Chromatic Homotopy Theory
Problem set la. Preliminaries on Spectra

Reminder

Recall we defined the category of spectra Sp to be the stabilization of the category of spaces 8, i.e.
Sp::lgn(...i)s* s, i>5*)

We then proved the following list of statements about Sp
e Sp is a stable category, i.e. the square
X——Y
Z ——W
is a pushout diagram if and only if it is a pullback diagram. In particular the suspension ¥ and loop 2 functors are

mutual inverse of each other. It follows the homotopy category of Sp is a triangulated category with the shift functor
[1] being ¥ and the class of distinguished triangles X — Y — Z consisting of pairs of maps such that

X——Y

|

* —> 7

is a (co-)fiber diagram.

e There is a canonical projection functor Q2°°: Sp — 8., sometimes referred as the null space of a spectrum. If E* is an
extraordinary cohomology theory there exists a unique up to equivalence spectrum E such that E™ is represented by
Q°Y"E ~ B"QF in 8. In particular for any abelian group A there exists the Eilenberg-MacLane spectrum
H A representing the usual cohomology with coefficients in A (and hence Q*°YX"HA ~ K(A,n)). The generalized
Eilenberg-MacLane functor is then defined as a unique continuous extension of H to the derived category of abelian
groups D(AD).

e The functor Q2°° admits a left adjoint 3°°: 8§, — Sp. We showed that for a pointed space X there exists a canonical
equivalence QXX ~ li_r}n Q"¥"X. As a corollary for finite spaces X,Y the natural map

lim Homs., ("X, 5"Y) — Homs, (£ X, £XY)

is an equivalence. The spectra of the form 3 are called suspension spectra. We denote by S the suspension
spectrum of a 0-dimensional sphere S°.

e For X,Y € Sp we denote [X,Y] := moHomg,(X,Y) and 7, (X) := [S", X]. There is a stable Whitehead’s lemma
asserting that the map of spectra f: X — Y is an equivalence if and only if the induced map 7, (f) is an isomorphism
for all n € Z.

e The category of spectra is generated under co-limits by S. In particular any spectrum X admits a cell filtration X,
such that gr, Xo := X,/Xs_1 is equivalent to the direct sum of S°. A spectrum X is called finite if it lies in a smallest
stable subcategory of Sp generated by the sphere spectrum, or equivalently if it admits a cell decomposition with only
finitely many cells.

e The category of spectra admits a symmetric monoidal structure A: Sp X Sp — Sp called the smash product such
that A commutes with all colimits in each argument and 3X°° is symmetric monoidal with respect to the smash product
on 8. and Sp. There is also the mapping spectrum functor Mapg,(—, —) determined by the following property

Homs, (X A'Y, Z) ~ Homs, (X, Mapg, (Y, Z))



e For spectra F and X we will denote
E (X)) =m (X NE) E"(X) :=m_n Mapg, (X, E) ~ [X, X" E]
and will call F.(X) and E*(X) E-homology and F-cohomology of X respectively. In the case X = S we will
sometimes write just E, := En(S) ~ mp(E) and E™ := E™(S) ~ n_,(E).

1 First properties and examples
Problem 1.
a) Prove that mo(S) ~ Z.

b) Prove that 71 (S) ~ Z/2(n), where 7 is the stabilization of the Hopf fibration map S* — S?. (Hint: one way to
proceed is as follows. Let the map a: S* — K(Z,3) classify generator in H3(S3,7Z) and denote by S3,, the fiber
of a. Using Hochschild-Serre spectral sequence for an induced fiber sequence CP™ ~ K(Z,2) —>7S3>4 - S3
compute that H*(S%,,Z) ~ Z/2. Then use Hurewicz isomorphism and Freudenthal suspension theorems.)

¢) Let X be a finite spectrum. Prove that 7;(X) are finitely generated abelian groups for all i € Z.

Problem 2. Let X be a space. Prove that
YS*X, ANHZ ~ C.(X,Z) Mapg, (3 X, HZ) ~ C*(X, Z)
where C(X,Z) and C*(X,Z) are chain and cochain complexes of X respectively considered as a spectrum via the
generalized FEilenberg-MacLane spectrum functor.
Problem 3. Recall that a non-empty category I is called filtered if every finite diagram in I has a cone.

a) Let {X;}ier be a filtered diagram of spectra. Prove that for all n € Z the canonical map
is an isomorphism.
b) Deduce that
41

HQ:li_1>n(S'—21>S'—31>S—>

)

Hint: You may use that by the rational homotopy theory

Q2n+1 _JQ, i=2n+1

¢) Deduce that for any spectrum X the canonical map m,(X) ®z Q — H.(X,Q) is an isomorphism.
d) Prove that HQA HQ ~ HQ.

Problem 4. Let A,
fa Ay f1 A A,

be a tower of abelian groups. Consider the map «a: [][; A; — []; A; defined by a({a;}) := {a; — fi(ait1)}. Set
1(131114. := coker(a).

fo

a) Let 0 —» Ay — B, — Co — 0 be a short exact sequence of towers of abelian group. Prove that there exists a
long exact l(igl—lgnl sequence

0—limA, — limBe — limCy —
P p P

—limt Ay — lim'By — lim*Cy — 0
p pi P



b) Prove that if all maps f; are surjective, then lgnlA. vanish.

¢) (Milnor exact sequence) Let {X;};cr be a tower of spectra. Prove that for each n € Z there exists a short
exact sequence
0 — 1@1%“(&) = (lim X;) — limm, (X;) = 0
Problem 5.

a) Let X,Y be a pair of connective spectra. Prove that mo(X AY) ~ 7o(X) ®z mo(Y). (Hint: prove that for a
connective spectrum Z homotopy group mo(Z) depends only on 1-skeleton).

b) (Stable Hurewicz isomorphism) Deduce that for a spectrum X, and n minimal such that m,(X) % 0 the
Hurewicz map X ~ X AS — X A HZ induces an isomorphism 7, (X) ~ H,(X,Z). By taking X := X*°Y of
a pointed simply connected space Y deduce the usual Hurewicz theorem.

c¢) Prove that the map of eventually connective spectra X — Y is an equivalence if and only if it induces an
isomorphism in integral homology.

Problem 6. (Moore spectra)
a) Let A be an abelian group. Prove there exists a unique (up to equivalence) connective spectrum SA such that

A, n=0
H”(SA’Z)_{O, n >0
This SA is called the Moore spectrum of A.

b) (m.-universal coefficient formula) Let A be an abelian group and X be a spectrum. For each i € Z prove that
homotopy group m;(X A SA) fits into a short exact sequence

0— WZ(X) Xz A— 7TZ(X /\SA) — TOI'%(TFifl(X%A) —0

¢) Compute SZ, SZ[%] and SQ.
Problem 7.

a) Let Spg denote the full subcategory of Sp on spectra X such that 7;(X) is a Q-vector space for all i € Z.
Prove that the generalized Eilenberg-MacLane functor induces an equivalence

D(Vectg) %) SpQ
where D(Vectg) denotes the derived category of the category of Q-vector spaces.

b) Deduce that for any spectrum X there is a splitting

X ANHQ ~ @ Y H (1, (X) @7 Q)
nez

Problem 8. (Spainer-Whitehead category) The Spainer-Whitehead category SW is defined as follows
e An object of SW is a pair (X, n), where X is a pointed space and n € Z.
e For (X,n),(Y,m) € SW the set of morphisms is defined to be

Homsw ((X,n), (Y, m)) := Colim[Z”HX, Emﬂ‘y]

1—00

In this problem You will study the relation between SW and Sp.



a) Prove that for a finite pointed space X and any pointed space Y the natural map
li_n>1 Homg, (X" X,¥"Y) — Homg, (XX, XY

is an equivalence.

b) Let X be a finite spectrum. Prove that there exists a finite pointed space Y such that X" X ~ XY for some
n € Z>o. Deduce that the homotopy category of finite spectra is equivalent to the full subcategory of SW on
objects (X, n) such that X is a finite space.

¢) Prove that the functor 8, — SW, X — (X,0) does not commute with infinite coproducts. Deduce that for a
pair of pointed spaces X,Y the natural map

Homgw((X,0), (Y,0)) = [E®X, 5®Y]

is not an isomorphism in general.

Problem 9.

a) Let X be a finite spectrum such that X A HQ ~ 0. Prove that there exists an integer n € Z such that =, (X)
is n-torsion. (Hint: first prove the statement for Mapg, (X, X) ).

b) Prove that 7,(S/p) is at most p>-torsion.

2 t-structure on the category of spectra and Postnikov towers

Recall we proved that the category of spectra admits a canonical t-structure such that Sp,, and Sp.,, are full subcategories
of n-connective and n-coconnective (or n-truncated) spectra respectively, i.e.

Sps,, = {X € Sp | mi(X) ~ 0 for i < n} Sp<,, = {X € Sp | mi(X) ~ 0 for i > n}

and [Sps,,,Sp.,] =~ 0. The inclusion of n-truncated spectra admits a left adjoint 7<, and the inclusion of n-connective
spectra admits a right adjoint 7>¢. In particular for each spectrum X there is a functorial fiber sequence

Xon =+ X = X<y,

where Xsp := 7>,(X) € Sps, is an n-connected cover of X and X<, := 7<,(X) is its n-th truncation. We proved that
SpY = SP<o ﬂSPZo ~ Ab and the natural map D(Ab) — Sp is given by the generalized Eilenberg-MacLane functor. We

also define the full subcategory of eventually connective spectra Sp.__, to be the union |J Sps,.
nez -
The natural towers of truncation and connective covers associated with the ¢-structure on Sp

X<a X>o
T<2 T>2
X§1 le
T<1 T>1
T<0 T>0
X— > X< X>o0 > X

Tg_l TZ_l

X< X>_1

are called Postnikov and Whithead towers respectively. As a consequence of the Whitehead’s lemma we obtain



Corollary 2.1. Let X be a spectrum. Then Postnikov tower converges and Whitehead filtration is exhaustive, i.e. the natural

maps

X5 lim X<n colim X>,—X

n—00 n——0o0

are equivalencies.

Definition 2.2 (k-invariants). Let X be a spectrum. Then there is a natural fiber sequence

Xen = Xano 22 0" Ha (X)

showing that X<, can be restored from X<, and the so-called k-invariant, a class ky € H™ (X<n—1,m™ (X)) classifying a
map k,. Note that since Postnikov tower converges, the sequence of k-invariants completely determine eventually connective
spectrum X.

Problem 10. Let A, B be pair of abelian groups. Prove that for ¢ € {0, 1}

[HA,Y'HB] ~ Ext, (A, B)

Problem 11. Let ku := KU>( be a connective cover of the complex K-theory spectrum KU. Let us denote the
Bott element (generator of mo(ku) ~ Z) by .

a)

b)

Prove that KUsq,, >~ Y2 ky and that under this identification the maps in the Whitehead tower
22(n+1)ku ~ KUZ2(n+1) — KUZQH ~ EQ"ku

are given by multiplication by .

Prove that the first nontrivial k-invariant for ku, ke: HZ — Y3HZ is given by the third integral Steenrod
square Sq%, which is defined to be the following composite

2
HZ — HZ)2 55 v2H7/2 2 $307

Problem 12. (Atiyah-Hirzebruch spectral sequence)

2)

Let E be a spectrum. Prove there exists a functorial in X € Sp cohomological spectral sequence
B} = HP(X,7_o(E)) = E'MI(X),  |dp*]=(r,—(r—1))
such that

o All pages (E**,d>*) are functors from Sp to the category of graded complexes of Aj-modules, where
7 = m_x Mapg,(E, F) is the E-Steenrod algebra. In particular for all r, p the differential d>*: EP'* —
EPT =1 g o natural transformation of functors from Sp to Mod 45 .
e The action of A}, on E; is induced from the action on E;*. The action on Ey" ~ H*(X,m_,(E)) is
induced from the action of A% on 7_.(E).
(Hint: consider filtration on Mapg, (X, E) induced by the Postnikov filtration on E.)
Prove that all differentials d?'? are torsion, i.e. nd2? =0 for some n € Z.

Let E = KU, be a p-local complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch
spectral sequence all differentials d>* vanish for r < p and that pd;* = 0. (Hint: wuse that the Adams
operations Yy act on (E5*,d5*)).

Let F = KU a complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch spectral
sequence there is an isomorphism of graded algebras

Byt = By (XD, 18 = (0,-2), ]| = (¢.0) for o € H(X,2)

and differential dz is determined by d3(8) = 0, d3(x) = Sqi(z)p for x € H*(X, 7).



3 Dualities in Sp

Definition 3.1. Let (€, ®,I) be a symmetric monoidal category. Object X of C is called

coev

o dualizable if there exists an object XV and a pair of morphisms I =% X @ XV, XV ®X =% I such that the composites

coev®1 x 1x Qev

XX ——— = s XX/ X —— s XI~X

1XV ®coev ev®1l v

XV ~XVeI XVeXeXV I X ~XV

are identity morphisms.
e invertible if there exists an object X! € € such that X @ X! ~ 1.

If XY or X! exist they unique up to equivalence. In the case € = Sp the spectrum X is called the Spainer-Whithead
dual of X.

Finally, if f: X — X is an endomorphism of a dualizable object of C the trace tr(f) € Ende(I) of f is defined as the
following composite

coev, f®lxv

I XXV ——— 2 s XXV XVeX =1

Problem 13.
a) Let € be a symmetric monoidal category. Prove that the following conditions are equivalent

e The monoidal unit I¢ is compact.

e Every dualizable object of € is compact.
b) Let X be a spectrum. Prove that the following conditions are equivalent

e X is compact.
e X is a retract of a finite spectrum.
e X is dualizable.

c¢) Let X be a spectrum. The functor — A X being a left adjoint of Mapg, (X, —) commutes with all colimits but
not with limits in general: prove that the functor — A X commutes with limits if and only if X is dualizable.

Problem 14. Prove that X € Sp is invertible if and only if X ~ S™ for some n € Z.

Problem 15. Let X be a finite CW-complex. Prove that
a) The suspension spectrum X5°X is dualizble.

b) For an abelian group A there exists a canonical equivalence
(BFX)VANHA ~C*(X, A)

where C*(X, A) denotes a cochain complex of X with coefficients in A considered as a spectrum via the
generalized Eilenberg-MacLane spectrum functor.

¢) For an endomorphism f: X — X define the Lefschetz number of f to be

LU =Y (-1 w ()
Prove that

5o
L(f) = trsgp (EfX +—(J>c) Z‘fX) in particular  x(X) = trsp(1s=x)



Problem 16. Consider the functor
I": Sp — Ab*® X — Homj,(7m.(X),Q/Z)

a) Prove that I* is a generalized cohomology theory.

By Brown representability I* is represented by some I € Sp which is called Brown-Comenetz spectrum.

b) For a spectrum E define Brown-Comenetz dual IE of E to be Mapg,(F,I). Prove that there exists a
functorial in F, X € Sp isomorphism

(IE)*(X) ~ Hom*(E.(X),Q/Z)

c) Prove that the canonical map X — I?(X) := I(I(X)) is an equivalence if and only if all m;(X) are finite.

d) Compute I?H A for finitely generated abelian group A and I°S.
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