
Chromatic Homotopy Theory

Problem set 1b. More on Spectra

1 Steenrod algebra

Definition 1.1 (Mod 2 Steenrod algebra). Recall there exists a unique family of natural transformations Sqn : H∗(−,Z/2)→
H∗+n(−,Z/2) satisfying the following properties:

• Sq0(x) = x.

• Sqn(x) = x2 for x ∈ Hn(X,Z/2).

• Sqn(x) = 0 for x ∈ H<n(X,Z/2).

• (Cartan’s product formula). If we denote Sq(x) :=
∑∞
n=0 Sq

n(x) then Sq(x · y) = Sq(x) · Sq(y).

Since by Brown representability the map A∗(2) := [HZ/2,Σ∗HZ/2] → End∗(H∗(−,Z/2)) is surjective, Sqn lifts to a map of
spectra HZ/2→ ΣnHZ/2. One can prove that Sqn generate A∗(2) as an algebra.

Problem 1.

a) By applying Elinberg-MacLane functor H to a short exact sequence of abelian groups 0 → Z/2 → Z/4 →
Z/2→ 0 we obtain a fiber sequence of spectra

HZ/2→ HZ/4→ HZ/2 β−→ ΣHZ/2

where β is the so-called Bockstein morphism. Prove that Sq1 = β.

b) For n ∈ Z≥0 let us define Sq2n+1
Z as the following composite

Sq2n+1
Z : HZ→ HZ/2 Sq2n

−→ Σ2nHZ/2 Σ2n(β2)−→ Σ2n+1HZ

where β2 is the connecting morphism in the fiber sequence HZ ·2−→ HZ → HZ/2 β2−→ ΣHZ. Prove that
Sq2n+1

Z is a lift of Sq2n+1 in the sense that the diagram below is commutative

HZ
Sq2n+1

Z //

��

Σ2n+1HZ

��
HZ/2

Sq2n+1

// Σ2n+1HZ/2

Problem 2. Prove that H∗(HZ,F2) ' A∗(2)/(Sq1) as a module over the Steenrod algebra.

Problem 3. Prove that for n > 0 spectra Σ∞RP∞/RPn and Σ∞ΣnRP∞ are not homotopy equivalent.

Problem 4. Prove that there does not exist a pointed space X such that Σ∞X ' HF2.
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2 Toda brackets

Definition 2.1. Let
X0

f1−→ X1
f2−→ X2

f3−→ X3

be such that fi+1 ◦ fi ' 0. A choice of nullhomotopies α : f2 ◦ f1 ' 0 and β : f3 ◦ f2 ' 0 determines a loop γ(α, β) in a
mapping space Hom(X0, X3) at a zero morphism given by the composition

γ(α, β) : 0 ' f3 ◦ 0
f3◦α
∼
// f3 ◦ f2 ◦ f1 ∼

β−1◦f1// 0 ◦ f1 ' 0

Note that
γ(α, β) ∈ π1 Hom(X0, X3) ' π0(Ω Hom(X0, X3)) ' π0 Hom(ΣX0, X3) = [ΣX0, X3]

Toda bracket 〈f1, f2, f3〉 is defined to be the subset of [ΣX0, X3] consisting of γ(α, β) for all possible choices of α, β. Note
that the set of nullhomotopies fi+1 ◦ fi ' 0 is a torsor for [ΣXi−1, Xi+1], hence the Toda bracket 〈f1, f2, f3〉 is a torsor for a
subgroup f3 ◦ [ΣX0, X2]− [ΣX1, X3] ◦ f1 ⊆ [ΣX0, X3].

Remark 2.2. You will see below that 〈f1, f2, f3〉 itself is not a subgroup of [ΣX0, X3] in general.

Problem 5.

a) Let x, y ∈ πnS. Since the addition on the sphere spectrum is commutative there exists a homotopy x+y ∼ y+x.
Restricting to the diagonal we obtain a loop σ : x + x ∼ x + x living in πn+1(S, 2x) ' πn+1S. Prove that
σ = ηx. (Hint: you may use that the multiplication map on a circle S1 × S1 → S1 induces a Hopf map on top
cells after stabilization).

b) (Toda’s relation) Let x ∈ π∗(S) be a 2-torsion. Deduce that ηx ∈ 〈2, x, 2〉.

c) Deduce that 〈2, η, 2〉 = {η2}.

Problem 6. (Alternative description of the Toda brackets) Let

X0
f1−→ X1

f2−→ X2
f3−→ X3

be as above. Since f3 ◦ f2 ' 0 there exists a map f̃2 : X1 → fib(f3) lifting f2

Σ−1X3
// fib(f3)

i

��
X0

γ
;;;{

;{

;{
f1 // X1

f2 //

f̃2

::

X2
f3 // X3

and analogously since the composition i ◦ f̃2 ◦ f1 ' f2 ◦ f1 is nullhomotopic, there exists a map γ lifting f̃2 ◦ f1.
Prove that γ ∈ 〈f1, f2, f3〉 and that all elements of 〈f1, f2, f3〉 can be obtained this way. Deduce that 〈f1, f2, f3〉
depends only on triangulated structure of hSp and not of its ∞-categorical enhancement.

Problem 7.

a) Let X be a spectrum and f : Σ|f |X → X a self-map. There exists a short exact sequence of graded abelian
groups

0→ π∗(X)/f∗π∗−|f |(X)
α∗−−→ π∗(X/f)

β∗−→ π∗−|f |−1(X)[f ]→ 0

Let x ∈ π∗S, y, w ∈ π∗(X) and ỹ ∈ π∗(X/f) be such that

• f∗(y) = 0 and xy = 0.

• β∗(ỹ) = y, i.e. ỹ is a lift of y.

• α∗(w) = xỹ.

Prove that w ∈ 〈x, y, f〉.

b) Deduce that π2(S/2) ' Z/4Z.

c) Deduce that S/2 does not admit a structure of a homotopy associative ring spectrum.
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Problem 8.

a) Prove that for an object X of a Z-linear category C the multiplication by n map is nullhomotopic on X/n.

b) Deduce that the category of spectra does not admit dg-enhancement.

3 Phantom maps

By Brown representability the map from the homotopy category of spectra to the category of cohomology theories is essentially
surjective and full, but as we will see later is not faithful in general.

Definition 3.1. We will call the map of spectra f : E → F cohomological phantom if its restriction to the subcategory
of eventually connective spectra Sp>−∞ is nullhomotopic. In particular the map of associated cohomology theories E∗ → F ∗

is zero.

Problem 9. Prove that there are no cohomological phantom maps from eventually connective spectrum to any
spectrum. Deduce that the natural surjection A∗(2) � End(H∗(−,Z/2)) is an isomorphism.

Problem 10. (Example of cohomological phantoms)

a) Prove that KU ∧HZ '
⊕

i∈Z Σ2iHQ. Deduce that [KU,ΣHZ] 6' 0. (Hint: You may use without proof Snaith
theorem: let β : S2 → CP∞ be a generator of π2. Under the canonical map Σ∞+ CP∞ → KU (classifying trivial
bundle of rank 1) β maps to the Bott element. Since β is invertible in the target the map above admits a
canonical factorization Σ∞+ CP∞[β−1]→ KU . Snaith theorem asserts this is an equivalence).

b) Prove that all α ∈ [KU,ΣHZ] are cohomological phantoms.

A map of spectra f : E → F is called homological phantom or just phantom if one of the following equivalent
conditions holds

• The induced map of homology theories f∗ : E∗ → F∗ is zero.

• The restriction of f to the category of finite spectra Spfin is nullhomotopic. I.e. for any map V → E from a finite

spectrum V the composite map V → E
f−→ F is nullhomotopic.

Problem 11. Let X be a spectrum represented as a filtered colimit X ' lim−→ Xα of finite spectra Xα

a) Prove that the map f : X → Y is phantom if and only if f|Xα : Xα → X
f−→ Y vanish for all α.

b) Deduce there exists a nontrivial phantom map X → Y if and only if the lim1-term of the Milnor exact sequence

0→ lim←−
1[ΣXα, Y ]→ [X,Y ]→ lim←− [Xα, Y ]→ 0

is non-trivial.

Problem 12.

a) Let X be a spectrum. Prove there does not exist a nontrivial phantom map out of X if and only if X is a
retract of a sum of finite spectra.

b) Deduce there exits a spectrum X̃ and phantom map p : X → X̃ universal in the following sense

• Any phantom map out of X factors through p.

• There are no nontrivial phantoms out of X̃.

c) Let f : X → Y and g : Y → Z be phantoms. Deduce that g ◦ f ' 0.
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Problem 13. (Phantoms and Brown-Comenetz duality)

a) Let X,Y be a pair of spectra. Prove that any phantom map X → IY is nullhomotopic.

b) Prove that the map X → Y is phantom if and only if the composite X → Y → IV vanish for all finite spectra
V .

c) Prove that the map of spectra X → Y is phantom if and only if the composition X → Y → I2Y vanish.

d) Assume that all πnY are finitely generated abelian groups. Deduce there exists a nontrivial phantom map in
Y if and only if H∗(Y,Q) 6' 0.
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