Chromatic Homotopy Theory Problem set 1a. Preliminaries on Spectra

Reminder

Recall we defined the category of spectra Sp to be the stabilization of the category of spaces \mathcal{S} , i.e.

$$\operatorname{Sp} := \lim_{\longleftarrow} \left(\dots \xrightarrow{\Omega} \operatorname{S}_* \xrightarrow{\Omega} \operatorname{S}_* \xrightarrow{\Omega} \operatorname{S}_* \right)$$

We then proved the following list of statements about Sp

• Sp is a stable category, i.e. the square

$$\begin{array}{ccc} X & \longrightarrow Y \\ \downarrow & & \downarrow \\ Z & \longrightarrow W \end{array}$$

is a pushout diagram if and only if it is a pullback diagram. In particular the suspension Σ and loop Ω functors are mutual inverse of each other. It follows the homotopy category of Sp is a triangulated category with the shift functor [1] being Σ and the class of distinguished triangles $X \to Y \to Z$ consisting of pairs of maps such that

is a (co-)fiber diagram.

- There is a canonical projection functor Ω^{∞} : Sp $\to \mathcal{S}_{*}$, sometimes referred as the null space of a spectrum. If E^{*} is an extraordinary cohomology theory there exists a unique up to equivalence spectrum E such that E^{n} is represented by $\Omega^{\infty}\Sigma^{n}E \simeq B^{n}\Omega^{\infty}E$ in \mathcal{S}_{*} . In particular for any abelian group A there exists the **Eilenberg-MacLane spectrum** HA representing the usual cohomology with coefficients in A (and hence $\Omega^{\infty}\Sigma^{n}HA \simeq K(A,n)$). The **generalized Eilenberg-MacLane functor** is then defined as a unique continuous extension of H to the derived category of abelian groups D(Ab).
- The functor Ω^{∞} admits a left adjoint $\Sigma^{\infty} : \mathcal{S}_* \to \operatorname{Sp}$. We showed that for a pointed space X there exists a canonical equivalence $\Omega^{\infty}\Sigma^{\infty}X \simeq \lim_{\longrightarrow} \Omega^n\Sigma^nX$. As a corollary for finite spaces X,Y the natural map

$$\varinjlim \operatorname{Hom}_{\mathbb{S}_*}(\Sigma^n X, \Sigma^n Y) \to \operatorname{Hom}_{\operatorname{Sp}}(\Sigma^\infty X, \Sigma^\infty Y)$$

is an equivalence. The spectra of the form Σ^{∞} are called **suspension spectra**. We denote by \mathbb{S} the suspension spectrum of a 0-dimensional sphere \mathbb{S}^0 .

- For $X,Y \in \operatorname{Sp}$ we denote $[X,Y] := \pi_0 \operatorname{Hom}_{\operatorname{Sp}}(X,Y)$ and $\pi_n(X) := [\mathbb{S}^n,X]$. There is a stable Whitehead's lemma asserting that the map of spectra $f \colon X \to Y$ is an equivalence if and only if the induced map $\pi_n(f)$ is an isomorphism for all $n \in \mathbb{Z}$.
- The category of spectra is generated under co-limits by \mathbb{S} . In particular any spectrum X admits a cell filtration X_{\bullet} such that $\operatorname{gr}_s X_{\bullet} := X_s/X_{s-1}$ is equivalent to the direct sum of \mathbb{S}^s . A spectrum X is called **finite** if it lies in a smallest stable subcategory of Sp generated by the sphere spectrum, or equivalently if it admits a cell decomposition with only finitely many cells.
- The category of spectra admits a symmetric monoidal structure \wedge : Sp × Sp \to Sp called the **smash product** such that \wedge commutes with all colimits in each argument and Σ^{∞} is symmetric monoidal with respect to the smash product on S_* and Sp. There is also the **mapping spectrum functor** Map_{Sp}(-,-) determined by the following property

$$\operatorname{Hom}_{\operatorname{Sp}}(X \wedge Y, Z) \simeq \operatorname{Hom}_{\operatorname{Sp}}(X, \operatorname{Map}_{\operatorname{Sp}}(Y, Z))$$

 \bullet For spectra E and X we will denote

$$E_n(X) := \pi_n(X \wedge E)$$
 $E^n(X) := \pi_{-n} \operatorname{Map}_{Sp}(X, E) \simeq [X, \Sigma^n E]$

and will call $E_*(X)$ and $E^*(X)$ E-homology and E-cohomology of X respectively. In the case $X = \mathbb{S}$ we will sometimes write just $E_n := E_n(\mathbb{S}) \simeq \pi_n(E)$ and $E^n := E^n(\mathbb{S}) \simeq \pi_{-n}(E)$.

1 First properties and examples

Problem 1.

- a) Prove that $\pi_0(\mathbb{S}) \simeq \mathbb{Z}$.
- b) Prove that $\pi_1(\mathbb{S}) \simeq \mathbb{Z}/2\langle \eta \rangle$, where η is the stabilization of the Hopf fibration map $\mathbb{S}^3 \to \mathbb{S}^2$. (Hint: one way to proceed is as follows. Let the map $\alpha \colon \mathbb{S}^3 \to K(\mathbb{Z},3)$ classify generator in $H^3(\mathbb{S}^3,\mathbb{Z})$ and denote by $\mathbb{S}^3_{\geq 4}$ the fiber of α . Using Hochschild-Serre spectral sequence for an induced fiber sequence $\mathbb{CP}^\infty \simeq K(\mathbb{Z},2) \to \mathbb{S}^3_{\geq 4} \to \mathbb{S}^3$ compute that $H^4(\mathbb{S}^3_{\geq 4},\mathbb{Z}) \simeq \mathbb{Z}/2$. Then use Hurewicz isomorphism and Freudenthal suspension theorems.)
- c) Let X be a finite spectrum. Prove that $\pi_i(X)$ are finitely generated abelian groups for all $i \in \mathbb{Z}$.

Problem 2. Let X be a space. Prove that

$$\Sigma^{\infty} X_{+} \wedge H\mathbb{Z} \simeq C_{*}(X,\mathbb{Z}) \qquad \operatorname{Map}_{\operatorname{Sp}}(\Sigma_{+}^{\infty} X, H\mathbb{Z}) \simeq C^{*}(X,\mathbb{Z})$$

where $C_*(X,\mathbb{Z})$ and $C^*(X,\mathbb{Z})$ are chain and cochain complexes of X respectively considered as a spectrum via the generalized Eilenberg-MacLane spectrum functor.

Problem 3. Recall that a non-empty category I is called **filtered** if every finite diagram in I has a cone.

a) Let $\{X_i\}_{i\in I}$ be a filtered diagram of spectra. Prove that for all $n\in\mathbb{Z}$ the canonical map

$$\varinjlim \pi_n(X_i) \to \pi_n(\varinjlim X_i)$$

is an isomorphism.

b) Deduce that

$$H\mathbb{Q} \simeq \lim_{\longrightarrow} (\mathbb{S} \xrightarrow{\cdot 2!} \mathbb{S} \xrightarrow{\cdot 3!} \mathbb{S} \xrightarrow{\cdot 4!} \dots)$$

Hint: You may use that by the rational homotopy theory

$$\pi_i(\mathbb{S}^{2n+1}) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \begin{cases} \mathbb{Q}, & i = 2n+1\\ 0, & i \neq 2n+1 \end{cases}$$

- c) Deduce that for any spectrum X the canonical map $\pi_*(X) \otimes_{\mathbb{Z}} \mathbb{Q} \to H_*(X,\mathbb{Q})$ is an isomorphism.
- d) Prove that $H\mathbb{Q} \wedge H\mathbb{Q} \simeq H\mathbb{Q}$.

Problem 4. Let A_{\bullet}

$$\dots \xrightarrow{f_2} A_2 \xrightarrow{f_1} A_1 \xrightarrow{f_0} A_0$$

be a tower of abelian groups. Consider the map $\alpha \colon \prod_i A_i \to \prod_i A_i$ defined by $\alpha(\{a_i\}) := \{a_i - f_i(a_{i+1})\}$. Set $\lim^1 A_{\bullet} := \operatorname{coker}(\alpha)$.

a) Let $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ be a short exact sequence of towers of abelian group. Prove that there exists a long exact $\lim_{\longleftarrow} \lim_{\longleftarrow} 1$ sequence

$$0 \to \varprojlim A_{\bullet} \to \varprojlim B_{\bullet} \to \varprojlim C_{\bullet} \to$$
$$\to \varprojlim^{1} A_{\bullet} \to \varprojlim^{1} B_{\bullet} \to \varprojlim^{1} C_{\bullet} \to 0$$

- b) Prove that if all maps f_i are surjective, then $\lim_{\leftarrow} A_{\bullet}$ vanish.
- c) (Milnor exact sequence) Let $\{X_i\}_{i\in I}$ be a tower of spectra. Prove that for each $n\in\mathbb{Z}$ there exists a short exact sequence

$$0 \to \varprojlim^{1} \pi_{n+1}(X_i) \to \pi_n(\varprojlim X_i) \to \varprojlim \pi_n(X_i) \to 0$$

Problem 5.

- a) Let X,Y be a pair of connective spectra. Prove that $\pi_0(X \wedge Y) \simeq \pi_0(X) \otimes_{\mathbb{Z}} \pi_0(Y)$. (Hint: prove that for a connective spectrum Z homotopy group $\pi_0(Z)$ depends only on 1-skeleton).
- b) (Stable Hurewicz isomorphism) Deduce that for a spectrum X, and n minimal such that $\pi_n(X) \not\simeq 0$ the Hurewicz map $X \simeq X \wedge \mathbb{S} \to X \wedge H\mathbb{Z}$ induces an isomorphism $\pi_n(X) \simeq H_n(X,\mathbb{Z})$. By taking $X := \Sigma^{\infty} Y$ of a pointed simply connected space Y deduce the usual Hurewicz theorem.
- c) Prove that the map of eventually connective spectra $X \to Y$ is an equivalence if and only if it induces an isomorphism in integral homology.

Problem 6. (Moore spectra)

a) Let A be an abelian group. Prove there exists a unique (up to equivalence) connective spectrum $\mathbb{S}A$ such that

$$H_n(\mathbb{S}A, \mathbb{Z}) \simeq \begin{cases} A, & n = 0\\ 0, & n > 0 \end{cases}$$

This SA is called the **Moore spectrum of** A.

b) $(\pi_*$ -universal coefficient formula) Let A be an abelian group and X be a spectrum. For each $i \in \mathbb{Z}$ prove that homotopy group $\pi_i(X \wedge \mathbb{S}A)$ fits into a short exact sequence

$$0 \to \pi_i(X) \otimes_{\mathbb{Z}} A \to \pi_i(X \wedge \mathbb{S}A) \to \operatorname{Tor}_1^{\mathbb{Z}}(\pi_{i-1}(X), A) \to 0$$

c) Compute \mathbb{SZ} , $\mathbb{SZ}[\frac{1}{p}]$ and \mathbb{SQ} .

Problem 7.

a) Let $\operatorname{Sp}_{\mathbb{Q}}$ denote the full subcategory of Sp on spectra X such that $\pi_i(X)$ is a \mathbb{Q} -vector space for all $i \in \mathbb{Z}$. Prove that the generalized Eilenberg-MacLane functor induces an equivalence

$$D(\operatorname{Vect}_{\mathbb{Q}}) \xrightarrow{H} \operatorname{Sp}_{\mathbb{Q}}$$

where $D(\text{Vect}_{\mathbb{Q}})$ denotes the derived category of the category of \mathbb{Q} -vector spaces.

b) Deduce that for any spectrum X there is a splitting

$$X \wedge H\mathbb{Q} \simeq \bigoplus_{n \in \mathbb{Z}} \Sigma^n H(\pi_n(X) \otimes_{\mathbb{Z}} \mathbb{Q})$$

Problem 8. (Spainer-Whitehead category) The **Spainer-Whitehead category** \mathcal{SW} is defined as follows

- An object of SW is a pair (X, n), where X is a pointed space and $n \in \mathbb{Z}$.
- For $(X, n), (Y, m) \in \mathcal{SW}$ the set of morphisms is defined to be

$$\operatorname{Hom}_{\operatorname{\mathcal SW}}((X,n),(Y,m)):=\operatorname{colim}_{i\to\infty}[\Sigma^{n+i}X,\Sigma^{m+i}Y]$$

In this problem You will study the relation between SW and Sp.

a) Prove that for a finite pointed space X and any pointed space Y the natural map

$$\varinjlim \operatorname{Hom}_{\operatorname{\mathbb{S}}_*}(\Sigma^n X, \Sigma^n Y) \to \operatorname{Hom}_{\operatorname{Sp}}(\Sigma^\infty X, \Sigma^\infty Y)$$

is an equivalence.

- b) Let X be a finite spectrum. Prove that there exists a finite pointed space Y such that $\Sigma^n X \simeq \Sigma^{\infty} Y$ for some $n \in \mathbb{Z}_{\geq 0}$. Deduce that the homotopy category of finite spectra is equivalent to the full subcategory of \mathcal{SW} on objects (X, n) such that X is a finite space.
- c) Prove that the functor $S_* \to SW, X \mapsto (X,0)$ does not commute with infinite coproducts. Deduce that for a pair of pointed spaces X, Y the natural map

$$\operatorname{Hom}_{\mathcal{SW}}((X,0),(Y,0)) \to [\Sigma^{\infty}X,\Sigma^{\infty}Y]$$

is not an isomorphism in general.

Problem 9.

- a) Let X be a finite spectrum such that $X \wedge H\mathbb{Q} \simeq 0$. Prove that there exists an integer $n \in \mathbb{Z}$ such that $\pi_*(X)$ is n-torsion. (Hint: first prove the statement for $\mathrm{Map}_{\mathrm{Sp}}(X,X)$).
- b) Prove that $\pi_*(\mathbb{S}/p)$ is at most p^2 -torsion.

2 t-structure on the category of spectra and Postnikov towers

Recall we proved that the category of spectra admits a canonical t-structure such that $\operatorname{Sp}_{\geq n}$ and $\operatorname{Sp}_{\leq n}$ are full subcategories of n-connective and n-coconnective (or n-truncated) spectra respectively, i.e.

$$\operatorname{Sp}_{\geq n} = \{ X \in \operatorname{Sp} \mid \pi_i(X) \simeq 0 \text{ for } i < n \}$$
 $\operatorname{Sp}_{\leq n} = \{ X \in \operatorname{Sp} \mid \pi_i(X) \simeq 0 \text{ for } i > n \}$

and $[\operatorname{Sp}_{\geq n}, \operatorname{Sp}_{< n}] \simeq 0$. The inclusion of *n*-truncated spectra admits a left adjoint $\tau_{\leq n}$ and the inclusion of *n*-connective spectra admits a right adjoint $\tau_{\geq 0}$. In particular for each spectrum X there is a functorial fiber sequence

$$X_{>n} \to X \to X_{< n}$$

where $X_{>n} := \tau_{\geq n}(X) \in \operatorname{Sp}_{>n}$ is an n-connected cover of X and $X_{\leq n} := \tau_{\leq n}(X)$ is its n-th truncation. We proved that $\operatorname{Sp}^{\circ} := \operatorname{Sp}_{\leq 0} \cap \operatorname{Sp}_{\geq 0} \simeq \operatorname{Ab}$ and the natural map $D(\operatorname{Ab}) \to \operatorname{Sp}$ is given by the generalized Eilenberg-MacLane functor. We also define the full subcategory of **eventually connective spectra** $\operatorname{Sp}_{>-\infty}$ to be the union $\bigcup \operatorname{Sp}_{\geq n}$.

The natural towers of truncation and connective covers associated with the t-structure on Sp

are called Postnikov and Whithead towers respectively. As a consequence of the Whitehead's lemma we obtain

Corollary 2.1. Let X be a spectrum. Then Postnikov tower converges and Whitehead filtration is exhaustive, i.e. the natural maps

$$X \xrightarrow{\sim} \lim_{n \to \infty} X_{\leq n}$$
 $\operatorname{colim}_{n \to -\infty} X_{\geq n} \xrightarrow{\sim} X$

are equivalencies.

Definition 2.2 (k-invariants). Let X be a spectrum. Then there is a natural fiber sequence

$$X_{\leq n} \to X_{\leq n-1} \xrightarrow{k_n} \Sigma^{n+1} H\pi_n(X)$$

showing that $X_{\leq n}$ can be restored from $X_{\leq n-1}$ and the so-called k-invariant, a class $\widetilde{k_n} \in H^{n+1}(X_{\leq n-1}, \pi_n(X))$ classifying a map k_n . Note that since Postnikov tower converges, the sequence of k-invariants completely determine eventually connective spectrum X.

Problem 10. Let A, B be pair of abelian groups. Prove that for $i \in \{0, 1\}$

$$[HA, \Sigma^i HB] \simeq \operatorname{Ext}^i_{Ab}(A, B)$$

Problem 11. Let $ku := KU_{\geq 0}$ be a connective cover of the complex K-theory spectrum KU. Let us denote the Bott element (generator of $\pi_2(ku) \simeq \mathbb{Z}$) by β .

a) Prove that $KU_{\geq 2n} \simeq \Sigma^{2n} ku$ and that under this identification the maps in the Whitehead tower

$$\Sigma^{2(n+1)}ku \simeq KU_{\geq 2(n+1)} \to KU_{\geq 2n} \simeq \Sigma^{2n}ku$$

are given by multiplication by β .

b) Prove that the first nontrivial k-invariant for ku, $k_2 \colon H\mathbb{Z} \to \Sigma^3 H\mathbb{Z}$ is given by the third integral Steenrod square $\mathrm{Sq}^3_{\mathbb{Z}}$, which is defined to be the following composite

$$H\mathbb{Z} \to H\mathbb{Z}/2 \xrightarrow{\operatorname{Sq}^2} \Sigma^2 H\mathbb{Z}/2 \xrightarrow{\beta_2} \Sigma^3 H\mathbb{Z}$$

Problem 12. (Atiyah-Hirzebruch spectral sequence)

a) Let E be a spectrum. Prove there exists a functorial in $X \in \operatorname{Sp}$ cohomological spectral sequence

$$E_2^{p,q} := H^p(X, \pi_{-q}(E)) \implies E^{p+q}(X), \qquad |d_r^{*,*}| = (r, -(r-1))$$

such that

- All pages $(E_r^{*,*}, d_r^{*,*})$ are functors from Sp to the category of graded complexes of \mathcal{A}_E^* -modules, where $\mathcal{A}_E^* := \pi_{-*} \operatorname{Map}_{\operatorname{Sp}}(E, E)$ is the *E*-Steenrod algebra. In particular for all r, p the differential $d_r^{p,*} : E_r^{p,*} \to E_r^{p+r,*-(r-1)}$ is a natural transformation of functors from Sp to $\operatorname{Mod}_{\mathcal{A}_E^*}$.
- The action of \mathcal{A}_E^* on $E_{r+1}^{*,*}$ is induced from the action on $E_r^{*,*}$. The action on $E_2^{*,*} \simeq H^*(X, \pi_{-*}(E))$ is induced from the action of \mathcal{A}_E^* on $\pi_{-*}(E)$.

(Hint: consider filtration on $Map_{Sp}(X, E)$ induced by the Postnikov filtration on E.)

- b) Prove that all differentials $d_r^{p,q}$ are torsion, i.e. $nd_r^{p,q}=0$ for some $n\in\mathbb{Z}$.
- c) Let $E = KU_{(p)}$ be a p-local complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch spectral sequence all differentials $d_r^{*,*}$ vanish for r < p and that $pd_p^{*,*} = 0$. (Hint: use that the Adams operations ψ_k act on $(E_r^{*,*}, d_r^{*,*})$).
- d) Let E = KU a complex K-theory spectrum. Prove that in the corresponding Atiyah-Hirzebruch spectral sequence there is an isomorphism of graded algebras

$$E_3^{*,*} \simeq E_2^{*,*} \simeq H^*(X,\mathbb{Z})[\beta^{\pm 1}], \qquad |\beta| = (0,-2), |x| = (p,0) \text{ for } x \in H^p(X,\mathbb{Z})$$

and differential d_3 is determined by $d_3(\beta) = 0$, $d_3(x) = \operatorname{Sq}_{\mathbb{Z}}^3(x)\beta$ for $x \in H^*(X, \mathbb{Z})$.

3 Dualities in Sp

Definition 3.1. Let $(\mathcal{C}, \otimes, \mathbb{I})$ be a symmetric monoidal category. Object X of \mathcal{C} is called

• dualizable if there exists an object X^{\vee} and a pair of morphisms $\mathbb{I} \xrightarrow{\text{coev}} X \otimes X^{\vee}, X^{\vee} \otimes X \xrightarrow{\text{ev}} \mathbb{I}$ such that the composites

$$X \simeq \mathbb{I} \otimes X \xrightarrow{\operatorname{coev} \otimes 1_X} X \otimes X^{\vee} \otimes X \xrightarrow{1_X \otimes \operatorname{ev}} X \otimes \mathbb{I} \simeq X$$

$$X^{\vee} \simeq X^{\vee} \otimes \mathbb{I} \xrightarrow{1_{X^{\vee}} \otimes \operatorname{coev}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\operatorname{ev} \otimes 1_{X^{\vee}}} \mathbb{I} \otimes X \simeq X^{\vee}$$

are identity morphisms.

• invertible if there exists an object $X^{-1} \in \mathcal{C}$ such that $X \otimes X^{-1} \simeq \mathbb{I}$.

If X^{\vee} or X^{-1} exist they unique up to equivalence. In the case $\mathcal{C} = \operatorname{Sp}$ the spectrum X^{\vee} is called the **Spainer-Whithead** dual of X.

Finally, if $f: X \to X$ is an endomorphism of a dualizable object of \mathcal{C} the **trace** $\operatorname{tr}(f) \in \operatorname{End}_{\mathcal{C}}(\mathbb{I})$ of f is defined as the following composite

$$\mathbb{I} \xrightarrow{\operatorname{coev}} X \otimes X^{\vee} \xrightarrow{\quad f \otimes 1_{X^{\vee}} \quad} X \otimes X^{\vee} \simeq X^{\vee} \otimes X \xrightarrow{\operatorname{ev}} \mathbb{I}$$

Problem 13.

- a) Let C be a symmetric monoidal category. Prove that the following conditions are equivalent
 - The monoidal unit $\mathbb{I}_{\mathbb{C}}$ is compact.
 - Every dualizable object of C is compact.
- b) Let X be a spectrum. Prove that the following conditions are equivalent
 - X is compact.
 - X is a retract of a finite spectrum.
 - \bullet X is dualizable.
- c) Let X be a spectrum. The functor $\wedge X$ being a left adjoint of $\operatorname{Map}_{\operatorname{Sp}}(X, -)$ commutes with all colimits but not with limits in general: prove that the functor $\wedge X$ commutes with limits if and only if X is dualizable.

Problem 14. Prove that $X \in \operatorname{Sp}$ is invertible if and only if $X \simeq \mathbb{S}^n$ for some $n \in \mathbb{Z}$.

Problem 15. Let X be a finite CW-complex. Prove that

- a) The suspension spectrum $\Sigma^{\infty}_{+}X$ is dualizble.
- b) For an abelian group A there exists a canonical equivalence

$$(\Sigma^{\infty}_{\perp}X)^{\vee} \wedge HA \simeq C^{*}(X,A)$$

where $C^*(X, A)$ denotes a cochain complex of X with coefficients in A considered as a spectrum via the generalized Eilenberg-MacLane spectrum functor.

c) For an endomorphism $f: X \to X$ define the Lefschetz number of f to be

$$L(f) := \sum_{i} (-1)^{i} \operatorname{tr} H_{i}(f)$$

Prove that

$$L(f) = \operatorname{tr}_{\operatorname{Sp}} \left(\Sigma^{\infty}_{+} X \overset{\Sigma^{\infty}_{+}(f)}{\longrightarrow} \Sigma^{\infty}_{+} X \right) \quad \text{in particular} \quad \chi(X) = \operatorname{tr}_{\operatorname{Sp}} (1_{\Sigma^{\infty}_{+} X})$$

Problem 16. Consider the functor

$$I^* \colon \mathrm{Sp} \to \mathrm{Ab}^{\bullet}$$
 $X \mapsto \mathrm{Hom}^*_{\mathrm{Ab}}(\pi_*(X), \mathbb{Q}/\mathbb{Z})$

- a) Prove that I^* is a generalized cohomology theory. By Brown representability I^* is represented by some $I \in \text{Sp}$ which is called **Brown-Comenetz spectrum**.
- b) For a spectrum E define **Brown-Comenetz dual** IE of E to be $\mathrm{Map}_{\mathrm{Sp}}(E,I)$. Prove that there exists a functorial in $E,X\in\mathrm{Sp}$ isomorphism

$$(IE)^*(X) \simeq \operatorname{Hom}^*(E_*(X), \mathbb{Q}/\mathbb{Z})$$

- c) Prove that the canonical map $X \to I^2(X) := I(I(X))$ is an equivalence if and only if all $\pi_i(X)$ are finite.
- d) Compute I^2HA for finitely generated abelian group A and $I^2\mathbb{S}$.