# A bi-Hamiltonian nature of the Gaudin algebras 

Oksana Yakimova

```
arxiv:2105.01020
```

Institut für Mathematik
Fakultät für Mathematik und Informatik


Algebra Seminar, Universität zu Köln

## 1. Poisson brackets and Poisson-commutative subalgebras

Let $\mathfrak{q}$ be a non-Abelian Lie algebra over a field $\mathbb{k}(\operatorname{char} \mathbb{k}=0)$. The symmetric algebra $\mathcal{S}(\mathfrak{q})$ carries the standard Lie-Poisson structure:
$\diamond\{\xi, \eta\}=[\xi, \eta]$ for all $\xi, \eta \in \mathfrak{q}$, extends further by the Leibniz rule (algebra);
$\diamond\left\{F_{1}, F_{2}\right\}(\gamma)=\gamma\left(\left[d_{\gamma} F_{1}, d_{\gamma} F_{2}\right]\right)$ for all $F_{1}, F_{2} \in \mathcal{S}(\mathfrak{q}), \gamma \in \mathfrak{q}^{*}$ (geometrie);
$\diamond\left\{\boldsymbol{f}+\mathcal{U}_{a}(\mathfrak{q}), \boldsymbol{h}+\mathcal{U}_{b}(\mathfrak{q})\right\}=[\boldsymbol{f}, \boldsymbol{h}]+\mathcal{U}_{a+b}(\mathfrak{q})$ for $\boldsymbol{f} \in \mathcal{U}_{a+1}(\mathfrak{q}), \boldsymbol{h} \in \mathcal{U}_{b+1}(\mathfrak{q})$.
The third definition uses the fact that $\delta(\mathfrak{q}) \cong \operatorname{gr} \mathcal{U}(\mathfrak{q})$ and one may sat that it belongs to representation theory.

If $\mathfrak{q}$ is finite-dimensional, then $\mathcal{S}(\mathfrak{q})=\mathbb{k}\left[\mathfrak{q}^{*}\right]$ (this belongs to geometrie).
Definition 1. A subalgebra $A \subset \mathcal{S}(\mathfrak{q})$ is Poisson-commutative if $\{A, A\}=0$.

If $C \subset \mathcal{U}(\mathfrak{q})$ is a commutative algebra, then $\operatorname{gr}(C) \subset \mathcal{S}(\mathfrak{q})$ is Poisson-commutative.
Quantisation problem: given a Poisson-commutative $A \subset \mathcal{S}(\mathfrak{q})$, find a commutative subalgebra $\widetilde{A} \subset \mathcal{U}(\mathfrak{q})$ such that $A=\operatorname{gr}(\widetilde{A})$.

Some notation:
$\diamond$ For $\gamma \in \mathfrak{q}^{*}$, set $\hat{\gamma}(\xi, \eta)=\gamma([\xi, \eta])$ if $\xi, \eta \in \mathfrak{q}$.
$\diamond$ For $A \subset S(\mathfrak{q}), d_{\gamma} A:=\left\langle d_{\gamma} F \mid F \in A\right\rangle_{\mathbb{k}}$.
$\diamond$ Let $\mathfrak{q}_{\gamma}=\operatorname{ker} \hat{\gamma}$ be the stabiliser of $\gamma$, then

$$
\text { ind } \mathfrak{q}:=\min _{\gamma \in \mathfrak{q}^{*}} \operatorname{dim} \mathfrak{q}_{\gamma} \text { and } b(\mathfrak{q}):=\frac{1}{2}(\operatorname{dim} \mathfrak{q}+\operatorname{ind} \mathfrak{q}) .
$$

Suppose that $A \subset \mathcal{S}(\mathfrak{q})$ and $\{A, A\}=0$. Then $\hat{\gamma}\left(d_{\gamma} A, d_{\gamma} A\right)=0$ and therefore

$$
\operatorname{dim} d_{\gamma} A \leqslant \frac{1}{2} \operatorname{dim}\left(\operatorname{dim} \mathfrak{q}-\operatorname{dim} \mathfrak{q}_{\gamma}\right)+\operatorname{dim} \mathfrak{q}_{\gamma} .
$$

Hence tr.deg $A \leqslant \boldsymbol{b}(\mathfrak{q})$. More generally, if $\mathfrak{l} \subset \mathfrak{q}$ is a Lie subalgebra and

$$
\mathcal{S}(\mathfrak{q})^{\mathfrak{l}}=\{F \in S(\mathfrak{q}) \mid\{\xi, F\}=0 \forall \xi \in \mathfrak{l}\},
$$

then

$$
\begin{equation*}
\operatorname{tr} \cdot \operatorname{deg} A \leqslant \boldsymbol{b}(\mathfrak{q})-\boldsymbol{b}(\mathfrak{l})+\operatorname{ind} \mathfrak{l}=: \boldsymbol{b}^{\mathfrak{l}}(\mathfrak{q}), \tag{1}
\end{equation*}
$$

for any Poisson-commutative subalgebra $A \subset S(\mathfrak{q})^{\mathfrak{l}}$ [MOLEV-Y. (2019)].
Remark. We have also tr.deg $\mathcal{A} \leqslant \boldsymbol{b}(\mathfrak{q})$ for any commutative subalgebra $\mathcal{A} \subset \mathcal{U}(\mathfrak{q})$ and tr. $\operatorname{deg} \mathcal{C} \leqslant \boldsymbol{b}^{\mathfrak{l}}(\mathfrak{q})$ for any commutative subalgebra $\mathcal{C} \subset \mathcal{U}(\mathfrak{q})^{\mathfrak{l}}$.

## 2. The Lenard-Magri scheme (compatible Poisson brackets)

Two Poisson brackets are compatible if their sum (and hence any linear combination of them) is again a Poisson bracket. Roughly speaking, a bi-Hamiltonian system is a pair of compatible Poisson structures $\{,\}^{\prime},\{,\}^{\prime \prime}$, or rather a pencil

$$
\left\{a\{,\}^{\prime}+b\{,\}^{\prime \prime} \mid a, b \in \mathbb{k}\right\}
$$

spanned by them.

Let $\pi^{\prime}, \pi^{\prime \prime}$ be the Poisson tensors of $\{,\}^{\prime},\{,\}^{\prime \prime}$. Then $\pi_{a, b}=a \pi^{\prime}+b \pi^{\prime \prime}$ is the Poisson tensors of $a\{,\}^{\prime}+b\{,\}^{\prime \prime}$. For almost all $(a, b) \in \mathbb{k}^{2}, r k\left(a \pi^{\prime}+b \pi^{\prime \prime}\right)$ has one and the same (maximal) value, let it be $\boldsymbol{r}$, and we say that $a\{,\}^{\prime}+b\{,\}^{\prime \prime}$ is regular (or that $(a, b)$ is a regular point) if $r \mathrm{k}\left(a \pi^{\prime}+b \pi^{\prime \prime}\right)=\boldsymbol{r}$. The Poisson centres $\mathcal{Z}_{a, b}$ of regular structures in the pencil generate a subalgebra $Z\left(\{,\}^{\prime},\{,\}^{\prime \prime}\right)$, which is Poisson-commutative w.r.t. all Poisson brackets in the pencil.

The Poisson tensor (bivector) $\pi$ of the Lie-Poisson bracket $\{$,$\} of \mathcal{S}(\mathfrak{q})$ is defined by the formula $\pi(d H \wedge d F)=\{H, F\}$ for $H, F \in \mathcal{S}(\mathfrak{q})$. We have $\hat{\gamma}=\pi(\gamma)$ and in this terms,

$$
\text { ind } \mathfrak{q}=\operatorname{dim} \mathfrak{q}-\mathrm{rk} \pi,
$$

where $\mathrm{rk} \pi=\max _{\gamma \in \mathfrak{q}^{*}} \mathfrak{r k} \pi(\gamma)$.

The Poisson centre of $(\mathcal{S}(\mathfrak{q}),\{\}$,$) is \mathcal{Z}(\mathcal{S}(\mathfrak{q}),\{\})=,\mathcal{Z}(\mathfrak{q})=\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$.

There is a well-developed geometric machinery for dealing with algebras $Z\left(\{,\}^{\prime},\{,\}^{\prime \prime}\right)=\operatorname{alg}\left\langle\mathcal{Z}_{a, b} \mid \operatorname{rk}\left(a \pi^{\prime}+b \pi^{\prime \prime}\right)=\boldsymbol{r}\right\rangle$.

## 3. Gaudin models

Suppose $\mathfrak{q}=\mathfrak{g}$ is semisimple. A Gaudin model related to $\mathfrak{h}=\mathfrak{g}^{\oplus n}$ consists of $n$ quadratic Hamiltonians depending on $\vec{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{k}^{n}$.

Let $\left\{x_{i} \mid 1 \leqslant i \leqslant \operatorname{dim} \mathfrak{g}\right\}$ be a basis of $\mathfrak{g}$ that is orthonormal w.r.t. the Killing form $\kappa$. Let $x_{i}^{(k)} \in \mathfrak{h}$ be a copy of $x_{i}$ belonging to the $k$-th copy of $\mathfrak{g}$. Assume that $z_{j} \neq z_{k}$ for $j \neq k$ and set

$$
\begin{equation*}
\mathcal{H}_{k}=\sum_{j \neq k} \frac{\sum_{i=1}^{\operatorname{dim} \mathfrak{g}} x_{i}^{(k)} x_{i}^{(j)}}{z_{k}-z_{j}}, 1 \leqslant k \leqslant n . \tag{2}
\end{equation*}
$$

The Gaudin Hamiltonians $\mathcal{H}_{k}$ can be regarded as elements of either

$$
\mathcal{U}(\mathfrak{g})^{\otimes n} \cong \mathcal{U}(\mathfrak{h}) \text { or } \mathcal{S}(\mathfrak{h}) .
$$

They commute in $\mathcal{U}(\mathfrak{h})$ and hence Poisson-commutate in $\mathcal{S}(\mathfrak{h})$.
Note that $\sum_{k=1}^{n} \mathcal{H}_{k}=0$.
By the construction, each $\mathcal{H}_{k}$ is an invariant of the diagonal copy of $\mathfrak{g}$,
i.e., of $\Delta \mathfrak{g} \subset \mathfrak{h}$.

## 4. Gaudin algebras

In 1994, B. Feigin, E.Frenkel, and N. Reshetikhin constructed a large commutative algebra $\mathcal{C}(\vec{z}) \subset \mathcal{U}(\mathfrak{h})^{\triangle \mathfrak{g}}$ that contains all $\mathcal{H}_{k}$.

The enveloping algebra $\mathcal{U}\left(\mathfrak{g}\left[t^{-1}\right]\right)$ contains a large commutative subalgebra, the Feigin-Frenkel centre $\mathfrak{z}\left(\widehat{\mathfrak{g}}, t^{-1}\right)$. Let $\Delta \mathcal{U}\left(\mathfrak{g}\left[t^{-1}\right]\right) \cong \mathcal{U}\left(\mathfrak{g}\left[t^{-1}\right]\right)$ be the diagonal of $\mathcal{U}\left(\mathfrak{g}\left[t^{-1}\right]\right)^{\otimes n}$. Suppose that $\vec{z} \in\left(\mathbb{k}^{\times}\right)^{n}$. Then $\vec{z}$ defines a natural homomorphism $\rho_{\vec{z}}: \Delta \mathcal{U}\left(\mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathcal{U}(\mathfrak{g})^{\otimes n}$, where

$$
\rho_{\vec{a}}\left(x t^{k}\right)=z_{1}^{k} x^{(1)}+z_{2}^{k} x^{(2)}+\ldots+z_{n}^{k} x^{(n)} \in \mathfrak{g} \oplus \mathfrak{g} \oplus \ldots \oplus \mathfrak{g} \text { for } x \in \mathfrak{g}
$$

Let $\mathcal{C}(\vec{z})$ be the image of $\mathfrak{z}\left(\hat{\mathfrak{g}}, t^{-1}\right)$ under $\rho_{\vec{z}}$. If $z_{j} \neq z_{k}$ for $j \neq j$, then $\mathcal{C}(\vec{z})$ contains the Hamiltonians $\mathcal{H}_{k}$ associated with $\vec{z}$.

According to [CHERVOV, FALQUI, and RybNiKOV (2010)],
$\diamond \operatorname{tr} \cdot \operatorname{deg} \mathcal{C}(\vec{z})=\frac{n-1}{2}(\operatorname{dim} \mathfrak{g}+r k \mathfrak{g})+r k \mathfrak{g}=\boldsymbol{b}^{\Delta \mathfrak{g}}(\mathfrak{h})$,
$\diamond \mathcal{C}(\vec{z})$ is a polynomial algebra (with $\boldsymbol{b}^{\Delta \mathfrak{g}}(\mathfrak{h})$ generators).

In the literature, one finds often the following (wrong) statement:

- $\mathcal{C}(\vec{z})$ is a maximal commutative subalgebra of $\mathcal{U}(\mathfrak{h})$.

The correct one is
$\diamond \mathcal{C}(\vec{z})$ is a maximal commutative subalgebra of $\mathcal{U}(\mathfrak{h})^{\Delta \mathfrak{g}}$.
The proof in [CFR] uses some limit-constructions and a connection with Mishchenko-Fomenko subalgebars.

The associated graded algebra $\operatorname{gr}(\mathcal{C}(\vec{z})) \subset \mathcal{S}(\mathfrak{h})$ is Poisson-commutative.
Question. Is there a pair of compatible Poisson structures on $\mathfrak{h}^{*}$ that produces $\operatorname{gr}(\mathcal{C}(\vec{z}))$ by the Lenard-Magri scheme?

Not claiming this to be a general remedy, but nevertheless:
If you do not see a solution, let the problem stand on its head.

## 5. Quotients of the current algebra

Let $p \in \mathbb{k}[t]$ be a normalised polynomial of degree $n \geqslant 1$. Then the quotient $\mathfrak{q}[t] /(p) \cong \mathfrak{q} \otimes(\mathbb{k}[t] /(p))$ is a Lie algebra and as a vector space it is isomorphic to

$$
\mathbb{W}=\mathbb{W}(\mathfrak{q}, n)=\mathfrak{q} \cdot 1 \oplus \mathfrak{q} \bar{t} \oplus \ldots \oplus \mathfrak{q} \bar{t}^{n-1}
$$

where $\bar{t}$ identifies with $t+(p)$. Let $[,]_{p}$ be the Lie bracket on $\mathbb{W}$ given by $p$, i.e., $\mathfrak{q}[t] /(p) \cong(\mathbb{W},[] p$,$) as a Lie algebra. We identify \mathfrak{q}$ with $\mathfrak{q} \cdot 1 \subset \mathbb{W}$. In a particular case $p=t^{n}$, set $\mathfrak{q}\langle n\rangle=\mathfrak{q}[t] /\left(t^{n}\right)$. The Lie algebra $\mathfrak{q}\langle n\rangle$ is known as a (generalised) Takiff algebra modelled on $\mathfrak{q}$. Note that $\mathfrak{q}\langle 1\rangle \cong \mathfrak{q}$. If $\operatorname{dim} \mathfrak{q}<\infty$, then by [RAÏsTAUVEL (1992)], we have

$$
\begin{equation*}
\text { ind } \mathfrak{q}\langle n\rangle=n \cdot \text { ind } \mathfrak{q} . \tag{3}
\end{equation*}
$$

From now on, assume that $\mathbb{k}=\overline{\mathbb{k}}$.
Proposition 2. Suppose $p=\prod_{i=1}^{u}\left(t-a_{i}\right)^{m_{i}}$, where $a_{i} \neq a_{j}$ for $i \neq j$, we have $m_{i} \geqslant 1$ for each $i \leqslant u$, and $\sum_{i=1}^{u} m_{i}=n$. Then $\mathfrak{q}[t] /(p) \cong \oplus_{i=1}^{u} \mathfrak{q}\left\langle m_{i}\right\rangle$.

In a finite-dimensional case, Proposition 2 implies: $\operatorname{ind}\left(\mathbb{W},[,]_{p}\right)=n$.ind $\mathfrak{q}$.

Example 3. Suppose $m_{i}=1$ for each $i$. Set $r_{i}=\frac{p}{\left(t-a_{i}\right)} \prod_{j \neq i}\left(a_{i}-a_{j}\right)^{-1}$. Then $r_{i}^{2} \equiv r_{i}(\bmod p)$. This is an explicit application of the Chinese remainder theorem. Each subspace $\mathfrak{q} \bar{r}_{i}$ is a Lie subalgebra of $\mathfrak{q}[t] /(p)$, isomorphic to $\mathfrak{q}$, and

$$
\begin{equation*}
\mathfrak{q}[t] /(p)=\mathfrak{q} \bar{r}_{1} \oplus \mathfrak{q} \bar{r}_{2} \oplus \ldots \oplus \mathfrak{q} \bar{r}_{n} \tag{4}
\end{equation*}
$$

In particular, $\mathfrak{g}[t] /(p) \cong \mathfrak{g}^{\oplus n}$ is semisimple if $\mathfrak{g}$ is semisimple.
6. Compatible brackets $\{,\}_{p_{1}}$ and $\{,\}_{p_{2}}$ on $\mathcal{S}(\mathbb{W})$

Proposition 4. Let $p_{1}, p_{2} \in \mathbb{k}[t]$ be distinct normalised polynomials of degree $n$. If we have deg $\left(p_{1}-p_{2}\right) \leqslant 1$, then the Lie-Poisson brackets $\{,\}_{p_{1}}$ and $\{,\}_{p_{2}}$ are compatible. More explicitly, $a\{,\}_{p_{1}}+(1-a)\{,\}_{p_{2}}=\{,\}_{a p_{1}+(1-a) p_{2}}$.

The pencil $L\left(p_{1}, p_{2}\right):=\left\langle\{,\}_{p_{1}},\{,\}_{p_{2}}\right\rangle$ contains the unique singular line $\mathbb{k} \ell$ with $\ell=\{,\}_{p_{1}}-\{,\}_{p_{2}}$ and always $\operatorname{ind}(\mathbb{W}, \ell)=\operatorname{dim} \mathfrak{q}+(n-1)$ ind $\mathfrak{q}$.

The bracket $[\mathfrak{q} \cdot 1, \mathbb{W}]_{p}$ is independent of $p$, thus $\mathcal{Z}_{p}=\mathcal{Z}\left(\mathcal{S}(\mathbb{W}),\{,\}_{p}\right) \subset \mathcal{S}(\mathbb{W})^{\mathfrak{q}}$ and hence $\mathcal{Z}\left(p_{1}, p_{2}\right)=\operatorname{alg}\left\langle\mathcal{Z}_{p} \mid p=a p_{1}+(1-a) p_{2}\right\rangle \subset \mathcal{S}(\mathbb{W}){ }^{\mathfrak{q}}$.

Example 5. Set $p=p_{1}=t^{n}-1, \tilde{p}=p_{2}=t^{n}$. Then

$$
L(p, \tilde{p})=\left\{\mathbb{k}\{,\}_{t^{n}+\alpha}, \mathbb{k} \ell \mid \alpha \in \mathbb{k}, \ell=\{,\}_{t^{n}-1}-\{,\}_{t^{n}}\right\} .
$$

Here $\left(\mathbb{W},[,]_{t^{n}+\alpha}\right) \cong \mathfrak{q}^{\oplus n}$ if $\alpha \neq 0$;
( $\mathbb{W},[,]_{t^{n}}$ ) is the Takiff algebra $\mathfrak{q}\langle n\rangle$;
and $\ell\left(x \bar{t}^{a}, y \bar{t}^{b}\right)=\left\{\begin{array}{ll}0, & \text { if } a+b<n ; \\ {[x, y] \bar{t}^{a+b-n},} & \text { if } a+b \geqslant n,\end{array}\right.$ for $x, y \in \mathfrak{q}$.
The Lie algebra $(\mathbb{W}, \ell)$ is an $\mathbb{N}$-graded: $\mathbb{W}=\mathfrak{q} \bar{t}^{n-1} \oplus \mathfrak{q} t^{n-2} \oplus \ldots \oplus \mathfrak{q} \bar{t} \oplus \mathfrak{q} \cdot 1$, it is isomorphic to $(\tilde{t} \mathfrak{q}[\tilde{t}]) /\left(\tilde{t}^{n+1}\right)$ and to the nilpotent radical of $\mathfrak{q}\langle n+1\rangle$.

The bracket $\{,\}_{t^{n}}$ is a contraction of $\{,\}_{t^{n}-1}$ related to a cyclic permutation of the summands. In case $\mathfrak{q}=\mathfrak{g}$ is reductive, $\mathfrak{z}\left(t^{n}-1, t^{n}\right)$ was already studied [PANYUSHEV-Y. (2021)].

Example 6. Suppose $n \geqslant 2$. Set $p=t^{n}-t, \tilde{p}=t^{n}, \ell=\{,\}_{t^{n}-t}-\{,\}_{t^{n}}$. Then

$$
\ell\left(x \bar{t}^{a}, y \bar{t}^{b}\right)=\left\{\begin{array}{ll}
0, & \text { if } a+b<n ; \\
{[x, y] \bar{t}^{a+b+1-n},} & \text { if } a+b \geqslant n,
\end{array} \text { for } x, y \in \mathfrak{q}\right.
$$

and $(\mathbb{W}, \ell) \cong \mathfrak{q}\langle n-1\rangle \oplus \mathfrak{q}^{\text {ab }}$.

Theorem (The case $\mathfrak{q}=\mathfrak{g}$ ). (i) If $p=\prod_{i=1}^{n}\left(x-a_{i}\right)$, where $a_{i} \neq a_{j}$ for $i \neq j$ and $p(0) \neq 0$, then we have $z(p, p+t)=\operatorname{gr}(\mathcal{C}(\vec{z}))$ for $\vec{z}=\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)$.
(ii) Under the same assumptions on $p$, each $\tilde{\mathcal{H}}_{k}=\sum_{j \neq k} \frac{\sum_{i=1}^{\operatorname{dim} \mathfrak{g}} x_{i}^{(k)} x_{i}^{(j)}}{a_{k}-a_{j}} \in \mathcal{S}(\mathfrak{h})$ with $1 \leqslant k \leqslant n$ is an element of $\mathcal{Z}(p, p+1)$.

## 7. Some explanations

If $p(0) \neq 0$, then the quotient map $\psi_{p}: \mathbb{k}[t] \rightarrow \mathbb{k}[t] /(p)$ extends to $\mathfrak{q}\left[t, t^{-1}\right]$ and to $\mathcal{U}\left(\mathfrak{q}\left[t^{-1}\right]\right)$. If $\mathfrak{q}=\mathfrak{g}$ and the roots of $p$ are distinct, then we identify $\mathfrak{h}=\mathfrak{g}^{\oplus n}$ with $\mathfrak{q}[t] /(p)$ and write also $\mathfrak{h}=\psi_{p}\left(\mathfrak{q}\left[t^{-1}\right]\right)$. As can be easily seen,

$$
\mathcal{C}(\vec{a})=\psi_{p}\left(\mathfrak{z}\left(\widehat{\mathfrak{g}}, t^{-1}\right)\right) \text { if } p=\Pi_{i}\left(x-a_{i}\right) .
$$

$\operatorname{Next} \operatorname{gr}(\mathcal{C}(\vec{a}))=\psi_{p}\left(\mathcal{Z}\left(\widehat{\mathfrak{g}}, t^{-1}\right)\right)$, where $z\left(\widehat{\mathfrak{g}}, t^{-1}\right)=\operatorname{gr}\left(\mathfrak{z}\left(\widehat{\mathfrak{g}}, t^{-1}\right)\right)$.
For any $\mathfrak{q}$, the algebra $\mathcal{Z}\left(\hat{\mathfrak{q}}, t^{-1}\right)$ is defined as
$\diamond \mathcal{Z}\left(\hat{\mathfrak{q}}, t^{-1}\right)=\delta\left(t^{-1} \mathfrak{q}\left[t^{-1}\right]\right) \mathfrak{q}[t]$, where $\delta\left(t^{-1} \mathfrak{q}\left[t^{-1}\right]\right)$ is regarded as the quotient of $\mathcal{S}\left(\mathfrak{q}\left[t, t^{-1}\right]\right)$ by the ideal $(\mathfrak{q}[t])$, i.e., $\mathcal{Z}\left(\hat{\mathfrak{q}}, t^{-1}\right)$ consists of the elements $Y \in \mathcal{S}\left(t^{-1} \mathfrak{q}\left[t^{-1}\right]\right)$ such that $\left\{x t^{k}, Y\right\} \in \mathfrak{q}[t] \mathcal{S}\left(\mathfrak{q}\left[t, t^{-1}\right]\right)$ for all $x \in \mathfrak{q}$ and $k \geqslant 0$.

It is more convenient to switch the variable: $t^{-1} \mapsto t$ in $\mathfrak{q}\left[t, t^{-1}\right]$,

$$
\text { i.e., } \mathcal{Z}\left(\hat{\mathfrak{q}}, t^{-1}\right) \mapsto z(\hat{\mathfrak{q}}, t)
$$

Then part (i) of the theorem reads: $z(p, p+t)=\psi_{p}(z(\hat{g}, t))$.
Conjecture 7. For any finite-dimensional Lie algebra $\mathfrak{q}$ and any normalised $p \in \mathbb{k}[t]$ of degree $n$ such that $p(0) \neq 0$, we have $\psi_{p}(\mathcal{Z}(\hat{\mathfrak{q}}, t))=\mathcal{Z}(p, p+t)$.
8. Non-reductive and reductive-like Lie algebras
$\diamond$ For any $\mathfrak{q}$, we have $\{\mathcal{Z}(\hat{\mathfrak{q}}, t), \mathcal{Z}(\hat{\mathfrak{q}}, t)\}=0$.
$\diamond$ The existence of $\mathfrak{z}\left(\hat{\mathfrak{q}}, t^{-1}\right)$ (i.e., of a quantisation for $\mathcal{Z}\left(\hat{\mathfrak{q}}, t^{-1}\right)$ ) is not welldocumented. Probably one has to assume that $\mathfrak{q}$ is quadratic. For the centralisers $\mathfrak{g}_{\gamma}$ with $\gamma \in \mathfrak{g}$, the problem is settled, affirmatively, [ARAKAWA-PREMET (2017)].

Reductive-like properties of a Lie algebra:
Set $\mathfrak{q}_{\text {sing }}^{*}=\left\{\eta \in \mathfrak{q}^{*} \mid \operatorname{dim} \mathfrak{q}_{\eta}>\right.$ ind $\left.\mathfrak{q}\right\}$.
$\left(\diamond_{1}\right)$ tr. $\operatorname{deg} \mathcal{Z}(\mathfrak{q})=$ ind $\mathfrak{q}$ (enough symmetric invariants).
$\left(\diamond_{k}\right)_{k=2,3} \quad \operatorname{dim} \mathfrak{q}_{\text {sing }}^{*} \leqslant \operatorname{dim} \mathfrak{q}-k \quad$ (codim- $k$ property).
$\left(\diamond_{4}\right) \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\mathbb{k}\left[F_{1}, \ldots, F_{m}\right]$ is a polynomial ring in $m=$ ind $\mathfrak{q}$ variables and $\Omega_{\mathfrak{q}^{*}}=\left\{\xi \in \mathfrak{q}^{*} \mid\left(d_{\xi} F_{1}\right) \wedge \ldots \wedge\left(d_{\xi} F_{m}\right) \neq 0\right\}$ is a big open subset of $\mathfrak{q}^{*}$ (i.e., the complement of $\Omega_{\mathfrak{q}^{*}}$ does not contain divisors).

Results:
$\diamond$ If $\mathfrak{q}$ satisfies $\left(\diamond_{1}\right)$ and $\left(\diamond_{2}\right)$, then $\operatorname{tr}$.deg $\mathcal{Z}(p, p+l)=\frac{n-1}{2}(\operatorname{dim} \mathfrak{q}+$ ind $\mathfrak{q})+$ ind $\mathfrak{q}$ for any $p$ and any $l$ with $0 \leqslant \operatorname{deg} l \leqslant 1$.
$\diamond$ If $\mathfrak{q}$ satisfies $\left(\diamond_{2}\right)$ and $\left(\diamond_{4}\right)$, then $\mathcal{z}(p, p+l)$ is a polynomial ring (for any $p$ and $l$ as above).
$\diamond$ If $\mathfrak{q}$ satisfies $\left(\diamond_{3}\right)$ and $\left(\diamond_{4}\right)$, then $z(p, p+l)$ is a maximal (w.r.t. inclusion) Poisson-commutative subalgebra of $\left(\mathcal{S}(\mathbb{W}),\{,\}_{p}\right)^{\mathfrak{q}}$.
$\diamond$ If $\mathfrak{q}$ satisfies $\left(\diamond_{4}\right)$ and $p(0) \neq 0$, then $z(p, p+t)=\psi_{p}(z(\widehat{\mathfrak{q}}, t))$ (Conj. 7 holds).

## 9. Reasons and ideas

Definition 8 (Polarisation). For $\vec{k}=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}$ such that $0 \leqslant k_{j}<n$ for each $j$, the $\vec{k}$-polarisation of $Y=\prod_{i} y_{i} \in \mathcal{S}^{d}(\mathfrak{q})$ is

$$
Y[\vec{k}]:=(d!)^{-1}\left|\mathrm{~S}_{d} \cdot \vec{k}\right| \sum_{\theta \in \mathrm{S}_{d}} y_{1} \bar{t}^{\theta\left(k_{1}\right)} \ldots y_{d^{-t\left(k_{d}\right)}} \in \mathcal{S}(\mathbb{W}) .
$$

The notion extends to all $F \in \mathcal{S}^{d}(\mathfrak{q})$ by linearity; $\operatorname{PoI}(F):=\langle F[\vec{k}]| \vec{k}$ as above $\rangle$. Theorem 9 (Raïs-Tauvel, Arakawa-Premet, Panyushev-Y.). Suppose that $\mathfrak{q}$ satisfies $\left(\diamond_{4}\right)$. Then, for any $n \geqslant 1$, the Takiff algebra $\mathfrak{q}\langle n\rangle$ has the same properties as $\mathfrak{q}$. In particular, $\mathcal{Z}(\mathfrak{q}\langle n\rangle)$ is a graded polynomial ring of Krull dimension ind $\mathfrak{q}\langle n\rangle=n m$ and algebraically independent generators of $\mathcal{Z}(\mathfrak{q}\langle n\rangle)$ are polarisations of the polynomials $F_{j}$ with $1 \leqslant j \leqslant m$.

The evaluation at $t=1$ defines an isomorphism $\mathrm{Ev}_{1}: \mathcal{S}(\mathfrak{q} t) \rightarrow \mathcal{S}(\mathfrak{q})$ of $\mathfrak{q}$-modules. For $F \in \mathcal{S}(\mathfrak{q})$, set $F[t]:=\operatorname{Ev}_{1}^{-1}(F) \in \mathcal{S}(\mathfrak{q} t)$. If $F \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$, then $F[t] \in \mathcal{Z}(\hat{\mathfrak{q}}, t)$. Set $\tau=t^{2} \partial_{t}$.
Corollary 10. If $\mathfrak{q}$ satisfies $\left(\diamond_{4}\right)$, then $z(\hat{\mathfrak{q}}, t)$ is a polynomial ring generated by $\tau^{k}\left(F_{j}[t]\right)$ with $k \geqslant 0$ and $1 \leqslant j \leqslant m$.

Assume that $\mathfrak{q}$ satisfies $\left(\diamond_{4}\right)$. On the one hand, each $\mathcal{Z}_{p}$, and hence also each $z(p, p+l)$, is generated by polarisations of the invariants $F_{j}$; on the other hand, each $\psi_{p}\left(\tau^{k}\left(F_{j}[t]\right)\right) \in \operatorname{Pol}\left(F_{j}\right)$ for any $j$ and $k$.

Suppose that $\mathfrak{q}$ is quadratic and let $\boldsymbol{h} \in \mathcal{S}^{2}(\mathfrak{q})^{\mathfrak{q}}$ be a non-degenerate scalar product. (In case $\mathfrak{q}=\mathfrak{g}$ is semisimple let $\boldsymbol{h}$ be the dual of $\kappa$.) Then $\boldsymbol{h}[t] \in \mathcal{Z}(\widehat{\mathfrak{q}}, t)$ and also $\boldsymbol{h}[t] \in \mathfrak{z}(\hat{\mathfrak{q}}, t)$. By [RYBNiKov (2008)], $\mathfrak{z}(\widehat{\mathfrak{g}}, t)$ is the centraliser of $\boldsymbol{h}[t]$ in $\mathcal{U}(t \mathfrak{g}[t])$ and $\mathcal{Z}(\hat{\mathfrak{g}}, t)$ is the Poisson centraliser of $\boldsymbol{h}[t]$ in $\mathcal{S}(t \mathfrak{g}[t])$.
Suppose $n \geqslant 2$. Clearly $\boldsymbol{h}[(1,1)] \in \psi_{p}(\mathcal{Z}(\hat{\mathfrak{q}}, t))$ for any $p$. By a small calculation, $\boldsymbol{h}[(1,1)] \in \mathcal{Z}(p, p+t)$ for any $p$.
Proposition 11. Suppose that $\mathfrak{g}=\mathfrak{s l}_{d}$ and $F \in \mathcal{S}^{d}(\mathfrak{g})$ is such that $F(\xi)=\operatorname{det}(\xi)$ for $\xi \in \mathfrak{g}^{*} \cong \mathfrak{s l}_{d}$. Then for any $p$ of degree $n$, we have

$$
\operatorname{dim}\left\{f \in \operatorname{Pol}(F) \mid\{f, \boldsymbol{h}[(1,1)]\}_{p}=0\right\} \leqslant(n-1) d+1 .
$$

From this inequality one can deduce: $\operatorname{dim}(\operatorname{Pol}(F) \cap z(p, p+l))=(n-1) d+1$ and $\operatorname{Pol}(F) \cap z(p, p+l)=\operatorname{Pol}(F) \cap \psi_{p}(z(\hat{\mathfrak{q}}, t))$, whenever $F \in \mathcal{S}^{d}(\mathfrak{q})^{\mathfrak{q}}$ is nonzero and $p(0) \neq 0$.

Having a non-degenerate invariant scalar product, we may choose an orthonormal basis $\left\{x_{i}\right\} \subset \mathfrak{q}$ and defined the (generalised) Gaudin Hamiltonian by the same formulas as in (2). Set $p=\Pi_{i}\left(t-z_{i}\right)$.
Example 12. Return to Example 3 and polynomials $\bar{r}_{i}$ defined there.
Let $\boldsymbol{h}\left[\bar{r}_{i}\right] \in S^{2}\left(\mathfrak{q} \bar{r}_{i}\right)^{\mathfrak{q}}$ be the image of $\boldsymbol{h}$ under the canonical isomorphism extended from the map $x \mapsto x \bar{r}_{i}$ (here $x \in \mathfrak{q}$ ). Then

$$
\boldsymbol{h}[(1,1)]=\sum_{i=1}^{\operatorname{dim} \mathfrak{q}}\left(x_{i} \bar{t}\right)^{2}=-2\left(\sum_{k} z_{k} \mathcal{H}_{k}\right)+\sum_{k} z_{k}^{2} \boldsymbol{h}\left[\bar{r}_{k}\right] .
$$

Furthermore $\operatorname{dim}\left\{f \in \operatorname{Pol}(\boldsymbol{h}) \mid\{f, \boldsymbol{h}[(1,1)]\}_{p}=0\right\}=2 n-1$ and this subspace has a basis $\left\{\mathcal{H}_{k}, \boldsymbol{h}\left[\bar{r}_{j}\right] \mid 1 \leqslant k<n, 1 \leqslant j \leqslant n\right\}$. If $p$ has nonzero distinct roots, then this another basis:

$$
\left\{\boldsymbol{h}[(1,1)], \psi_{p} \circ \tau(\boldsymbol{h}[t]), \ldots, \psi_{p} \circ \tau^{n-2}(\boldsymbol{h}[t]), \boldsymbol{h}\left[\bar{r}_{j}\right] \mid 1 \leqslant j \leqslant n\right\} .
$$

One may say that the generalised Gaudin model ( $\mathfrak{q}^{\oplus n}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ ) is equivalent to $\left(\mathbb{W},[,]_{p}, \boldsymbol{h}[(1,1)], \psi_{p} \circ \tau(\boldsymbol{h}[t]), \ldots, \psi_{p} \circ \tau^{n-2}(\boldsymbol{h}[t])\right)$. The elements $\psi_{p} \circ \tau^{k}(\boldsymbol{h}[t])$ with $k \leqslant n-2$ do not depend on $p$, we have

$$
\psi_{p} \circ \tau^{k}(\boldsymbol{h}[t])=k!\sum_{1 \leqslant a, b ; a+b=k+2}\left(\sum_{i=1}^{\operatorname{dim} \mathfrak{q}} x_{i} \bar{t}^{a} x_{i} \bar{t}^{b}\right) .
$$

