June 1, 2021

A bi-Hamiltonian nature of the Gaudin algebras

Oksana Yakimova

arxiv:2105.01020

Institut für Mathematik

Fakultät für Mathematik und Informatik

Algebra Seminar, Universität zu Köln

1. Poisson brackets and Poisson-commutative subalgebras

Let q be a non-Abelian Lie algebra over a field k (char k = 0). The symmetric algebra S(q) carries the standard Lie–Poisson structure:

- { { { }, η} = [{ , η] for all { , η ∈ q, extends further by the Leibniz rule (algebra);
- $\diamond \ \{F_1, F_2\}(\gamma) = \gamma([d_{\gamma}F_1, d_{\gamma}F_2]) \text{ for all } F_1, F_2 \in S(\mathfrak{q}), \gamma \in \mathfrak{q}^* \text{ (geometrie);}$
- $\diamond \ \{f + \mathcal{U}_a(\mathfrak{q}), h + \mathcal{U}_b(\mathfrak{q})\} = [f, h] + \mathcal{U}_{a+b}(\mathfrak{q}) \text{ for } f \in \mathcal{U}_{a+1}(\mathfrak{q}), h \in \mathcal{U}_{b+1}(\mathfrak{q}).$

The third definition uses the fact that $S(q) \cong \operatorname{gr} \mathcal{U}(q)$ and one may sat that it belongs to representation theory.

If q is finite-dimensional, then $S(q) = k[q^*]$ (this belongs to geometrie).

Definition 1. A subalgebra $A \subset S(q)$ is *Poisson-commutative* if $\{A, A\} = 0$.

If $C \subset U(\mathfrak{q})$ is a commutative algebra, then $gr(C) \subset S(\mathfrak{q})$ is Poisson-commutative.

Quantisation problem: given a Poisson-commutative $A \subset S(\mathfrak{q})$, find a commutative subalgebra $\widetilde{A} \subset \mathcal{U}(\mathfrak{q})$ such that $A = \operatorname{gr}(\widetilde{A})$.

Some notation:

- $\diamond \text{ For } \gamma \in \mathfrak{q}^* \text{, set } \widehat{\gamma}(\xi, \eta) = \gamma([\xi, \eta]) \text{ if } \xi, \eta \in \mathfrak{q}.$
- $\diamond \quad \text{For } A \subset \mathbb{S}(\mathfrak{q}), \, d_{\gamma}A := \langle d_{\gamma}F \mid F \in A \rangle_{\Bbbk}.$

♦ Let $q_{\gamma} = \ker \hat{\gamma}$ be the stabiliser of γ , then

ind
$$\mathfrak{q} := \min_{\gamma \in \mathfrak{q}^*} \dim \mathfrak{q}_{\gamma}$$
 and $b(\mathfrak{q}) := \frac{1}{2}(\dim \mathfrak{q} + \operatorname{ind} \mathfrak{q}).$

Suppose that $A \subset S(\mathfrak{q})$ and $\{A, A\} = 0$. Then $\widehat{\gamma}(d_{\gamma}A, d_{\gamma}A) = 0$ and therefore

$$\dim d_{\gamma}A \leqslant \frac{1}{2}\dim(\dim \mathfrak{q} - \dim \mathfrak{q}_{\gamma}) + \dim \mathfrak{q}_{\gamma}.$$

Hence tr.deg $A \leq b(q)$. More generally, if $l \subset q$ is a Lie subalgebra and

$$\mathbb{S}(\mathfrak{q})^{\mathfrak{l}} = \{F \in \mathbb{S}(\mathfrak{q}) \mid \{\xi, F\} = 0 \ \forall \xi \in \mathfrak{l}\},\$$

then

tr.deg
$$A \leq b(q) - b(l) + ind l =: b^{l}(q),$$
 (1)

for any Poisson-commutative subalgebra $A \subset S(\mathfrak{q})^{\mathfrak{l}}$ [MOLEV–Y. (2019)]. **Remark.** We have also tr.deg $\mathcal{A} \leq b(\mathfrak{q})$ for any commutative subalgebra $\mathcal{A} \subset \mathcal{U}(\mathfrak{q})$ and tr.deg $\mathcal{C} \leq b^{\mathfrak{l}}(\mathfrak{q})$ for any commutative subalgebra $\mathcal{C} \subset \mathcal{U}(\mathfrak{q})^{\mathfrak{l}}$.

2. The Lenard–Magri scheme (compatible Poisson brackets)

Two Poisson brackets are *compatible* if their sum (and hence any linear combination of them) is again a Poisson bracket. Roughly speaking, a *bi-Hamiltonian system* is a pair of compatible Poisson structures $\{, \}', \{, \}'',$ or rather a pencil

$$\{a\{,\}'+b\{,\}''\mid a,b\in \Bbbk\}$$

spanned by them.

Let π' , π'' be the Poisson tensors of $\{, \}', \{, \}''$. Then $\pi_{a,b} = a\pi' + b\pi''$ is the Poisson tensors of $a\{, \}'+b\{, \}''$. For almost all $(a,b) \in \mathbb{k}^2$, $\mathsf{rk}(a\pi'+b\pi'')$ has one and the same (maximal) value, let it be r, and we say that $a\{, \}'+b\{, \}''$ is *regular* (or that (a,b) is a *regular* point) if $\mathsf{rk}(a\pi'+b\pi'') = r$. The Poisson centres $\mathcal{Z}_{a,b}$ of regular structures in the pencil generate a subalgebra $\mathfrak{Z}(\{, \}', \{, \}'')$, which is Poisson-commutative w.r.t. all Poisson brackets in the pencil.

The Poisson tensor (bivector) π of the Lie–Poisson bracket $\{,\}$ of S(q) is defined by the formula $\pi(dH \wedge dF) = \{H, F\}$ for $H, F \in S(q)$. We have $\hat{\gamma} = \pi(\gamma)$ and in this terms,

ind $q = \dim q - \operatorname{rk} \pi$,

where $\operatorname{rk} \pi = \max_{\gamma \in \mathfrak{q}^*} \operatorname{rk} \pi(\gamma)$.

The Poisson centre of $(S(q), \{,\})$ is $\mathcal{Z}(S(q), \{,\}) = \mathcal{Z}(q) = S(q)^{q}$.

There is a well-developed geometric machinery for dealing with algebras $\mathcal{Z}(\{,\}',\{,\}'') = \operatorname{alg} \langle \mathcal{Z}_{a,b} | \operatorname{rk}(a\pi' + b\pi'') = r \rangle$.

3. Gaudin models

Suppose q = g is semisimple. A Gaudin model related to $\mathfrak{h} = \mathfrak{g}^{\oplus n}$ consists of n quadratic Hamiltonians depending on $\vec{z} = (z_1, \ldots, z_n) \in \mathbb{k}^n$.

Let $\{x_i \mid 1 \leq i \leq \dim \mathfrak{g}\}$ be a basis of \mathfrak{g} that is orthonormal w.r.t. the Killing form κ . Let $x_i^{(k)} \in \mathfrak{h}$ be a copy of x_i belonging to the *k*-th copy of \mathfrak{g} . Assume that $z_j \neq z_k$ for $j \neq k$ and set

$$\mathcal{H}_k = \sum_{j \neq k} \frac{\sum_{i=1}^{\dim \mathfrak{g}} x_i^{(k)} x_i^{(j)}}{z_k - z_j}, \ 1 \leqslant k \leqslant n.$$

$$(2)$$

The Gaudin Hamiltonians \mathcal{H}_k can be regarded as elements of either

$$\mathcal{U}(\mathfrak{g})^{\otimes n} \cong \mathcal{U}(\mathfrak{h}) \text{ or } \mathfrak{S}(\mathfrak{h}).$$

They commute in $\mathcal{U}(\mathfrak{h})$ and hence Poisson-commutate in $\mathcal{S}(\mathfrak{h})$.

Note that $\sum_{k=1}^{n} \mathcal{H}_k = 0.$

By the construction, each \mathcal{H}_k is an invariant of the diagonal copy of \mathfrak{g} , i.e., of $\Delta \mathfrak{g} \subset \mathfrak{h}$.

4. Gaudin algebras

In 1994, B. Feigin, E. Frenkel, and N. Reshetikhin constructed a large commutative algebra $\mathcal{C}(\vec{z}) \subset \mathcal{U}(\mathfrak{h})^{\Delta \mathfrak{g}}$ that contains all \mathcal{H}_k .

The enveloping algebra $\mathcal{U}(\mathfrak{g}[t^{-1}])$ contains a large commutative subalgebra, the *Feigin–Frenkel centre* $\mathfrak{z}(\hat{\mathfrak{g}}, t^{-1})$. Let $\Delta \mathcal{U}(\mathfrak{g}[t^{-1}]) \cong \mathcal{U}(\mathfrak{g}[t^{-1}])$ be the diagonal of $\mathcal{U}(\mathfrak{g}[t^{-1}])^{\otimes n}$. Suppose that $\vec{z} \in (\mathbb{k}^{\times})^n$. Then \vec{z} defines a natural homomorphism $\rho_{\vec{z}} \colon \Delta \mathcal{U}(\mathfrak{g}[t^{-1}]) \to \mathcal{U}(\mathfrak{g})^{\otimes n}$, where

$$\rho_{\vec{a}}(xt^k) = z_1^k x^{(1)} + z_2^k x^{(2)} + \ldots + z_n^k x^{(n)} \in \mathfrak{g} \oplus \mathfrak{g} \oplus \ldots \oplus \mathfrak{g} \text{ for } x \in \mathfrak{g}.$$

Let $\mathcal{C}(\vec{z})$ be the image of $\mathfrak{z}(\hat{\mathfrak{g}}, t^{-1})$ under $\rho_{\vec{z}}$. If $z_j \neq z_k$ for $j \neq j$, then $\mathcal{C}(\vec{z})$ contains the Hamiltonians \mathcal{H}_k associated with \vec{z} .

According to [CHERVOV, FALQUI, and RYBNIKOV (2010)],

$$\diamond \text{ tr.deg } \mathbb{C}(\vec{z}) = \frac{n-1}{2}(\dim \mathfrak{g} + \operatorname{rk} \mathfrak{g}) + \operatorname{rk} \mathfrak{g} = b^{\Delta \mathfrak{g}}(\mathfrak{h}),$$

 $\diamond \ \mathbb{C}(\vec{z})$ is a polynomial algebra (with $b^{\Delta \mathfrak{g}}(\mathfrak{h})$ generators).

In the literature, one finds often the following (wrong) statement:

• $\mathcal{C}(\vec{z})$ is a maximal commutative subalgebra of $\mathcal{U}(\mathfrak{h})$.

The correct one is

 $\diamond C(\vec{z})$ is a maximal commutative subalgebra of $\mathcal{U}(\mathfrak{h})^{\Delta \mathfrak{g}}$.

The proof in [CFR] uses some limit-constructions and a connection with *Mishchenko–Fomenko subalgebars*.

The associated graded algebra $gr(\mathcal{C}(\vec{z})) \subset S(\mathfrak{h})$ is Poisson-commutative. **Question.** Is there a pair of compatible Poisson structures on \mathfrak{h}^* that produces $gr(\mathcal{C}(\vec{z}))$ by the Lenard–Magri scheme?

Not claiming this to be a general remedy, but nevertheless:

If you do not see a solution, let the problem stand on its head.

5. Quotients of the current algebra

Let $p \in k[t]$ be a normalised polynomial of degree $n \ge 1$. Then the quotient $\mathfrak{q}[t]/(p) \cong \mathfrak{q} \otimes (k[t]/(p))$ is a Lie algebra and as a vector space it is isomorphic to

$$\mathbb{W} = \mathbb{W}(\mathfrak{q}, n) = \mathfrak{q} \cdot 1 \oplus \mathfrak{q} \overline{t} \oplus \ldots \oplus \mathfrak{q} \overline{t}^{n-1},$$

where \overline{t} identifies with t + (p). Let $[,]_p$ be the Lie bracket on \mathbb{W} given by p, i.e., $\mathfrak{q}[t]/(p) \cong (\mathbb{W}, [,]_p)$ as a Lie algebra. We identify \mathfrak{q} with $\mathfrak{q} \cdot 1 \subset \mathbb{W}$. In a particular case $p = t^n$, set $\mathfrak{q}\langle n \rangle = \mathfrak{q}[t]/(t^n)$. The Lie algebra $\mathfrak{q}\langle n \rangle$ is known as a (generalised) *Takiff algebra* modelled on \mathfrak{q} . Note that $\mathfrak{q}\langle 1 \rangle \cong \mathfrak{q}$. If dim $\mathfrak{q} < \infty$, then by [RAïS–TAUVEL (1992)], we have

$$\operatorname{ind}\mathfrak{q}\langle n\rangle = n \cdot \operatorname{ind}\mathfrak{q}. \tag{3}$$

From now on, assume that $\mathbb{k} = \overline{\mathbb{k}}$. **Proposition 2.** Suppose $p = \prod_{i=1}^{u} (t - a_i)^{m_i}$, where $a_i \neq a_j$ for $i \neq j$, we have $m_i \ge 1$ for each $i \le u$, and $\sum_{i=1}^{u} m_i = n$. Then $\mathfrak{q}[t]/(p) \cong \bigoplus_{i=1}^{u} \mathfrak{q}\langle m_i \rangle$.

In a finite-dimensional case, Proposition 2 implies: $\operatorname{ind}(\mathbb{W}, [,]_p) = n \cdot \operatorname{ind} \mathfrak{q}$.

Example 3. Suppose $m_i = 1$ for each *i*. Set $r_i = \frac{p}{(t-a_i)} \prod_{j \neq i} (a_i - a_j)^{-1}$. Then $r_i^2 \equiv r_i \pmod{p}$. This is an explicit application of the Chinese remainder theorem. Each subspace $q\bar{r}_i$ is a Lie subalgebra of q[t]/(p), isomorphic to q, and

$$\mathfrak{q}[t]/(p) = \mathfrak{q}\bar{r}_1 \oplus \mathfrak{q}\bar{r}_2 \oplus \ldots \oplus \mathfrak{q}\bar{r}_n.$$
(4)

In particular, $\mathfrak{g}[t]/(p) \cong \mathfrak{g}^{\oplus n}$ is semisimple if \mathfrak{g} is semisimple.

6. Compatible brackets $\{,\}_{p_1}$ and $\{,\}_{p_2}$ on $\mathcal{S}(\mathbb{W})$

Proposition 4. Let $p_1, p_2 \in k[t]$ be distinct normalised polynomials of degree n. If we have $\deg(p_1 - p_2) \leq 1$, then the Lie–Poisson brackets $\{,\}_{p_1}$ and $\{,\}_{p_2}$ are compatible. More explicitly, $a\{,\}_{p_1} + (1-a)\{,\}_{p_2} = \{,\}_{ap_1+(1-a)p_2}$.

The pencil $L(p_1, p_2) := \langle \{, \}_{p_1}, \{, \}_{p_2} \rangle$ contains the unique singular line $\Bbbk \ell$ with $\ell = \{, \}_{p_1} - \{, \}_{p_2}$ and always $\operatorname{ind}(\mathbb{W}, \ell) = \dim \mathfrak{q} + (n-1) \operatorname{ind} \mathfrak{q}$.

The bracket $[q \cdot 1, W]_p$ is independent of p, thus $\mathbb{Z}_p = \mathbb{Z}(\mathbb{S}(W), \{,\}_p) \subset \mathbb{S}(W)^q$ and hence $\mathbb{Z}(p_1, p_2) = alg \langle \mathbb{Z}_p | p = ap_1 + (1 - a)p_2 \rangle \subset \mathbb{S}(W)^q$. Example 5. Set $p = p_1 = t^n - 1$, $\tilde{p} = p_2 = t^n$. Then

$$L(p,\tilde{p}) = \Big\{ \mathbb{k}\{\ ,\ \}_{t^n+\alpha}, \ \mathbb{k}\ell \mid \alpha \in \mathbb{k}, \ell = \{\ ,\ \}_{t^n-1} - \{\ ,\ \}_{t^n} \Big\}.$$

Here $(\mathbb{W}, [\ ,\]_{t^n+\alpha}) \cong \mathfrak{q}^{\oplus n}$ if $\alpha \neq 0$;

 $(\mathbb{W}, [,]_{t^n}) \text{ is the Takiff algebra } \mathfrak{q}\langle n \rangle;$ and $\ell(x\bar{t}^a, y\bar{t}^b) = \begin{cases} 0, & \text{if } a+b < n; \\ [x,y]\bar{t}^{a+b-n}, & \text{if } a+b \ge n, \end{cases}$ for $x, y \in \mathfrak{q}.$ The Lie algebra (\mathbb{W}, ℓ) is an N-graded: $\mathbb{W} = \mathfrak{q}\bar{t}^{n-1} \oplus \mathfrak{q}\bar{t}^{n-2} \oplus \ldots \oplus \mathfrak{q}\bar{t} \oplus \mathfrak{q}\cdot 1,$ it is isomorphic to $(\tilde{t}\mathfrak{q}[\tilde{t}])/(\tilde{t}^{n+1})$ and to the nilpotent radical of $\mathfrak{q}\langle n+1 \rangle$. The bracket [-k] is a contraction of [-k] related to a cyclic permutation

The bracket $\{,\}_{t^n}$ is a *contraction* of $\{,\}_{t^n-1}$ related to a cyclic permutation of the summands. In case q = g is reductive, $\mathcal{Z}(t^n - 1, t^n)$ was already studied [PANYUSHEV–Y. (2021)].

Example 6. Suppose $n \ge 2$. Set $p = t^n - t$, $\tilde{p} = t^n$, $\ell = \{ , \}_{t^n - t} - \{ , \}_{t^n}$. Then $\ell(x\bar{t}^a, y\bar{t}^b) = \begin{cases} 0, & \text{if } a + b < n; \\ [x, y]\bar{t}^{a+b+1-n}, & \text{if } a + b \ge n, \end{cases} \text{ for } x, y \in \mathfrak{q}$ and $(\mathbb{W}, \ell) \cong \mathfrak{q} \langle n-1 \rangle \oplus \mathfrak{q}^{ab}$. Theorem (The case q = g). (i) If $p = \prod_{i=1}^{n} (x - a_i)$, where $a_i \neq a_j$ for $i \neq j$ and $p(0) \neq 0$, then we have $\mathcal{Z}(p, p + t) = \operatorname{gr}(\mathbb{C}(\vec{z}))$ for $\vec{z} = (a_1^{-1}, \dots, a_n^{-1})$. (ii) Under the same assumptions on p, each $\tilde{\mathcal{H}}_k = \sum_{j \neq k} \frac{\sum_{i=1}^{\dim g} x_i^{(k)} x_i^{(j)}}{a_k - a_j} \in \mathcal{S}(\mathfrak{h})$ with $1 \leq k \leq n$ is an element of $\mathcal{Z}(p, p + 1)$.

7. Some explanations

If $p(0) \neq 0$, then the quotient map $\psi_p \colon \mathbb{k}[t] \to \mathbb{k}[t]/(p)$ extends to $\mathfrak{q}[t, t^{-1}]$ and to $\mathcal{U}(\mathfrak{q}[t^{-1}])$. If $\mathfrak{q} = \mathfrak{g}$ and the roots of p are distinct, then we identify $\mathfrak{h} = \mathfrak{g}^{\oplus n}$ with $\mathfrak{q}[t]/(p)$ and write also $\mathfrak{h} = \psi_p(\mathfrak{q}[t^{-1}])$. As can be easily seen,

$$\mathcal{C}(\vec{a}) = \psi_p(\mathfrak{z}(\hat{\mathfrak{g}}, t^{-1})) \text{ if } p = \prod_i (x - a_i).$$

Next gr($\mathcal{C}(\vec{a})$) = $\psi_p(\mathcal{Z}(\hat{\mathfrak{g}}, t^{-1}))$, where $\mathcal{Z}(\hat{\mathfrak{g}}, t^{-1}) = \text{gr}(\mathfrak{z}(\hat{\mathfrak{g}}, t^{-1}))$.

For any q, the algebra $\mathcal{Z}(\hat{q}, t^{-1})$ is defined as

♦ $\mathcal{Z}(\hat{\mathfrak{q}}, t^{-1}) = \mathcal{S}(t^{-1}\mathfrak{q}[t^{-1}])^{\mathfrak{q}[t]}$, where $\mathcal{S}(t^{-1}\mathfrak{q}[t^{-1}])$ is regarded as the quotient of $\mathcal{S}(\mathfrak{q}[t, t^{-1}])$ by the ideal $(\mathfrak{q}[t])$, i.e., $\mathcal{Z}(\hat{\mathfrak{q}}, t^{-1})$ consists of the elements $Y \in \mathcal{S}(t^{-1}\mathfrak{q}[t^{-1}])$ such that $\{xt^k, Y\} \in \mathfrak{q}[t]\mathcal{S}(\mathfrak{q}[t, t^{-1}])$ for all $x \in \mathfrak{q}$ and $k \ge 0$. It is more convenient to switch the variable: $t^{-1} \mapsto t$ in $\mathfrak{q}[t, t^{-1}]$, i.e., $\mathcal{Z}(\widehat{\mathfrak{q}}, t^{-1}) \mapsto \mathcal{Z}(\widehat{\mathfrak{q}}, t)$. Then part (i) of the theorem reads: $\mathcal{Z}(p, p+t) = \psi_p(\mathcal{Z}(\widehat{\mathfrak{g}}, t))$.

Conjecture 7. For any finite-dimensional Lie algebra q and any normalised $p \in \mathbb{k}[t]$ of degree n such that $p(0) \neq 0$, we have $\psi_p(\mathbb{Z}(\hat{q}, t)) = \mathbb{Z}(p, p + t)$.

8. Non-reductive and reductive-like Lie algebras

♦ For any
$$q$$
, we have $\{\mathcal{Z}(\hat{q}, t), \mathcal{Z}(\hat{q}, t)\} = 0$.

♦ The existence of $\mathfrak{z}(\hat{\mathfrak{q}}, t^{-1})$ (i.e., of a quantisation for $\mathfrak{Z}(\hat{\mathfrak{q}}, t^{-1})$) is not welldocumented. Probably one has to assume that \mathfrak{q} is quadratic. For the centralisers \mathfrak{g}_{γ} with $\gamma \in \mathfrak{g}$, the problem is settled, affirmatively, [ARAKAWA–PREMET (2017)].

Reductive-like properties of a Lie algebra:

Set
$$\mathfrak{q}_{sing}^* = \{\eta \in \mathfrak{q}^* \mid \dim \mathfrak{q}_\eta > \operatorname{ind} \mathfrak{q}\}.$$

 $(\diamond_1) \operatorname{tr.deg} \mathcal{Z}(\mathfrak{q}) = \operatorname{ind} \mathfrak{q} \quad (\text{enough symmetric invariants}).$
 $(\diamond_k)_{k=2,3} \quad \dim \mathfrak{q}_{sing}^* \leq \dim \mathfrak{q} - k \quad (\operatorname{codim} - k \operatorname{ property}).$
 $(\diamond_4) \quad \delta(\mathfrak{q})^{\mathfrak{q}} = \Bbbk[F_1, \dots, F_m] \text{ is a polynomial ring in } m = \operatorname{ind} \mathfrak{q} \text{ variables and}$
 $\Omega_{\mathfrak{q}^*} = \{\xi \in \mathfrak{q}^* \mid (d_{\xi}F_1) \land \dots \land (d_{\xi}F_m) \neq 0\} \text{ is a big open subset of } \mathfrak{q}^* \text{ (i.e., the complement of } \Omega_{\mathfrak{q}^*} \text{ does not contain divisors}).$

Results:

♦ If q satisfies (\Diamond_1) and (\Diamond_2), then tr.deg $\mathbb{Z}(p, p+l) = \frac{n-1}{2}$ (dim q+ind q)+ind q for any *p* and any *l* with 0 ≤ deg *l* ≤ 1.

♦ If q satisfies (\Diamond_2) and (\Diamond_4), then Z(p, p + l) is a polynomial ring (for any p and l as above).

♦ If q satisfies (\Diamond_3) and (\Diamond_4), then $\mathcal{Z}(p, p + l)$ is a maximal (w.r.t. inclusion) Poisson-commutative subalgebra of $(\mathcal{S}(\mathbb{W}), \{ , \}_p)^q$.

♦ If \mathfrak{q} satisfies (\Diamond_4) and $p(0) \neq 0$, then $\mathcal{Z}(p, p + t) = \psi_p(\mathcal{Z}(\widehat{\mathfrak{q}}, t))$ (Conj. 7 holds).

9. Reasons and ideas

Definition 8 (Polarisation). For $\vec{k} = (k_1, \dots, k_d) \in \mathbb{Z}$ such that $0 \leq k_j < n$ for each *j*, the \vec{k} -polarisation of $Y = \prod_i y_i \in S^d(\mathfrak{q})$ is

$$Y[\vec{k}] := (d!)^{-1} |\mathbf{S}_d \cdot \vec{k}| \sum_{\theta \in \mathbf{S}_d} y_1 \overline{t}^{\theta(k_1)} \dots y_d \overline{t}^{\theta(k_d)} \in \mathbb{S}(\mathbb{W}).$$

The notion extends to all $F \in S^d(\mathfrak{q})$ by linearity; $Pol(F) := \langle F[\vec{k}] | \vec{k} \text{ as above } \rangle$. **Theorem 9** (Raïs–Tauvel, Arakawa–Premet, Panyushev–Y.). Suppose that \mathfrak{q} satisfies (\Diamond_4). Then, for any $n \ge 1$, the Takiff algebra $\mathfrak{q}\langle n \rangle$ has the same properties as \mathfrak{q} . In particular, $\mathcal{Z}(\mathfrak{q}\langle n \rangle)$ is a graded polynomial ring of Krull dimension ind $\mathfrak{q}\langle n \rangle = nm$ and algebraically independent generators of $\mathcal{Z}(\mathfrak{q}\langle n \rangle)$ are polarisations of the polynomials F_j with $1 \le j \le m$.

The evaluation at t = 1 defines an isomorphism $\operatorname{Ev}_1 \colon S(\mathfrak{q}t) \to S(\mathfrak{q})$ of \mathfrak{q} -modules. For $F \in S(\mathfrak{q})$, set $F[t] := \operatorname{Ev}_1^{-1}(F) \in S(\mathfrak{q}t)$. If $F \in S(\mathfrak{q})^{\mathfrak{q}}$, then $F[t] \in \mathbb{Z}(\widehat{\mathfrak{q}}, t)$. Set $\tau = t^2 \partial_t$.

Corollary 10. If \mathfrak{q} satisfies (\Diamond_4), then $\mathfrak{Z}(\hat{\mathfrak{q}}, t)$ is a polynomial ring generated by $\tau^k(F_j[t])$ with $k \ge 0$ and $1 \le j \le m$.

Assume that q satisfies (\Diamond_4). On the one hand, each \mathbb{Z}_p , and hence also each $\mathbb{Z}(p, p + l)$, is generated by polarisations of the invariants F_j ; on the other hand, each $\psi_p(\tau^k(F_j[t])) \in \mathsf{Pol}(F_j)$ for any j and k.

Suppose that q is quadratic and let $h \in S^2(q)^q$ be a non-degenerate scalar product. (In case $q = \mathfrak{g}$ is semisimple let h be the dual of κ .) Then $h[t] \in \mathcal{Z}(\widehat{q}, t)$ and also $h[t] \in \mathfrak{z}(\widehat{q}, t)$. By [RYBNIKOV (2008)], $\mathfrak{z}(\widehat{\mathfrak{g}}, t)$ is the centraliser of h[t] in $\mathcal{U}(t\mathfrak{g}[t])$ and $\mathcal{Z}(\widehat{\mathfrak{g}}, t)$ is the Poisson centraliser of h[t] in $S(t\mathfrak{g}[t])$.

Suppose $n \ge 2$. Clearly $h[(1,1)] \in \psi_p(\mathcal{Z}(\hat{\mathfrak{q}},t))$ for any p. By a small calculation, $h[(1,1)] \in \mathcal{Z}(p,p+t)$ for any p.

Proposition 11. Suppose that $\mathfrak{g} = \mathfrak{sl}_d$ and $F \in S^d(\mathfrak{g})$ is such that $F(\xi) = \det(\xi)$ for $\xi \in \mathfrak{g}^* \cong \mathfrak{sl}_d$. Then for any p of degree n, we have

dim{ $f \in Pol(F) | \{f, h[(1,1)]\}_p = 0\} \leq (n-1)d+1.$

From this inequality one can deduce: $\dim(\operatorname{Pol}(F) \cap \mathcal{Z}(p, p+l)) = (n-1)d+1$ and $\operatorname{Pol}(F) \cap \mathcal{Z}(p, p+l) = \operatorname{Pol}(F) \cap \psi_p(\mathcal{Z}(\widehat{\mathfrak{q}}, t))$, whenever $F \in S^d(\mathfrak{q})^{\mathfrak{q}}$ is nonzero and $p(0) \neq 0$. Having a non-degenerate invariant scalar product, we may choose an orthonormal basis $\{x_i\} \subset \mathfrak{q}$ and defined the (generalised) Gaudin Hamiltonian by the same formulas as in (2). Set $p = \prod_i (t - z_i)$.

Example 12. Return to Example 3 and polynomials \bar{r}_i defined there.

Let $h[\bar{r}_i] \in S^2(\mathfrak{q}\bar{r}_i)^{\mathfrak{q}}$ be the image of h under the canonical isomorphism extended from the map $x \mapsto x\bar{r}_i$ (here $x \in \mathfrak{q}$). Then

$$h[(1,1)] = \sum_{i=1}^{\dim \mathfrak{q}} (x_i \bar{t})^2 = -2\left(\sum_k z_k \mathcal{H}_k\right) + \sum_k z_k^2 h[\bar{r}_k].$$

Furthermore dim{ $f \in Pol(h) | \{f, h[(1, 1)]\}_p = 0\} = 2n - 1$ and this subspace has a basis $\{\mathcal{H}_k, h[\bar{r}_j] | 1 \leq k < n, 1 \leq j \leq n\}$. If p has nonzero distinct roots, then this another basis:

$$\{\boldsymbol{h}[(1,1)], \psi_p \circ \tau(\boldsymbol{h}[t]), \dots, \psi_p \circ \tau^{n-2}(\boldsymbol{h}[t]), \boldsymbol{h}[\bar{r}_j] \mid 1 \leq j \leq n\}.$$

One may say that the generalised Gaudin model $(\mathfrak{q}^{\oplus n}, \mathcal{H}_1, \ldots, \mathcal{H}_n)$ is equivalent to $(\mathbb{W}, [,]_p, h[(1, 1)], \psi_p \circ \tau(h[t]), \ldots, \psi_p \circ \tau^{n-2}(h[t]))$. The elements $\psi_p \circ \tau^k(h[t])$ with $k \leq n-2$ do not depend on p, we have

$$\psi_p \circ \tau^k(\boldsymbol{h}[t]) = k! \sum_{1 \leq a,b; a+b=k+2} \left(\sum_{i=1}^{\dim \mathfrak{q}} x_i \overline{t}^a x_i \overline{t}^b \right).$$