
Chromatic Homotopy Theory

Problem set 1a. Preliminaries on Spectra

Reminder

Recall we defined the category of spectra Sp to be the stabilization of the category of spaces S, i.e.

Sp := lim←−

(
. . .

Ω−→ S∗
Ω−→ S∗

Ω−→ S∗

)
We then proved the following list of statements about Sp

• Sp is a stable category, i.e. the square
X //

��

Y

��
Z // W

is a pushout diagram if and only if it is a pullback diagram. In particular the suspension Σ and loop Ω functors are
mutual inverse of each other. It follows the homotopy category of Sp is a triangulated category with the shift functor
[1] being Σ and the class of distinguished triangles X → Y → Z consisting of pairs of maps such that

X //

��

Y

��
∗ // Z

is a (co-)fiber diagram.

• There is a canonical projection functor Ω∞ : Sp→ S∗, sometimes referred as the null space of a spectrum. If E∗ is an
extraordinary cohomology theory there exists a unique up to equivalence spectrum E such that En is represented by
Ω∞ΣnE ' BnΩ∞E in S∗. In particular for any abelian group A there exists the Eilenberg-MacLane spectrum
HA representing the usual cohomology with coefficients in A (and hence Ω∞ΣnHA ' K(A,n)). The generalized
Eilenberg-MacLane functor is then defined as a unique continuous extension of H to the derived category of abelian
groups D(Ab).

• The functor Ω∞ admits a left adjoint Σ∞ : S∗ → Sp. We showed that for a pointed space X there exists a canonical
equivalence Ω∞Σ∞X ' lim−→ ΩnΣnX. As a corollary for finite spaces X,Y the natural map

lim−→ HomS∗(Σ
nX,ΣnY )→ HomSp(Σ∞X,Σ∞Y )

is an equivalence. The spectra of the form Σ∞ are called suspension spectra. We denote by S the suspension
spectrum of a 0-dimensional sphere S0.

• For X,Y ∈ Sp we denote [X,Y ] := π0 HomSp(X,Y ) and πn(X) := [Sn, X]. There is a stable Whitehead’s lemma
asserting that the map of spectra f : X → Y is an equivalence if and only if the induced map πn(f) is an isomorphism
for all n ∈ Z.

• The category of spectra is generated under co-limits by S. In particular any spectrum X admits a cell filtration X•
such that grsX• := Xs/Xs−1 is equivalent to the direct sum of Ss. A spectrum X is called finite if it lies in a smallest
stable subcategory of Sp generated by the sphere spectrum, or equivalently if it admits a cell decomposition with only
finitely many cells.

• The category of spectra admits a symmetric monoidal structure ∧ : Sp× Sp → Sp called the smash product such
that ∧ commutes with all colimits in each argument and Σ∞ is symmetric monoidal with respect to the smash product
on S∗ and Sp. There is also the mapping spectrum functor MapSp(−,−) determined by the following property

HomSp(X ∧ Y,Z) ' HomSp(X,MapSp(Y,Z))
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• For spectra E and X we will denote

En(X) := πn(X ∧ E) En(X) := π−n MapSp(X,E) ' [X,ΣnE]

and will call E∗(X) and E∗(X) E-homology and E-cohomology of X respectively. In the case X = S we will
sometimes write just En := En(S) ' πn(E) and En := En(S) ' π−n(E).

1 First properties and examples

Problem 1.

a) Prove that π0(S) ' Z.

b) Prove that π1(S) ' Z/2〈η〉, where η is the stabilization of the Hopf fibration map S3 → S2. (Hint: one way to
proceed is as follows. Let the map α : S3 → K(Z, 3) classify generator in H3(S3,Z) and denote by S3

≥4 the fiber

of α. Using Hochschild-Serre spectral sequence for an induced fiber sequence CP∞ ' K(Z, 2) → S3
≥4 → S3

compute that H4(S3
≥4,Z) ' Z/2. Then use Hurewicz isomorphism and Freudenthal suspension theorems.)

c) Let X be a finite spectrum. Prove that πi(X) are finitely generated abelian groups for all i ∈ Z.

Problem 2. Let X be a space. Prove that

Σ∞X+ ∧HZ ' C∗(X,Z) MapSp(Σ∞+ X,HZ) ' C∗(X,Z)

where C∗(X,Z) and C∗(X,Z) are chain and cochain complexes of X respectively considered as a spectrum via the
generalized Eilenberg-MacLane spectrum functor.

Problem 3. Recall that a non-empty category I is called filtered if every finite diagram in I has a cone.

a) Let {Xi}i∈I be a filtered diagram of spectra. Prove that for all n ∈ Z the canonical map

lim−→ πn(Xi)→ πn(lim−→ Xi)

is an isomorphism.

b) Deduce that

HQ ' lim−→ (S ·2!−→ S ·3!−→ S ·4!−→ . . .)

Hint: You may use that by the rational homotopy theory

πi(S2n+1)⊗Z Q '
{
Q, i = 2n+ 1
0, i 6= 2n+ 1

c) Deduce that for any spectrum X the canonical map π∗(X)⊗Z Q→ H∗(X,Q) is an isomorphism.

d) Prove that HQ ∧HQ ' HQ.

Problem 4. Let A•

. . .
f2 // A2

f1 // A1
f0 // A0

be a tower of abelian groups. Consider the map α :
∏
iAi →

∏
iAi defined by α({ai}) := {ai − fi(ai+1)}. Set

lim←−
1A• := coker(α).

a) Let 0→ A• → B• → C• → 0 be a short exact sequence of towers of abelian group. Prove that there exists a
long exact lim←− -lim←−

1 sequence

0→ lim←− A• → lim←− B• → lim←− C• →

→lim←−
1A• → lim←−

1B• → lim←−
1C• → 0
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b) Prove that if all maps fi are surjective, then lim←−
1A• vanish.

c) (Milnor exact sequence) Let {Xi}i∈I be a tower of spectra. Prove that for each n ∈ Z there exists a short
exact sequence

0→ lim←−
1πn+1(Xi)→ πn(lim←− Xi)→ lim←− πn(Xi)→ 0

Problem 5.

a) Let X,Y be a pair of connective spectra. Prove that π0(X ∧ Y ) ' π0(X) ⊗Z π0(Y ). (Hint: prove that for a
connective spectrum Z homotopy group π0(Z) depends only on 1-skeleton).

b) (Stable Hurewicz isomorphism) Deduce that for a spectrum X, and n minimal such that πn(X) 6' 0 the
Hurewicz map X ' X ∧ S→ X ∧HZ induces an isomorphism πn(X) ' Hn(X,Z). By taking X := Σ∞Y of
a pointed simply connected space Y deduce the usual Hurewicz theorem.

c) Prove that the map of eventually connective spectra X → Y is an equivalence if and only if it induces an
isomorphism in integral homology.

Problem 6. (Moore spectra)

a) Let A be an abelian group. Prove there exists a unique (up to equivalence) connective spectrum SA such that

Hn(SA,Z) '
{
A, n = 0
0, n > 0

This SA is called the Moore spectrum of A.

b) (π∗-universal coefficient formula) Let A be an abelian group and X be a spectrum. For each i ∈ Z prove that
homotopy group πi(X ∧ SA) fits into a short exact sequence

0→ πi(X)⊗Z A→ πi(X ∧ SA)→ TorZ1 (πi−1(X), A)→ 0

c) Compute SZ, SZ[ 1
p ] and SQ.

Problem 7.

a) Let SpQ denote the full subcategory of Sp on spectra X such that πi(X) is a Q-vector space for all i ∈ Z.
Prove that the generalized Eilenberg-MacLane functor induces an equivalence

D(VectQ)
H
∼
// SpQ

where D(VectQ) denotes the derived category of the category of Q-vector spaces.

b) Deduce that for any spectrum X there is a splitting

X ∧HQ '
⊕
n∈Z

ΣnH(πn(X)⊗Z Q)

Problem 8. (Spainer-Whitehead category) The Spainer-Whitehead category SW is defined as follows

• An object of SW is a pair (X,n), where X is a pointed space and n ∈ Z.

• For (X,n), (Y,m) ∈ SW the set of morphisms is defined to be

HomSW((X,n), (Y,m)) := colim
i→∞

[Σn+iX,Σm+iY ]

In this problem You will study the relation between SW and Sp.
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a) Prove that for a finite pointed space X and any pointed space Y the natural map

lim−→ HomS∗(Σ
nX,ΣnY )→ HomSp(Σ∞X,Σ∞Y )

is an equivalence.

b) Let X be a finite spectrum. Prove that there exists a finite pointed space Y such that ΣnX ' Σ∞Y for some
n ∈ Z≥0. Deduce that the homotopy category of finite spectra is equivalent to the full subcategory of SW on
objects (X,n) such that X is a finite space.

c) Prove that the functor S∗ → SW, X 7→ (X, 0) does not commute with infinite coproducts. Deduce that for a
pair of pointed spaces X,Y the natural map

HomSW((X, 0), (Y, 0))→ [Σ∞X,Σ∞Y ]

is not an isomorphism in general.

Problem 9.

a) Let X be a finite spectrum such that X ∧HQ ' 0. Prove that there exists an integer n ∈ Z such that π∗(X)
is n-torsion. (Hint: first prove the statement for MapSp(X,X)).

b) Prove that π∗(S/p) is at most p2-torsion.

2 t-structure on the category of spectra and Postnikov towers

Recall we proved that the category of spectra admits a canonical t-structure such that Sp≥n and Sp≤n are full subcategories
of n-connective and n-coconnective (or n-truncated) spectra respectively, i.e.

Sp≥n = {X ∈ Sp | πi(X) ' 0 for i < n} Sp≤n = {X ∈ Sp | πi(X) ' 0 for i > n}

and [Sp≥n,Sp<n] ' 0. The inclusion of n-truncated spectra admits a left adjoint τ≤n and the inclusion of n-connective
spectra admits a right adjoint τ≥0. In particular for each spectrum X there is a functorial fiber sequence

X>n → X → X≤n

where X>n := τ≥n(X) ∈ Sp>n is an n-connected cover of X and X≤n := τ≤n(X) is its n-th truncation. We proved that
Sp♥ := Sp≤0

⋂
Sp≥0 ' Ab and the natural map D(Ab) → Sp is given by the generalized Eilenberg-MacLane functor. We

also define the full subcategory of eventually connective spectra Sp>−∞ to be the union
⋃
n∈Z

Sp≥n.

The natural towers of truncation and connective covers associated with the t-structure on Sp

. . .

��
X≤2

��
X≤1

��
X

τ≤0 //

τ≤1

77
τ≤2

??

τ≤−1

''

X≤0

��
X≤−1

��
. . .

. . .

��
X≥2

�� τ≥2

��

X≥1

��

τ≥1

''
X≥0

��

τ≥0 // X

X≥−1

��

τ≥−1

77

. . .

are called Postnikov and Whithead towers respectively. As a consequence of the Whitehead’s lemma we obtain
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Corollary 2.1. Let X be a spectrum. Then Postnikov tower converges and Whitehead filtration is exhaustive, i.e. the natural
maps

X
∼−→ lim

n→∞
X≤n colim

n→−∞
X≥n

∼−→X

are equivalencies.

Definition 2.2 (k-invariants). Let X be a spectrum. Then there is a natural fiber sequence

X≤n → X≤n−1
kn−→ Σn+1Hπn(X)

showing that X≤n can be restored from X≤n−1 and the so-called k-invariant, a class k̃n ∈ Hn+1(X≤n−1, πn(X)) classifying a
map kn. Note that since Postnikov tower converges, the sequence of k-invariants completely determine eventually connective
spectrum X.

Problem 10. Let A,B be pair of abelian groups. Prove that for i ∈ {0, 1}

[HA,ΣiHB] ' ExtiAb(A,B)

Problem 11. Let ku := KU≥0 be a connective cover of the complex K-theory spectrum KU . Let us denote the
Bott element (generator of π2(ku) ' Z) by β.

a) Prove that KU≥2n ' Σ2nku and that under this identification the maps in the Whitehead tower

Σ2(n+1)ku ' KU≥2(n+1) → KU≥2n ' Σ2nku

are given by multiplication by β.

b) Prove that the first nontrivial k-invariant for ku, k2 : HZ → Σ3HZ is given by the third integral Steenrod
square Sq3

Z, which is defined to be the following composite

HZ→ HZ/2 Sq2

−→ Σ2HZ/2 β2−→ Σ3HZ

Problem 12. (Atiyah-Hirzebruch spectral sequence)

a) Let E be a spectrum. Prove there exists a functorial in X ∈ Sp cohomological spectral sequence

Ep,q2 := Hp(X,π−q(E)) ⇒ Ep+q(X), |d∗,∗r | = (r,−(r − 1))

such that

• All pages (E∗,∗r , d∗,∗r ) are functors from Sp to the category of graded complexes of A∗E-modules, where
A∗E := π−∗MapSp(E,E) is the E-Steenrod algebra. In particular for all r, p the differential dp,∗r : Ep,∗r →
E
p+r,∗−(r−1)
r is a natural transformation of functors from Sp to ModA∗E .

• The action of A∗E on E∗,∗r+1 is induced from the action on E∗,∗r . The action on E∗,∗2 ' H∗(X,π−∗(E)) is
induced from the action of A∗E on π−∗(E).

(Hint: consider filtration on MapSp(X,E) induced by the Postnikov filtration on E.)

b) Prove that all differentials dp,qr are torsion, i.e. ndp,qr = 0 for some n ∈ Z.

c) Let E = KU(p) be a p-local complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch
spectral sequence all differentials d∗,∗r vanish for r < p and that pd∗,∗p = 0. (Hint: use that the Adams
operations ψk act on (E∗,∗r , d∗,∗r )).

d) Let E = KU a complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch spectral
sequence there is an isomorphism of graded algebras

E∗,∗3 ' E∗,∗2 ' H∗(X,Z)[β±1], |β| = (0,−2), |x| = (p, 0) for x ∈ Hp(X,Z)

and differential d3 is determined by d3(β) = 0, d3(x) = Sq3
Z(x)β for x ∈ H∗(X,Z).
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3 Dualities in Sp

Definition 3.1. Let (C,⊗, I) be a symmetric monoidal category. Object X of C is called

• dualizable if there exists an object X∨ and a pair of morphisms I coev−→ X⊗X∨, X∨⊗X ev−→ I such that the composites

X ' I⊗X
coev⊗1X // X ⊗X∨ ⊗X

1X⊗ev // X ⊗ I ' X

X∨ ' X∨ ⊗ I
1X∨⊗coev // X∨ ⊗X ⊗X∨

ev⊗1X∨ // I⊗X ' X∨

are identity morphisms.

• invertible if there exists an object X−1 ∈ C such that X ⊗X−1 ' I.
If X∨ or X−1 exist they unique up to equivalence. In the case C = Sp the spectrum X∨ is called the Spainer-Whithead
dual of X.

Finally, if f : X → X is an endomorphism of a dualizable object of C the trace tr(f) ∈ EndC(I) of f is defined as the
following composite

I coev // X ⊗X∨
f⊗1X∨ // X ⊗X∨ ' X∨ ⊗X ev // I

Problem 13.

a) Let C be a symmetric monoidal category. Prove that the following conditions are equivalent

• The monoidal unit IC is compact.

• Every dualizable object of C is compact.

b) Let X be a spectrum. Prove that the following conditions are equivalent

• X is compact.

• X is a retract of a finite spectrum.

• X is dualizable.

c) Let X be a spectrum. The functor −∧X being a left adjoint of MapSp(X,−) commutes with all colimits but
not with limits in general: prove that the functor −∧X commutes with limits if and only if X is dualizable.

Problem 14. Prove that X ∈ Sp is invertible if and only if X ' Sn for some n ∈ Z.

Problem 15. Let X be a finite CW-complex. Prove that

a) The suspension spectrum Σ∞+ X is dualizble.

b) For an abelian group A there exists a canonical equivalence

(Σ∞+ X)∨ ∧HA ' C∗(X,A)

where C∗(X,A) denotes a cochain complex of X with coefficients in A considered as a spectrum via the
generalized Eilenberg-MacLane spectrum functor.

c) For an endomorphism f : X → X define the Lefschetz number of f to be

L(f) :=
∑
i

(−1)i trHi(f)

Prove that

L(f) = trSp

(
Σ∞+ X

Σ∞+ (f)
−→ Σ∞+ X

)
in particular χ(X) = trSp(1Σ∞+ X)
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Problem 16. Consider the functor

I∗ : Sp→ Ab• X 7→ Hom∗Ab(π∗(X),Q/Z)

a) Prove that I∗ is a generalized cohomology theory.

By Brown representability I∗ is represented by some I ∈ Sp which is called Brown-Comenetz spectrum.

b) For a spectrum E define Brown-Comenetz dual IE of E to be MapSp(E, I). Prove that there exists a
functorial in E,X ∈ Sp isomorphism

(IE)∗(X) ' Hom∗(E∗(X),Q/Z)

c) Prove that the canonical map X → I2(X) := I(I(X)) is an equivalence if and only if all πi(X) are finite.

d) Compute I2HA for finitely generated abelian group A and I2S.
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