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I describe a relation between geometry of complete flag varieties and combina-
torics of Gelfand–Zetlin polytopes. This is similar to the rich interplay between
toric varieties and their Newton polytopes. For motivation, I will first recall some
well-known results for toric varieties and then outline their partial extension to the
setting where a toric variety is replaced by a regular compactification of an arbitrary
reductive group.

Let X be a smooth complex toric variety of dimension n, and D a very ample
divisor on X. Recall that with a pair (X,D) one can associate a convex lattice
polytope PD ⊂ Rn called the Newton polytope of X (e.g. PD can be defined as the
convex hull of all Laurent monomials occuring in the defining equation of D). Many
geometric invariants of X can be computed explicitly in terms of the polytope PD
(see the list below). One of the key ingredients in such computations is a one-to-
one correspondence between G–orbits in X and faces of PD. This correspondence
preserves dimensions and incidence relations.

• The self-intersection index Dn of the divisor D is equal to n! times the
volume of PD [7].
• The Picard group of X is isomorphic to the group of virtual lattice poly-

topes analogous to PD (i.e. having the same normal fan) modulo parallel
translations.
• The Euler characteristic χ(D1 ∩ . . . ∩ Dm) of a complete intersection of

hypersurfaces can be computed explicitly for any m ≤ n [7].
• There is an explicit description of the cohomology ring H∗(X) by genera-

tors and relations [4]. In particular, there is the following formula for the
intersection product of the divisor D with the G–orbit OΓ corresponding
to a face Γ.

DOΓ =
∑
∆⊂Γ

d(v,∆)O∆,

where the sum is taken over the facets ∆ of Γ. Here v ∈ Γ ∩ Zn ⊂ Rn is
any point on Γ with integer coordinates, and d(v,∆) denotes the integral
distance from v to the face ∆.

Consider now a more general case. Let G be an arbitrary connected complex
reductive group of dimension n. Note that the left and right actions of G on itself
are in general different so it makes sense to consider the action by the doubled group
G×G. Let X be a G×G–equivariant compactification of G, that is, the group G×G
acts on X with the open dense orbit isomorphic to G and on this orbit the action
coincides with the action by left and right multiplications. As in the toric case, X
will always consist of a finite number of G×G–orbits. One way to construct such a
compactification is to take a projectively faithful representation π : G → End(V ).
Then the closure Xπ of P(π(G)) in the projective space P(End(V )) is a G × G
equivariant compactification of G. In particular, when G is a complex torus all
projective toric varieties can be obtained in this way.

An important class of G × G–equivariant compactifications consists of regular
compactifications introduced in [3]. These are the closest relatives of smooth toric
varieties. In particular, the closures of all G ×G–orbits in a regular compactifica-
tion are smooth and intersect each other transversally. Regular compactifications
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include all smooth toric varieties and wonderful compactifications of semisimple
groups of adjoint type.

As in the toric case, with each very ample divisor D one can associate a convex
lattice polytope PD ⊂ Rk. Here k is the rank of G, that is, the dimension of a
maximal torus, and Zk ⊂ Rk is identified with the weight lattice of G. E.g. when
X = Xπ and D is the divisor of hyperplane section then PD is the weight polytope
of π. There is a one-to-one correspondence between G×G–orbits in X and orbits
of the Weyl group of G acting on the faces of PD. This correspondence preserves
codimensions and incidence relations. In particular, vertices of PD correspond to
the closed orbits in X, which have dimension n − k and are isomorphic to the
product G/B×G/B of two flag varieties. Again there is a strong relation between
geometry of X and combinatorics of PD.

• Fix a fundamental Weyl chamber D ⊂ Rk. Then

Dn = n!
∫
PD∩D

F (x)dx,

where F is a homogeneous polynomial function on Rk of degree n− k that
depends only on the group G and not on X and D [5, 2]. In particular, if
G is a complex torus, then F ≡ 1.
• The Picard group ofX is isomorphic to the group of virtual lattice polytopes

analogous to PD and invariant under the action of the Weyl group modulo
parallel translations.
• The Euler characteristic χ(D1 ∩ . . . ∩ Dm) of a complete intersection of

hypersurfaces can be computed explicitly for any m ≤ n [8, 9].
However, no description of H∗(X) by generators and relations is known. In order to
obtain such a description it might be useful to consider a bigger polytope P̃D ⊂ Rn
that fibers over PD ∩ D with fibers equal to the product of two Gelfand-Zetlin
polytopes. Such a polytope has been recently constructed in a much more general
setting [6]. The bigger polytope P̃D contains more information about the variety
X. In particular, the self-intersection index Dn is equal to n! times the volume of
P̃D, exactly as in the toric case.

In a sense, a regular compactification X is made up of a toric variety (corre-
sponding to the smaller polytope PD) and the product of two flag varieties (corre-
sponding to the product of two Gelfand-Zetlin polytopes). I hope that the relation
between flag varieties and Gelfand-Zetlin polytopes will help to get new insights
into geometry of regular compactifications of reductive groups.

I will now come to the main object of my talk. Let G be the group GLn(C),
and X = G/B the complete flag variety for G. Recall that with each strictly
dominant weight λ of G one can associate the Gelfand-Zetlin polytope Qλ so that
the integral points inside and at the boundary of Qλ parameterize a natural basis in
the irreducible representation of G with the highest weight λ. The Gelfand-Zetlin
polytope Qλ is a convex polytope in Rd with vertices lying in the integral lattice
Zd ⊂ Rd. Here d = n(n− 1)/2 denotes the dimension of X.

I have constructed a correspondence between the Schubert cycles in X and some
special faces of the Gelfand-Zetlin polytope [10]. Namely, an l-dimensional face Γ
of the Gelfand-Zetlin polytope is assigned to each l-dimensional Schubert cycle Z
using Demazure modules for a Borel subgroup in G. There are some degrees of
freedom in the construction, namely, the same Schubert cycle can be represented
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by different faces (different choices of a face correspond to different choices of a
Borel subgroup containing a given maximal torus). For some Schubert cycles, it is
possible to choose a face Γ so that combinatorics of Γ captures geometry of D very
well (let us call such faces admissible). In particular, admissible faces behave well
with respect to the incidence relation between Schubert cycles. Then the classical
Chevalley formula [1] for the intersection product of Z with the divisor Dλ on
X corresponding to the weight λ has the following interpretation in terms of an
admissible face Γ.

DλZΓ =
∑
∆⊂Γ

d(v,∆)Z∆,

where the sum is taken over the facets ∆ of Γ (these correspond to the Schubert
cycles Z∆ of codimension one at the boundary of ZΓ). Here v is a fixed vertex
of the face Γ. Note that in this form the formula is completely analogous to the
formula for toric varieties mentioned above and to the analogous formula for regular
compactifications of reductive groups [9].

Many Schubert cycles can be represented by an admissible face, but not all of
them. In particular, all Schubert cycles that degenerate to a single toric variety
under the Caldero’s construction [11] of toric degenerations of flag varieties can
be represented by admissible faces. However, there are many other examples of
Schubert cycles represented by admissible faces. E.g. for the flag variety of GL3

all Schubert cycles can be represented by admissible faces (although one of the
2-dimensional Schubert cycles degenerates into the union of two toric subvarieties
under the Caldero’s construction). For GL4, exactly two Schubert cycles can not
be represented by an admissible face. These two cycles are the homology classes of
Schubert cells whose closures in the flag variety are not smooth. I conjecture that all
Schubert cycles defined by Schubert cells with smooth closures can be represented
by an admissible face. In our joint work with Evgeny Smirnov, we are currently
proving this conjecture.
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