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Symmetric invariants

Let g = Lie G be reductive. Assume that G = G◦ is connected. Let
Z(g) ⊂ U(g) be the centre of the enveloping algebra. Then

C[g∗]G = S(g)g ∼= Z(g).
We call S(g)g the algebra of symmetric invariants of g.

As is well-known, g∗ ∼= g as a G-module, ϕ : C[g]G → C[t]W ist an
isomorphism (Chevalley) for a Cartan subalgebra t ⊂ g and the Weyl group
W = NG(t)/ZG(t) is a finite reflection group. Hence S(g)g = C[H1, . . . ,H`]
is a polynomial ring in ` = rk g = dim t variables.

For a vector space V , let $ : Sk (V )→ V⊗k be the canonical symmetrisation
map. If V is a G-module, then $ is a homomorphism of G-modules. For a
Lie algebra q, we let $ stand also for the symmetrisation map from S(q) to
U(q). Then $ : S(q)q → Z(q) is an isomorphism of vector spaces.
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Symmetric invariants

Current and Takiff algebras

Let g[t] = g⊗ C[t] be the current algebra associated with g. The truncated
current algebra

g〈n〉 := g⊗ C[t]/(tn) = g[t]/(tn),

is also known as a (generalised) Takiff algebra modelled on g. If n > 1, then
g〈n〉 is no longer reductive. Nevertheless, S(g〈n〉)g〈n〉 is a polynomial ring in
n·rk g variables by a theorem of Raïs and Tauvel.

The current algebra g[t] acts on
g〈n〉∗ = g∗ ⊕ (ḡt)∗ ⊕ (ḡt2)∗ ⊕ . . .⊕ (ḡtn−1)∗ in the same way as it acts on
Wn := g∗t−n ⊕ g∗t−n+1 ⊕ . . .⊕ g∗t−1 ⊂ g∗[t, t−1]/g∗[t].

Set ĝ− = t−1g[t−1] and identify S(ĝ−) with S(g[t, t−1])/(g[t]). Then
S(ĝ−)g[t] = lim−→S(Wn)g[t] is a polynomial ring in infinitely many variables.

O. Yakimova (FSU Jena) Symmetrisation and the Feigin–Frenkel centre Belfast ’20 3 / 19



Symmetric invariants

Two features of z(ĝ) = S(ĝ−)g[t] are

– algebraically independent generators can be described very explicitly
due to a construction of Raïs–Tauvel;

– it is a Poisson-commutative subalgebra of S(ĝ−).
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Symmetric invariants

Poisson bracket on S(q)

Let q be a Lie algebra. The symmetric algebra S(q) carries the standard
Lie–Poisson structure:

� {ξ, η} = [ξ, η] for all ξ, η ∈ q, extends further by the Leibniz rule;

� {F1,F2}(γ) = γ([dγF1, dγF2]) for all F1,F2 ∈ S(q), γ ∈ q∗;

� {f + Ua(q),h + Ub(q)} = [f,h] + Ua+b(q) for f ∈ Ua+1(q), h ∈ Ub+1(q).

The third definition uses the fact that S(q) ∼= grU(q). In these terms,
S(q)q = {F ∈ S(q) | {ξ,F} = 0 ∀ξ ∈ q}.

Definition
A subalgebra A ⊂ S(q) is Poisson-commutative if {A,A} = 0.

Quantisation problem: given a Poisson-commutative A ⊂ S(q), find a
commutative subalgebra Ã ⊂ U(q) such that A = gr(Ã).

O. Yakimova (FSU Jena) Symmetrisation and the Feigin–Frenkel centre Belfast ’20 5 / 19



The big centre

The Feigin–Frenkel centre

There is a commutative subalgebra z(ĝ) ⊂ U(ĝ−)g s.t. gr(z(ĝ)) = z(ĝ).

The fist proof of this result is given by B. Feigin and E. Frenkel in 1992.
Roughly, z(ĝ) = U(ĝ−)g[t]. Here U(ĝ−) has to be considered as a quotient
U(ĝ)/J at the critical level for ĝ = g[t, t−1]⊕ CK .

Suppose g is simple and h∨ is the dual Coxeter number of g,

[xt r , ytm] = [x , y ]t r+m + rδr ,−m
tr(ad(x)ad(y))

2h∨
K for x , y ∈ g,

then take as J the left ideal generated by g[t] and K + h∨ (the reason is that
U(ĝ)/J is a vertex algebra and z(ĝ) is its centre). Some other features:

– the centre of the completed enveloping algebra Ũ−h∨(ĝ) can be
obtained from z(ĝ) by employing the vertex algebra structure;

– the image of z(ĝ) in any quotient of U(ĝ−), by a two-sided ideal, is
commutative, several quantisation problems are solved in this way (e.g.
in the Gaudin model or for Mishchenko–Fomenko subalgebras).
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The big centre

On the structure of z(ĝ)

Set g[a] = gta, x [a] = xta for x ∈ g.

By Feigin–Frenkel (1992), z(ĝ) = C[∂r
t Sk | 1 6 k 6 `, r > 0], where the

symbols gr(Sk ) generate S(g[−1])g. Such a set {Sk} is said to be a
complete set of Segal–Sugawara vectors.

The evaluation at t = 1 defines an isomorphism Ev1 : S(g[−1])→ S(g) of
g-modules. For F ∈ S(g), let F [−1] stand for Ev−1

1 (F) ∈ S(g[−1]). If
H ∈ Sd (g)G, then there is S ∈ z(ĝ) such that

S = $(H[−1]) +( something mysterious in U<d (ĝ−)g ).

Let {xi} be a basis of g orthonormal w.r.t. a non-degenerate g-invariant
scalar product. Then H[−1] =

∑dim g
i=1 xi [−1]xi [−1] ∈ z(ĝ).

Theorem (L. Rybnikov, 2008)

We have z(ĝ) = {X ∈ U(ĝ−) | [X ,H[−1]] = 0}.
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The big centre

Explicit formulas in type A

In case g = gln, there are several explicit formulas for Sk by
Chervov–Talalaev (2006) and Chervov–Molev (2009).

For γ ∈ g∗, write χγ(λ) = det(λIn − γ) as

λn −∆1(γ)λn−1 + . . .+ (−1)k ∆k (γ)λn−k + . . .+ (−1)n∆n(γ)

with ∆k ∈ Sk (gln). Then S(g)g = C[∆1, . . . ,∆n].

Set τ = −∂t and assume the conventions that

τx [a]− x [a]τ = [τ, x [a]] = τ(x [a]) = −ax [a−1]

and τ ·1 = 0. For example, this leads to τx [−1]·1 = x [−2].

Form the matrix E[−1] + τ = (Eij [−1]) + τ In with Eij ∈ gln and calculate its
column- and symmetrised determinants. Due to the fact that this matrix is
Manin, the results are the same.
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The big centre

Explicit formulas in type A, continuation
The elements Sk are coefficients of τ n−k in

det
sym

(E[−1] + τ) = $(∆n[−1]) +$(τ∆n−1[−1]) + . . .

+$(τ n−2∆2[−1]) +$(τ n−1∆1[−1]) + τ n,

where $ acts on the summands of τ n−k ∆k [−1] as on products of n factors,
i.e., it permutes τ with elements of gln[−1].

Let θ ∈ Aut(g) be a Weyl involution. Then θ(∆k ) = (−1)k ∆k for g = gln.
Set θ(t−1) = t−1, then θ acts on ĝ− and θ(H[−1]) = H[−1]. Thus θ acts on
z(ĝ). Hence there are S1, . . . ,Sn that are eigenvectors of θ, namely

Sn = $(∆n[−1]) +$(τ 2∆n−2[−1])·1 + . . .

+$(τ 2r ∆n−2r [−1])·1 + . . .$(τ 2m−2∆2[−1])·1,

Sk = $(∆k [−1]) +
∑

16r<k/2

(
n−k+2r

2r

)
$(τ 2r ∆k−2r [−1])·1. (1)
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The big centre

Sk = $(∆k [−1]) +
∑

16r<k/2

(n−k+2r
2r

)
$(τ 2r ∆k−2r [−1])·1.

——————————————————————————

� This is not the original form,
B no one was interested in the symmetrisation map,
B the degrees of invariants that appear in the sum have one and the same

parity.

� Is there any (reasonable) connection between ∆k and ∆k−2?
B The G-invariant Laplacian brings one, ∇2(∆k ) ∈ C∆k−2, but this does

not help to understand the formula.
B There is a certain map m that does help.
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The map m

For glN = glN(C) = End(CN) and 1 6 r 6 k , consider the linear map
mr : gl⊗k

N → gl
⊗(k−r+1)
N s.t. y1⊗ . . .⊗ yk 7→ y1y2 . . . yr ⊗ yr+1⊗ . . .⊗ yk .

Clearly mr◦ms = mr+s−1.
Via ad : g→ gl(g), the construction leads to mr : g⊗k → gl(g)⊗ g⊗(k−r).
Observe that

ad(y1)ad(y2) . . . ad(y2r+1) + ad(y2r+1) . . . ad(y2)ad(y1) ∈ so(g) ∼= Λ2g.

We embed Sk (g) in g⊗k via $ and for each odd 2r + 1 6 k , obtain a
G-equivariant map m2r+1 : Sk (g)→ Λ2g⊗ Sk−2r−1(g) ⊂ Λ2g⊗ g⊗(k−2r−1).

Set m = m3. Then m : Sk (g)→ Λ2g⊗ Sk−3(g). For example, if
Y = y1y2y3 ∈ S3(g), then m(Y ) ∈ so(g) is equal to

1
6

(
ad(y1)ad(y2)ad(y3) + ad(y3)ad(y2)ad(y1) + ad(y1)ad(y3)ad(y2)+

+ ad(y2)ad(y3)ad(y1) + ad(y2)ad(y1)ad(y3) + ad(y3)ad(y1)ad(y2)
)
.

For convenience, put m(Sk (g)) = 0 for k 6 2.
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The map m

We have defined the maps m2r+1 : Sk (g)→ Λ2g⊗ Sk−2r−1(g) and set m = m3.

—————————————————————————————————————

Suppose that g is simple (and non-Abelian). Then ad : g ↪→ so(g) and this is
the unique copy of g in so(g) ∼= Λ2g.

For certain elements H ∈ Sk (g), we have m(H) ∈ g⊗ Sk−3(g). If
m(H) ∈ Sk−2(g), then m2r+1(H) = m2r−1◦m(H).

If H ∈ Sk (g)G, then m(H) is also a G-invariant. We will be looking for
H ∈ S(g)G such that m(H) ∈ Sk−2(g)G.

Note that m(S3(g)g) = 0, since (Λ2g)g = 0.
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The map m

Back to type A

Take g = sln ⊂ gln. Set ∆̃k = ∆k |sln . Then ∆̃k can be inserted into (1), i.e.,
S̃k−1 = $(∆̃k [−1]) +

∑
16r<k/2

(n−k+2r
2r

)
$(τ 2r ∆̃k−2r [−1])·1 ∈ z(ĝ).

Proposition (Y., 2019)

We have m2r+1(∆̃k ) = (2r)!(k−2r)!
k!

(n−k+2r
2r

)
∆̃k−2r if k − 2r > 1 and

m(∆̃3) = m(∆3) = 0.

Next put this into the formula for S̃k−1. Then

S̃k−1 = $(H[−1]) +
∑

16r<(k−1)/2

(
k
2r

)
$(τ 2r m2r+1(H)[−1])·1

for H = ∆̃k .
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Results

S̃k−1 = $(H[−1]) +
∑

16r<(k−1)/2

( k
2r

)
$(τ 2r m2r+1(H)[−1])·1 for H = ∆̃k in type A.

—————————————————————————————————————

Theorem (Y., 2019)

Suppose that for some H ∈ Sk (g)G, we have m2r+1(H) ∈ Sk−2r (g)G for
each r > 1. Then
S = $(H[−1]) +

∑
16r<(k−1)/2

( k
2r

)
$(τ 2r m2r+1(H)[−1])·1 ∈ z(ĝ).

Theorem (Y., 2019)

If F ∈ Sk (g)G, then $(F [−1]) ∈ z(ĝ) ⇐⇒ m(F) = 0.

The next question is: do such invariants H exist outside type A?

Yes! For example, if Pf ∈ S`(so2`) is the Pfaffian, then m(Pf) = 0.
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Results

If g = sp2n or g = son, then it has a standard basis Fij = Eij − εiεjEj′ i′ . For
sp2n, we have S(g)G = C[H1, . . . ,Hn], where Hk = ∆2k are coefficients of
det(λI2n + (Fij)); for son, consider Φ2k ∈ S2k (g)G arising from

det(In − q(Fij))−1 = 1 + Φ2q2 + Φ4q4 + . . .+ Φ2k q2k + . . . .

Then m2r+1(∆2k ) = (2k−2r)!(2r)!
(2k)!

(2n−2k+2r+1
2r

)
∆2k−2r and

m2r+1(Φ2k ) = (2k−2r)!(2r)!
(2k)!

(n+2k−2
2r

)
Φ2k−2r .

Theorem (Y., 2019)
There are the following complete sets of Segal–Sugawara vectors:

{Sk = $(∆2k [−1]) +
∑

16r<k

(2n−2k+2r+1
2r

)
$(τ 2r ∆2k−2r [−1])·1 | 1 6 k 6 n}

in type Cn;
{Sk = $(Φ2k [−1]) +

∑
16r<k

(n+2k−2
2r

)
$(τ 2r Φ2k−2r [−1])·1 | 1 6 k < `} for

son with n = 2`− 1 with the addition of S` = $(Pf[−1]) for son with n = 2`.
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Results

Theorem (Y., 2019)
There are the following complete sets of Segal–Sugawara vectors:

{Sk = $(∆2k [−1]) +
∑

16r<k

(2n−2k+2r+1
2r

)
$(τ 2r ∆2k−2r [−1])·1 | 1 6 k 6 n}

in type Cn;
{Sk = $(Φ2k [−1]) +

∑
16r<k

(n+2k−2
2r

)
$(τ 2r Φ2k−2r [−1])·1 | 1 6 k < `} for

son with n = 2`− 1 with the addition of S` = $(Pf[−1]) for son with n = 2`.

Remark
First explicit formulas for complete sets of Segal–Sugawara vectors for sp2n
and son were produced by Molev in 2013. His construction involved the
Brauer algebra. In August 2020, he showed that his elements coincide with
the ones presented above.
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Results

Can we say something about the exceptional types?

Recall that {xi} is an orthonormal basis of g; set H =
∑dim g

i=1 x2
i .

Assume now that g is simple and exceptional.

Proposition (Y., 2019)

There are a nonzero H ∈ S6(g)G and R(1),R(2) ∈ C such that
S = $(H[−1]) + R(1)$(τ 2H2[−1])·1 + R(2)$(τ 4H[−1])·1 ∈ z(ĝ).

Example (obtained by hand in type G2)
Suppose g is of type G2. Then S(g)g = {∆2,∆6}, where ∆2 ∈ CH.
Choose the normalisation such that ∆2|sl3 = −2∆̃2, ∆6|sl3 = −∆̃2

3. Then
S2 = $((∆6 − 25

108 ∆3
2)[−1])− 65

4 $(τ 2∆2
2[−1])·1− 325

3 $(τ 4∆2[−1])·1
and S1 = H[−1] form a complete set of Segal–Sugawara vectors for g.

If g is of type E6 and F ∈ S5(g)G, then m(F) = 0 and $(F [−1]) ∈ z(ĝ).
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Results

Polasirations and symmetrisations
For Y =

∏k
i=1 yi ∈ Sk (g) and ~a = (a1, . . . , ak ) ∈ Zk

<0, let

Y [~a ] := 1
k!

∑
σ∈Sk

y1[σ(a1)] . . . yk [σ(ak )] ∈ Sk (ĝ−)

be the ~a-polarisation of Y . We extend this notion to all F ∈ Sk (g) by linearity.

Our formulas for Segal–Sugawara vectors have terms $(τ 2r H[−1])·1 with
H ∈ S(g)G.
An expression $(τ r F [−1])·1 encodes a sum of 1

(k+r)!c(r ,~a)$(F [~a ]), where
c(r ,~a) ∈ N are certain combinatorially defined coefficients.

The elements S ∈ z(ĝ) that we have seen in this talk are of the form

$(H[−1]) +
∑

(k/2)>r>1;~a

Cr ,~a $(Hr [~a ]), where Hr = mr (H) ∈ Sk−2r (g)G,

H ∈ Sk (g)G, ~a ∈ Zk−2r
<0 , and

∑k−2r
j=1 aj = −k − 2r .
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Results

In conclusion,

B a better understanding of the map m would lead to a better
understanding of z(ĝ);

B conjecturally, each exceptional Lie algebra possesses a set {Hk} of
generating symmetric invariants such that md (Hk ) ∈ S(g) for all k , d ;

B it is quite probable, that one can handle types F4 and E6 on a computer.
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