinates

Let $(k, |\cdot|)$ be a complete valued field, Archimedean or not.

Koebe coordinates

Let $(k, |\cdot|)$ be a complete valued field, Archimedean or not.

- To $\gamma \in \mathrm{PGL}_2(k)$ hyperbolic, we associate
 - $\alpha \in \mathbf{P}^1(k)$ its attracting fixed point;
 - $\alpha' \in \mathbf{P}^1(k)$ its repelling fixed point;
 - $\beta \in k$ the quotient of its eigenvalues with absolute value < 1.

ション ふゆ く 山 マ チャット しょうくしゃ

Koebe coordinates

Let $(k, |\cdot|)$ be a complete valued field, Archimedean or not.

- To $\gamma \in \mathrm{PGL}_2(k)$ hyperbolic, we associate
 - $\alpha \in \mathbf{P}^1(k)$ its attracting fixed point;
 - $\alpha' \in \mathbf{P}^1(k)$ its repelling fixed point;
 - $\beta \in k$ the quotient of its eigenvalues with absolute value < 1.

For $\alpha, \alpha', \beta \in k$ with $|\beta| \in (0, 1)$, we have

$$M(lpha, lpha', eta) = egin{pmatrix} lpha - eta lpha' & (eta - 1) lpha lpha' \ 1 - eta & eta lpha - lpha' \end{pmatrix}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Schottky space

Definition

For $g\geqslant$ 2, the Schottky space \mathcal{S}_g is the subset of $A_Z^{3g-3,\mathrm{an}}$ consisting of the points

$$z = (x_3, \ldots, x_g, x'_2, \ldots, x'_g, y_1, \ldots, y_g)$$

such that the subgroup of $\mathrm{PGL}_2(\mathcal{H}(z))$ defined by

$$\Gamma_{z} := \langle M(0, \infty, y_{1}), M(1, x'_{2}, y_{2}), M(x_{3}, x'_{3}, y_{3}), \dots, M(x_{g}, x'_{g}, y_{g}) \rangle$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

is a Schottky group.

Schottky space

Definition

For $g\geqslant$ 2, the Schottky space \mathcal{S}_g is the subset of $A_Z^{3g-3,\mathrm{an}}$ consisting of the points

$$z = (x_3, \ldots, x_g, x'_2, \ldots, x'_g, y_1, \ldots, y_g)$$

such that the subgroup of $\mathrm{PGL}_2(\mathcal{H}(z))$ defined by

$$\Gamma_{z} := \langle M(0, \infty, y_{1}), M(1, x'_{2}, y_{2}), M(x_{3}, x'_{3}, y_{3}), \dots, M(x_{g}, x'_{g}, y_{g}) \rangle$$

is a Schottky group.

Theorem (J. P. - D. Turchetti)

The Schottky space S_g is a connected open subset of $A_Z^{3g-3,an}$.

Universal Mumford curve

Denote by $(X_3, \ldots, X_g, X'_2, \ldots, X'_g, Y_1, \ldots, Y_g)$ the coordinates on $\mathbf{A}_{\mathbf{Z}}^{3g-3,\mathrm{an}}$ and consider the subgroup of $\mathrm{PGL}_2(\mathcal{O}(\mathcal{S}_g))$:

 $\Gamma = \langle M(0,\infty,Y_1), M(1,X'_2,Y_2), M(X_3,X'_3,Y_3), \dots, M(X_g,X'_g,Y_g) \rangle.$

There exists a closed subset \mathcal{L} of $\mathcal{S}_g \times_{\mathcal{M}(\mathbf{Z})} \mathbf{P}_{\mathbf{Z}}^{1,\mathrm{an}}$ such that

- for each $z \in S_g$, $\mathcal{L} \cap \operatorname{pr}_1^{-1}(z)$ is the limit set of Γ_z ;
- 2 we have a commutative diagram of analytic morphisms

ション ふゆ く 山 マ チャット しょうくしゃ

Outline

Uniformization of curves

|▲□▶ ▲圖▶ ★필▶ ★필▶ | ヨーの��

Teichmüller modular forms

 $\begin{array}{l} M_g \mbox{ moduli space of smooth and proper curves of genus } g \\ \pi \colon C_g \to M_g \mbox{ universal curve over } M_g \\ \lambda \coloneqq \bigwedge^g \pi_* \Omega^1_{C_g/M_g} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Teichmüller modular forms

 $\begin{array}{l} M_g \mbox{ moduli space of smooth and proper curves of genus } g \\ \pi\colon C_g \to M_g \mbox{ universal curve over } M_g \\ \lambda := \bigwedge^g \pi_* \Omega^1_{C_g/M_g} \end{array}$

Definition

A Teichmüller modular form of genus g and weight h over a ring R is an element of

$$T_{g,h}(R) := \Gamma(M_g \otimes R, \lambda^{\otimes h}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Teichmüller modular forms

 $\begin{array}{l} M_g \mbox{ moduli space of smooth and proper curves of genus } g \\ \pi\colon C_g \to M_g \mbox{ universal curve over } M_g \\ \lambda := \bigwedge^g \pi_* \Omega^1_{C_g/M_g} \end{array}$

Definition

A Teichmüller modular form of genus g and weight h over a ring R is an element of

$$T_{g,h}(R) := \Gamma(M_g \otimes R, \lambda^{\otimes h}).$$

The Torelli map au gives rise to

$$\tau^* \colon S_{g,h}(R) \to T_{g,h}(R),$$

ション ふゆ く 山 マ チャット しょうくしゃ

where $S_{g,h}(R)$ denotes Siegel modular forms.

T. Ichikawa (1994) defined an expansion map

$$\kappa_R \colon T_{g,h}(R) \to R\left[x_{\pm 1}, \ldots, x_{\pm g}, \frac{1}{x_i - x_j}\right] \llbracket y_1, \ldots, y_g \rrbracket.$$

T. Ichikawa (1994) defined an expansion map

$$\kappa_R \colon T_{g,h}(R) \to R\left[x_{\pm 1}, \ldots, x_{\pm g}, \frac{1}{x_i - x_j}\right] \llbracket y_1, \ldots, y_g \rrbracket.$$

could be upgraded to

$$\kappa_R \colon T_{g,h}(R) \to R \,\hat{\otimes} \, \mathcal{O}(\mathcal{S}_g)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

providing additional convergence conditions

T. Ichikawa (1994) defined an expansion map

$$\kappa_R \colon T_{g,h}(R) \to R\left[x_{\pm 1}, \ldots, x_{\pm g}, \frac{1}{x_i - x_j}\right] \llbracket y_1, \ldots, y_g \rrbracket.$$

could be upgraded to

$$\kappa_R \colon T_{g,h}(R) \to R \,\hat{\otimes} \, \mathcal{O}(\mathcal{S}_g)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

providing additional convergence conditions

 related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of *p*-adic Schottky groups", 1972)

T. Ichikawa (1994) defined an expansion map

$$\kappa_R \colon T_{g,h}(R) \to R\left[x_{\pm 1}, \ldots, x_{\pm g}, \frac{1}{x_i - x_j}\right] \llbracket y_1, \ldots, y_g \rrbracket.$$

could be upgraded to

$$\kappa_R \colon T_{g,h}(R) \to R \,\hat{\otimes} \, \mathcal{O}(\mathcal{S}_g)$$

providing additional convergence conditions

- related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of *p*-adic Schottky groups", 1972)
- may be helpful for the Schottky problem (characterizing Jacobian varieties among Abelian varieties)

$\chi_{18} \in S_{3,18}(\mathsf{Z})$ product of Thetanullwerte with even characteristics

 $\chi_{18} \in S_{3,18}(Z)$ product of Thetanullwerte with even characteristics Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000) There exists $\mu_9 \in T_{3,9}(Z)$ such that

$$\tau^*(\chi_{18}) = \mu_9^2.$$

ション ふゆ アメリア メリア しょうくの

 $\chi_{18} \in \textit{S}_{3,18}(\textbf{Z})$ product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000) There exists $\mu_9 \in T_{3,9}(\mathbf{Z})$ such that

$$\tau^*(\chi_{18}) = \mu_9^2.$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010) Let $k \subset \mathbb{C}$. Let A/k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over \mathbb{C} .

 $\chi_{18} \in \textit{S}_{3,18}(\textbf{Z})$ product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000) There exists $\mu_9 \in T_{3,9}(\mathbf{Z})$ such that

$$\tau^*(\chi_{18}) = \mu_9^2.$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010) Let $k \subset C$. Let A/k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over C.

Then, A is isomorphic to a Jacobian over k if, and only if,

$$\chi_{18}(A) \in k^2.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathsf{P}_k^{1,\mathrm{an}}$

▶ the Berkovich projective line if k is non-archimedean;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$P^1(C)$$
 if $k = C$;

•
$$P^1(C)/Gal(C/R)$$
 if $k = R$.

Let Γ be a subgroup of $PGL_2(k)$. It acts on $P_k^{1,an}$.

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathsf{P}_k^{1,\mathrm{an}}$

▶ the Berkovich projective line if k is non-archimedean;

•
$$P^1(C)$$
 if $k = C$;

•
$$P^1(C)/Gal(C/R)$$
 if $k = R$.

Let Γ be a subgroup of $\mathrm{PGL}_2(k)$. It acts on $\mathbf{P}_k^{1,\mathrm{an}}$.

We say that Γ acts discontinuously at $x \in \mathbf{P}_k^{1,\mathrm{an}}$ if there exists a neighborhood U_x of x such that

$$\{\gamma \in \Gamma \mid \gamma(U_x) \cap U_x \neq \emptyset\}$$
 is finite.

ション ふゆ く 山 マ チャット しょうくしゃ

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathsf{P}_k^{1,\mathrm{an}}$

the Berkovich projective line if k is non-archimedean;

•
$$P^1(C)$$
 if $k = C$;

•
$$P^1(C)/Gal(C/R)$$
 if $k = R$.

Let Γ be a subgroup of $\mathrm{PGL}_2(k)$. It acts on $\mathbf{P}_k^{1,\mathrm{an}}$.

We say that Γ acts discontinuously at $x \in \mathbf{P}_k^{1,\mathrm{an}}$ if there exists a neighborhood U_x of x such that

$$\{\gamma \in \Gamma \mid \gamma(U_x) \cap U_x \neq \emptyset\}$$
 is finite.

A Schottky group over k is a finitely generated free subgroup of $PGL_2(k)$ containing only hyperbolic elements and with a nonempty discontinuity locus.

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Lemma

For each $z \in \mathcal{S}_g$, we have

$$Stab(z) \simeq \Gamma_z \setminus N(\Gamma_z) \hookrightarrow Aut(C_z)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

(with equality in the non-Archimedean case).

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Lemma

For each $z \in \mathcal{S}_g$, we have

 $Stab(z) \simeq \Gamma_z \setminus N(\Gamma_z) \hookrightarrow Aut(C_z)$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $Out(F_g)$ on S_g is analytic and properly discontinuous.

ション ふゆ く 山 マ チャット しょうくしゃ

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Lemma

For each $z \in \mathcal{S}_g$, we have

$$Stab(z) \simeq \Gamma_z \setminus N(\Gamma_z) \hookrightarrow Aut(C_z)$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $Out(F_g)$ on S_g is analytic and properly discontinuous.

ション ふゆ く 山 マ チャット しょうくしゃ

The quotient $Out(F_g) ackslash \mathcal{S}_g$ is

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Lemma

For each $z \in S_g$, we have

$$Stab(z) \simeq \Gamma_z \setminus N(\Gamma_z) \hookrightarrow Aut(C_z)$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $Out(F_g)$ on S_g is analytic and properly discontinuous.

The quotient $Out(F_g) ackslash \mathcal{S}_g$ is

► the space of Mumford curves (inside M_g) on the non-Archimedean part;

Let $\sigma \in Aut(F_g)$ act on the generators of Γ_z as on those of F_g . The action factors through $Out(F_g)$.

Lemma

For each $z \in S_g$, we have

$$Stab(z) \simeq \Gamma_z \setminus N(\Gamma_z) \hookrightarrow Aut(C_z)$$

(with equality in the non-Archimedean case).

Theorem (J. P. - D. Turchetti, in progress)

The action of $Out(F_g)$ on S_g is analytic and properly discontinuous.

ション ふゆ く 山 マ チャット しょうくしゃ

The quotient $Out(F_g) ackslash \mathcal{S}_g$ is

- ► the space of Mumford curves (inside M_g) on the non-Archimedean part;
- the whole M_g on the Archimedean part.

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_g is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_g \xrightarrow{\sim} \pi_1(X)$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_g is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_g \xrightarrow{\sim} \pi_1(X)$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Applications:

CV_g is contractible

•
$$vcd(F_g) = 2g - 3$$

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_g is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_g \xrightarrow{\sim} \pi_1(X)$).

Applications:

- CV_g is contractible
- $vcd(F_g) = 2g 3$

Let $(k, |\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.

ション ふゆ く 山 マ チャット しょうくしゃ

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV_g is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_g \xrightarrow{\sim} \pi_1(X)$).

Applications:

► *CV_g* is contractible

•
$$vcd(F_g) = 2g - 3$$

Let $(k, |\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.

We have a continuous surjective map

$$\mathcal{S}_{g,k} \to CV_g \times_{M_g^{\mathrm{trop}}} \mathrm{Mumf}_{g,k}.$$

See also M. Ulirsch "Non-Archimedean Schottky Space and its Tropicalization", 2020