
A Gauss-Bonnet theorem for constructible

sheaves on reductive groups

V. Kiritchenko

1 Introduction

In this paper, we prove an analog of the Gauss-Bonnet formula for constructible
sheaves on reductive groups. This formula holds for all constructible sheaves
equivariant under the adjoint action and expresses the Euler characteristic of a
sheaf in terms of its characteristic cycle. As a corollary from this formula we
get that if a perverse sheaf on a reductive group is equivariant under the adjoint
action, then its Euler characteristic is nonnegative.

In the sequel by a constructible complex we will always mean a bounded com-
plex of sheaves of C-vector spaces whose cohomology sheaves are constructible
with respect to some finite algebraic stratification.

We now formulate the main results. Let G be a complex reductive group, and
let F be a constructible complex on G. Denote by CC(F) the characteristic
cycle of F . It is a linear combination of Lagrangian subvarieties CC(F) =∑

cαT∗Xα
G (see [9]). Here and in the sequel T∗XG denotes the closure of the

conormal bundle to the smooth locus of a subvariety X ⊂ G. With X one can
associate a nonnegative number gdeg(X) called the Gaussian degree of X. It is
equal to the number of zeros of a generic left-invariant differential 1-form on G
restricted to X. The precise definitions of the Gaussian degree and of the Gauss
map are given in section 2.

Theorem 1.1. If F is equivariant under the adjoint action of G, then its
Euler characteristic can be computed in terms of the characteristic cycle by the
following formula

χ(G,F) =
∑

cαgdeg(Xα).

For a perverse sheaf the multiplicities cα of its characteristic cycle are non-
negative [7]. The Gaussian degrees of Xα are also nonnegative by their defini-
tion, see below. Thus Theorem 1.1 immediately implies the following important
corollary.

Corollary 1.2. If F is a perverse sheaf equivariant under the adjoint action of
G, then its Euler characteristic is nonnegative.

In particular, let CX be a constant sheaf on a subvariety X ⊂ G extended
by 0 to G. Applying the above statements to this sheaf we get the following
corollary.
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Corollary 1.3. If X ⊂ G is a closed smooth subvariety invariant under
the adjoint action of G, then χ(X) = (−1)dimXgdeg(X). Thus the number
(−1)dimXχ(X) is nonnegative.

Indeed, the characteristic cycle of CX coincides with (−1)dimXT∗XG. Corol-
lary 1.3 is a noncompact analog of the classical Hopf theorem which states
that the Euler characteristic of a compact oriented C∞-manifold M is equal to
(−1)dimM times the number of zeros of a generic 1-form on M , counted with
signs (coming from the orientation).

For the case when G = (C∗)n is a torus, Corollary 1.2 was first proved by F.
Loeser and C. Sabbah [11] with another proof given by O. Gabber and F. Loeser
[6]. Theorem 1.1 was proved in the torus case by J. Franecki and M. Kapranov
[4]. Theorem 1.1 holds for all constructible sheaves on a torus. However, it
does not hold for arbitrary constructible sheaves on a noncommutative algebraic
group (see [4] for a counterexample). M. Kapranov conjectured that it may be
still true for constructible sheaves on reductive groups if we consider only sheaves
equivariant under the adjoint action. The present paper proves this conjecture.
Recently, A. Braverman proved nonnegativity of the Euler characteristic for
some class of Ad G-equivariant l-adic sheaves in finite characteristic [1]. For
complex ground field his result implies, in particular, Corollary 1.2 in the case,
when a perverse sheaf coincides with its Goreski–MacPherson extension from
the set of all regular semisimple elements of G. As the referee indicated the
result of O. Gabber and F. Loeser holds for all holonomic D-modules, and not
only for those with regular singularities. The similar remark is valid for the A.
Braverman’s paper.

The main step in the proof of Theorem 1.1 is to reduce the problem to the
case of a maximal torus T ⊂ G. Since F is Ad G-equivariant, it is constructible
with respect to some Whitney stratification S with Ad G-invariant strata. In
section 3 we prove that the Euler characteristic of a stratum X ∈ S coincides
with that of the intersection X ∩ T . This implies that the sheaf F restricted
onto the maximal torus T has the same Euler characteristic as F . In section 2
we recall some facts about Euler characteristic needed for the proof. In section
4 we prove that the Gaussian degrees of X and X ∩ T coincide.

To deal with the characteristic cycle we use the Dubson-Kashiwara index
formula that expresses the multiplicities cα in terms of the local Euler charac-
teristic of F along each stratum and some topological data depending on the
stratification only (section 2). This data is given by the Euler characteristics
with compact support of complex links. In our case we can choose a complex
link to be invariant under the action of some compact torus and thus simplify
computation of its Euler characteristic. This approach is taken from [2]. In
section 5 we prove that for any stratum Xβ ∈ S and any semisimple stratum
Xα ∈ S, such that Xα ⊂ Xβ , the Euler characteristic with compact support of
their complex link coincides with that of the complex link of the strata Xα ∩ T
and Xβ ∩T . This allows us to view the formula from Theorem 1.1 as the same
formula for the restriction of F onto T (section 6). Then we apply the result of
[4].
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2 Preliminaries

Gaussian degree. We now define the (left) Gauss map and the Gaussian
degree. The material of this subsection is taken from [4]. For more details see
[4, 3].

Let G be a complex algebraic group with Lie algebra g, and let X be its
subvariety of the dimension k. Denote by G(k, g) the Grassmannian of k-
dimensional subspaces in g. For any point x ∈ G, there is a natural isomorphism
between the tangent space TxG and g given by the left multiplication by x−1:

Lx : y 7→ x−1y; dxLx : TxG → g.

The left Gauss map ΓX : X → G(k, g) is defined as follows:

ΓX(x) = dxLx(TxX).

The Gauss map is rational and regular on the smooth locus Xsm of X. If X is
a hypersurface, ΓX maps X to P(g∗), which has the same dimension as X. In
this case we define the Gaussian degree of X to be the degree of its Gauss map.
By the degree of a rational map X → Y we mean the number of preimages of
a generic point in Y (see [12], Proposition 3.17). In general case the Gaussian
degree is the degree of a rational map Γ̃X : X̃ → P(g∗), where X̃ and Γ̃X are
defined as follows. The variety X̃ is a fiber bundle over Xsm, whose fiber at
a point x consists of all hyperplanes in g that contain a subspace ΓX(x), i.e.
X̃ = {(x, y) ∈ Xsm×P(g∗) : ΓX(x) ⊂ y}. Then Γ̃X(x, y) = y. Note that X̃ and
P(g∗) have the same dimension. It is clear from the definition that the Gaussian
degree is a birational invariant of a subvariety.

In the sequel we will use another description of the Gaussian degree. Let
ω be a generic left-invariant differential 1-form on G ( for reductive groups we
define a generic 1-form explicitly in section 4). We call a point x ∈ X a zero
of ω, if ω restricted to the tangent space TxX is zero. Then it is easy to verify
that the Gaussian degree of X is equal to the number of zeros of ω on X.

Euler characteristic. Let T be a torus (it may be a complex torus (C∗)n as
well as a compact one (S1)n). Consider its linear algebraic action on CN , and
a locally closed semialgebraic subset X ⊂ CN invariant under this action. Let
XT ⊂ X be the set of the fixed points. In what follows χ denotes the usual
topological Euler characteristic and χc the Euler characteristic computed using
cohomology with compact support. The following simple and well-known fact
plays the crucial role in the sequel.
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Proposition 2.1. The spaces X and XT have the same Euler characteristic
with compact support:

χc(X) = χc(XT ). ¤

The following statement is also well-known, but the author could not find
an appropriate reference.

Proposition 2.2. If X is a complex algebraic variety, then χc(X) = χ(X).

Proof. Applying Proposition 2.3 to the constant sheaf CX and using additivity
of the Euler characteristic with compact support, one can deduce this equality
from the following fact. For any point x ∈ X the Euler characteristic with
compact support of a small open neighborhood of x is equal to 1. To prove this
fact we use the induction by the dimension of X.

We may assume that a neighborhood of x is embedded in CN . Take a generic
holomorphic function f on X such that f(x) = 0, and an open neighborhood
C = f−1(D) ∩ B, where D ⊂ C is a small open disk with the center at 0 and
B ⊂ CN is a small ball with the center at x. Then f : C \ f−1(0) → D \ {0}
is a fiber bundle (see [8], Section 2.4). Thus χc(C \ f−1(0)) = 0, and χc(C) =
χc(f−1(0)). The dimension of f−1(0) is already less than that of X.

The Euler characteristic of sheaves. We now recall a formula for the
Euler characteristic of constructible sheaves on varieties. Let X ⊂ CN be a
smooth subvariety, and let F be a constructible complex on X. With any point
x ∈ X one can associate the local Euler characteristic χ(Fx) of F at this point.
Thus F gives rise to the constructible function χ(F) on X by the formula
χ(F)(x) = χ(Fx).

There is the concept of the direct image of a constructible function (see
[5] and [9], Section 9.7). It is defined for any morphism of algebraic varieties
X → Y and a constructible function on X. We use the more suggestive notation∫

X
f(x)dχ for the direct image of f under the morphism X → pt, since this

direct image may be also defined as the integral of f over the Euler characteristic
[13, 10].

Proposition 2.3. The global Euler characteristic χ(X,F) =
∑

(−1)iHi(X,F)
is equal to the following integral over the Euler characteristic

χ(X,F) =
∫

X

χ(F)dχ

In other words, if we fix a finite algebraic stratification X =
⊔

Xα, α ∈ S, such
that the function χ(F) is constant along each stratum, we get

χ(X,F) =
∑

α∈S
χα(F)χc(Xα),

where χα(F) is the value of χ(F) at any point of a stratum Xα.

See [9], Section 9.7 for the proof.
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Complex links and characteristic cycles. We use the notation of the
previous subsection. Suppose that S is a Whitney stratification of X. Let
Xα, Xβ , α, β ∈ S, be two strata such that Xα ⊂ Xβ . Choose a point a ∈ Xα

and any normal slice N ⊂ X to Xα at the point a. Consider a holomorphic
function l on N such that l(a) = 0 and its differential dal is a generic covector
in the cotangent space T∗aN (i.e. dal belongs to some open dense subset of this
space that depends on the stratification S). Let h(·, ·) be a Hermitian metric in
CN and B = {x ∈ CN : h(x− a, x− a) ≤ const} a small ball with the center at
a.

We now define the complex link L of the strata Xα, Xβ as L = B∩l−1(ε)∩Xβ .
If the absolute value of ε and the radius of the ball B are small enough, the
result up to a homeomorphism does not depend on any of the choices involved
(see [8], Section 2.3 for the proof). We will use the notation e(α, β) as well as
e(Xα, Xβ) for the Euler characteristic of L with compact support. We also set
e(α, α) = −1.

The numbers e(α, β) are useful when one need to find the multiplicities of the
characteristic cycle CC(F). Multiplicities are recovered from the constructible
function χ(F) by the following theorem of Dubson and Kashiwara.

Theorem 2.4. The characteristic cycle of F is the linear combination of La-
grangian subvarieties T∗Xα

X, α ∈ S, with coefficients

cα = (−1)dimXα+1
∑

Xα⊂Xβ

e(α, β)χβ(F).

See [7], Theorem 8.2 for the proof.

3 Euler characteristic of invariant subvarieties

Let G be a connected reductive group over C, and T a maximal complex torus
in G. Consider a subvariety X ⊂ G invariant under the adjoint action of G.

Proposition 3.1. The varieties X and X∩T have the same Euler characteristic
with compact support. Moreover, χ(X) = χ(X ∩ T ).

Proof. The subvariety X is invariant under the adjoint action of G. In par-
ticular, it is invariant under the adjoint action of the maximal torus T . The
set GT ⊂ G of the fixed points under this action coincides with T , since the
centralizer of the maximal torus coincides with the maximal torus itself. Thus
by Proposition 2.1 the varieties X and X∩T have the same Euler characteristic
with compact support. Combining this result with Proposition 2.2, we get that
χ(X) = χ(X ∩ T ).

Example. Let X = Oa be the orbit of an element a ∈ G under the adjoint
action of G. Then proposition 3.1 implies that if a is semisimple, then χ(Oa)
is equal to the number |Oa ∩ T | of the intersection points. We may choose the
maximal torus T such that a ∈ T . Since the orbit of a under the action of the
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Weyl group W on T coincides withOa∩T , we obtain that χ(Oa) = |W |/|Stab a|,
where Stab a ⊂ W is the stabilizer of a in W . If a is not semisimple, then
χ(Oa) = 0.

Let F be a constructible complex on G.

Proposition 3.2. Suppose that F is equivariant under the adjoint action of G.
Let FT be a restriction of F onto T ⊂ G. Then the sheaves F and FT have the
same Euler characteristic:

χ(G,F) = χ(T,FT ).

Proof. The sheaves F and FT have the same local Euler characteristic at a
point x ∈ T , since FT is the restriction of F onto T . Thus the Euler character-
istic χ(T,FT ) is equal to

∫
T

χ(F)dχ by Proposition 2.3. The function χ(F) is
invariant under the adjoint action of G, and Proposition 3.1 implies

∫

T

χ(F)dχ =
∫

G

χ(F)dχ.

The last integral is equal to the Euler characteristic χ(G,F) by Proposition
2.3.

4 Gaussian degree of invariant subvarieties

We now compare the Gaussian degrees of X in G and of X ∩ T in T . Clearly,
the Gaussian degree of a k-dimensional subvariety is equal to the sum of the
Gaussian degrees of its k-dimensional irreducible components. Thus we can
assume that X is irreducible. There are two cases: the set of all nonsemisimple
elements of X has codimension either 0 or at least 1. In what follows we prove
that in the first case gdeg(X) = 0, and in the second case gdeg(X) = gdeg(X ∩
T ). In particular, the Gaussian degree of any orbit Oa ⊂ G coincides with the
Gaussian degree of its intersection with the maximal torus T .

Any reductive group G admits an embedding in GLN (C) for some N , such
that the inner product tr(Y1Y2) is nondegenerate on Lie algebra g. Let us fix
such an embedding. Then g may be identified with the space of all left-invariant
differential 1-forms on G: an element S ∈ g gives rise to a 1-form ω by the
formula

ω(Y ) = tr(x−1Y S), (1)

where x ∈ G and Y ∈ TxG. We will call such a form generic, if S is regular
semisimple.

Lemma 4.1. All generic left invariant 1-forms form an open dense subset in
the space of all left-invariant 1-forms.

Proof. All regular semisimple elements form an open dense subset in g. This
implies the statement of the lemma.
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Proposition 4.2. The Gaussian degree of an orbit Oa is equal to the number
of the intersection points Oa∩T . In particular, if a is a nonsemisimple element,
then deg(Oa) = 0.

Proof. Consider the map

ϕ : G → Oa; ϕ : g 7→ gag−1.

Since ϕ is smooth and surjective, the tangent space TxOa is the image of the
induced map dϕ. A simple computation shows that TxOa = [g, x]. Let ω be a
generic left-invariant differential 1-form on G given by the formula (1). Then
ω = 0 on TxOa is equivalent to tr(x−1Y xS − Y S) = 0 for any Y ∈ g. Since the
form tr(Y1Y2) is Ad G-invariant, we have tr(x−1Y xS−Y S) = tr(Y (xSx−1−S)).
The form tr(Y1Y2) is nondegenerate on g. Thus x and S commute, and x belongs
to some maximal torus TS that depends on S.

Remark. Suppose that an element a lies in the maximal torus T . Then the
space TaOa = [g, a] is orthogonal to the tangent space TaT with respect to the
form (Y1, Y2) 7→ tr(a−1Y1 · a−1Y2). Since this form is nondegenerate on TaT ,
we get that at any point x ∈ Oa ∩ T the intersection of tangent spaces TxOa

and TxT is zero.

Corollary 4.3. Let Z ⊂ G be an irreducible subvariety invariant under the
adjoint action of G, such that the set Zn of all nonsemisimple elements of Z is
a Zariski open nonempty subset in Z. Then deg(Z) = 0.

Proof. The Gaussian degree of a subvariety Z ⊂ G is birationally invariant.
Therefore, it suffices to compute it for Zn. Let ω be a generic left-invariant
differential 1-form on G given by the formula (1). For any smooth point a ∈ Zn

the restriction of this form to the subspace TaOa ⊂ TaZn of the tangent space
TaZn is already nonzero by Proposition 4.2. Thus the form ω does not vanish
in any smooth point of Zn, and gdeg(Z) = gdeg(Zn) = 0.

Proposition 4.4. Let X be an irreducible subvariety of G invariant under the
adjoint action of G such that the subset of all nonsemisimple elements of X has
codimension at least 1 in X. Then the Gaussian degrees of X in G and of X∩T
in T coincide.

Proof. Let k be the maximal dimension of a semisimple orbit in X. Denote by
Xs the set of all semisimple elements in X, whose orbits have dimension k.
Then Xs is a Zariski open subset of X. Consider the map

ϕ : G× (X ∩ T ) → X, (g, t) 7→ gtg−1.

The image of ϕ contains Xs. Since Xs is a Zariski open nonempty subset of X,
deg(X) = deg(Xs). For any smooth point x ∈ Xs the tangent space TxX is
again the image of the induced map

dϕ : TgG× Tt(X ∩ T ) → TxX,
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where gtg−1 = x. By calculating dϕ we obtain that TxX = [g, x] ⊕ gTt(X ∩
T )g−1. Let ω be a generic left-invariant differential 1-form on G given by the
formula (1). Then ω = 0 on TxX is equivalent to ω = 0 on [g, x] and ω = 0 on
gTt(X ∩T )g−1. The first identity holds if and only if x belongs to the maximal
torus TS (see the proof of Proposition 4.2). Denote by ωT the restriction of ω to
T ∗TS . If x ∈ TS , then gTt(X ∩T )g−1 = Tx(X ∩TS). Thus the form ω vanishes
on TxX if and only if the form ωT vanishes on Tx(X ∩ TS). It follows that
deg(X) = deg(X ∩ TS) = deg(X ∩ T ), since all maximal tori are conjugate.

5 The Euler characteristic of the complex link

We now compute the Euler characteristic with compact support of a complex
link for a certain class of stratifications of G. For any a ∈ G we define the rank
of a to be the dimension of its centralizer in G. A Whitney stratification S of
G is called admissible if the following conditions hold. For every α ∈ S

• the stratum Xα is invariant under the adjoint action of G,

• elements of Xα are either all semisimple of the fixed rank or all non-
semisimple.

Denote by S0 ⊂ S the subset of all semisimple strata. Due to the second
condition and the Remark after Proposition 4.2, for any semisimple stratum
Xα ∈ S intersection Xα ∩ T is smooth, and at any point x ∈ Xα ∩ T the
intersection of the tangent spaces TxXα∩TxT coincides with the tangent space
Tx(Xα ∩T ). Thus we can consider an induced Whitney stratification ST of the
maximal torus T , namely, T =

⊔
(Xα ∩ T ), α ∈ S0.

Proposition 5.1. Consider two strata Xα and Xβ such that Xα belongs to the
closure of Xβ. If Xα is semisimple and Xβ is not, then e(α, β) = 0. If both
Xα, Xβ are semisimple, then e(α, β) = e(Xα ∩ T, Xβ ∩ T ), where the complex
link of Xα ∩ T and Xβ ∩ T is taken in the torus T .

Proof. Let Z ⊂ G be the centralizer of an element a ∈ Xα. Then Z is again a
reductive group. Since the tangent spaces TaZ and TaOa are orthogonal with
respect to the form (Y1, Y2) 7→ tr(a−1Y1 ·a−1Y2), and this form is nondegenerate
on TaZ, we get that Z is the normal slice to the orbit Oa ⊂ Xα. Thus any
normal slice to Xα ∩ Z in Z will also be the normal slice to Xα in G. Let us
construct a normal slice N ⊂ Z invariant under the adjoint action of Z.

Let k be the dimension of Xα ∩ Z. Some neighborhood of a in Xα ∩ Z lies
in the center of Z, because all elements of Xα have the same rank. Thus
we can find k characters ϕ1, . . . , ϕk of the group Z such that their differ-
entials daϕ1, . . . , daϕk restricted to the tangent space Ta(Xα ∩ Z) are lin-
early independent. Let N ⊂ Z be the set of common zeros of the system
ϕ1(za−1) = . . . = ϕk(za−1) = 1.
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Example. a) Let G be GLN (C) and let Xα = Z(GLN ) = C∗ be the center of
GLN . Then Z = G, and the only characters of Z are the powers of determinant.
We have dedet = tr for the identity element e ∈ GLN , and tr is a nonzero linear
function on C∗e. Thus at the point e ∈ Xα we can take N = SLN (C).

b) Let G be any reductive group, and let Xα be a stratum consisting of
regular semisimple elements. Then Z is a maximal torus. Thus any normal
slice to Xα ∩ Z in Z is invariant under the adjoint action of Z.

We now continue the proof of Proposition 5.1. Consider a generic linear
function l on N given by the formula l(x) = tr((a−1x−e)S), where S ∈ Lie Z is
regular semisimple. There exists a maximal torus T ⊂ Z centralizing S. Since
a is semisimple, T is also a maximal torus in G. For any ε the set l−1(ε) is
invariant under the adjoint action of T . Denote by Tc the compact form of
T . Choose a Hermitian inner product h(·, ·) on glN invariant under the adjoint
action of Tc and a small ball B = {x ∈ glN : h(x− a, x− a) ≤ const}.

Thus with a generic vector S ∈ Lie Z we associate the complex link L =
B∩ l−1(ε)∩Xβ of the strata Xα and Xβ . The complex link L is invariant under
the adjoint action of the torus Tc by the construction. Thus by Proposition 3.1
we get χc(L) = χc(LTc) = χc(L ∩ ZTc). Note that ZTc = ZT = T . If Xβ is
nonsemisimple, Xβ ∩T is empty, thus L∩T is empty. It follows that e(α, β) = 0
in this case. If Xβ is semisimple, then L∩T is a complex link for Xα∩T, Xβ∩T
in the torus T .

Corollary 5.2. If X is a smooth irreducible subvariety invariant under the
adjoint action of G, then either X consists of nonsemisimple elements only or
the set of all semisimple elements in X is dense. In particular, if in addition X
is closed, then it contains a dense subset of semisimple elements. The Gaussian
degrees of X and of X ∩ T coincide.

Proof. Let us prove the first statement by contradiction. Let S be an admissible
stratification of G subordinate to X, and let Xn ⊂ X be a maximal open stratum
in X, such that Xn is nonsemisimple. Then dimXn = dimX, and X − Xn

contains at least one semisimple stratum Xs. The number e(Xs, Xn) is zero by
Proposition 5.1. That contradicts to the smoothness of X. Combining the first
statement with the results of Section 4, we get the last statement.

6 Proof of Theorem 1.1

Since F is constructible and equivariant under the adjoint action, there exists
some finite algebraic Whitney stratification S subordinate to F such that each
stratum is invariant under the adjoint action. Stratifying each stratum if nec-
essary we may assume that S is admissible. Let us apply Theorem 2.4 and
Proposition 5.1 to the characteristic cycles of F and of FT . Notice that for a
semisimple stratum Xα ∈ S the difference dim Xα − dim(Xα ∩ S) is equal to
dim Oa, a ∈ Xα, and the latter is even. As a straightforward corollary we get
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Corollary 6.1. Let Xα ∈ S be a semisimple stratum. The multiplicities of
characteristic cycles of F and FT along the strata Xα and Xα ∩T , respectively,
coincide.

Example. Suppose that the support of the constructible function χ(F) lies in
the closure of an orbit Oa, a ∈ G. This kind of sheaves is studied in [2] for
unipotent orbits. In this case the strata of an admissible stratification that
contribute to the characteristic cycle are the orbits in Oa. Let as, an ∈ G be
the semisimple and unipotent elements respectively such that a = as · an. Then
Xα = Oas is the only semisimple stratum in Oa. Thus for the multiplicity cα(F)
of CC(F) along this stratum we get cα(F) = χα(F) = cα(FT ).

Now the formula of Theorem 1.1 reduces to the same formula for the sheaf
FT and the stratification ST . First, χ(F , G) = χ(FT , T ) by Proposition 3.2.
Second, for all nonsemisimple strata Xα, α ∈ S, we have gdeg(Xα) = 0 by
Corollary 4.3. Thus the right hand side of the formula may be considered as
the sum over semisimple strata only, i.e.

χ(X,F) =
∑

α∈S0

cα(F)gdeg(Xα).

By Corollary 6.1 this is equivalent to the formula

χ(T,FT ) =
∑

α∈ST

cα(FT )gdeg(Xα ∩ T ),

since gdeg(Xα) = gdeg(Xα∩T ) by Proposition 4.4. To prove the latter formula
we apply Theorem 1.3 from [4].
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[2] S. Evens, I. Mirković, Characteristic cycles for the loop Grassmannian
and nilpotent orbits, Duke Math. J. 97, No.1 (1999), 109-126.

[3] J. Franecki, The Gauss map and Euler characteristic on algebraic groups,
thesis, Northwestern University, Evanston, Illinois, 1998.

[4] J. Franecki, M. Kapranov, The Gauss map and a noncompact
Riemann-Roch formula for constructible sheaves on semiabelian varieties,
Duke Math. J. 104, No.1 (2000),171-180.

[5] W. Fulton, R. MacPherson, Categorical framework for the study of
singular spaces, Mem. Amer. Math. Soc. 31 no. 243 (1981).

[6] O. Gabber, F. Loeser, Faisceaux pervers l-adiques sur un tore, Duke
Math. J. 83, No.3 (1996), 501-606.

10



[7] V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math.
84 (1986), 327-402.

[8] M. Goresky, R. MacPherson, Stratified Morse theory, Springer, 1986.

[9] M. Kashiwara, P. Schapira, Sheaves on manifolds, Springer, 1990.

[10] A. Khovanskii, A. Pukhlikov, Integral transforms based on Euler charc-
teristic and their applications, Integral Transforms and Special functions,
1, No.1 (1993), 19-26.
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