

A Data-Mining Approach To Time-Series Microarray Alignment for Crossing Large-Scale Biomolecular and Literature Information

3rd Workshop on Algorithms in bioinformatics October 7-9, 2008, Laboratoire J.-V. Poncelet, Moscow

Nicolas Turenne

INRA – Jouy-en-Josas centre

Time-Series Microarray Alignment

•

•

•

- Part 1 **Project**
- Part 2 Microarray alignment

The Cattle Model

- INRA => french institute of life sciences and food sciences ۲
 - 4000 research scientists, 20 centres, 400 laboratories
- Cattle => Bovine model of interest •
 - Perspective for pharmacopea —
 - Species to experiment understand life phenomenon as cancer, celullar engineering
- Few data about this species ${}^{\bullet}$
 - Not enough in Litterature ۲
 - Home microarray about proliferation, on-going published ۲

The Cattle Model : elongation

Time-Series Microarray Alignment

The Cattle Model : day0-day23

No elongation in human and mouse

No elongation without proliferation Process known in human and mouse

And without Embryo development Process known in mouse

Process not very well known because embryo at this stages develops freely in uterus (no placenta)

Heterogeneous Sources Approach

- Issue : understand which genes of Cattle are related to proliferation and development at embryo stage
- Hypothesis : Inference of knowledge from Standard Model species : human, mouse
- 1- Public-Domain microarrays exist in GEO server about Human and Mouse
 - our goal : data-oriented (time-series) developmental biology
- 2- Database
 - Genome of Cattle is known 30000 genes, GeneBank Id can be accessible
 - Knowledge Exploration Software, available: Metacore, Ingenuity, David
- 3- Available Prolific Literature about Human and Mouse (>12 millions documents)

Time-Series Microarray Alignment

What does we find in Literature ?

 Rough query on Medline server (http://www.ncbi.nlm.nih.gov/pubmed/)

• bovine and (embryo or placenta) -> 14000 documents

- human and (embryo or placenta) -> 185000 documents
- mouse and (embryo or placenta) -> 57000 documents

More concretly in Literature, two corpus

• 77333 documents 06 Aug 2007

#req1 OR #req2 OR #req3 OR #req4

#req4	human AND embryo Field: Title/Abstract, Limits: Humans
#req3	human AND embryo Field: MeSH Terms , Limits: Humans
#req2	human AND placenta AND cancer Field: Title/Abstract, Limits: Humans
#req1	human AND placenta AND cancer Field: MeSH Terms , Limits: Humans

• 34529 documents 06 Aug 2007

#req1 OR #req2

- #req1 mouse AND embryo Field: Mesh Terms, Limits: Animals
- #req2 mouse AND embryo Field: Title/Abstract, Limits: Animals

Named Entities Extraction Tools

- Since 1998 more than 50 tools of named entities tools has been developped
 - Gene name extraction
 - Network reconstruction
- LingPipe [Carpenter, 2004] – sentence segmentation

CorpusH -> 515500 sentences CorpusM -> 276100 sentences

PMID - 15556029

- DP 2004 Dec
- TI Sporulation of Bacillus subtilis.
- AB Differentiation of vegetative Bacillus subtilis into heat resistant spores is initiated by the activation of the key transcription regulator Spo0A through the phosphorelay. Subsequent events depend on the cell compartment-specific action of a series of RNA polymerase sigma factors. Analysis of genes in the Spo0A regulon has helped delineate the mechanisms of axial chromatin formation and asymmetric division. There have been considerable advances in our understanding of critical controls that act to regulate the phosphorelay and to activate the sigma factors.
- AD Department of Microbiology and Immunology, Temple University School of Medicine. 3400N. Broad St., Philadelphia, Pennsylvania 19140, USA.
- FAU Piggot, Patrick J
- AU Piggot PJ
- FAU Hilbert, David W
- AU Hilbert DW
- SO Curr Opin Microbiol 2004 Dec;7(6):579-86.

Sporulation of Bacillus subtilis.

- Differentiation of vegetative Bacillus subtilis into heat resistant spores is initiated by the activation of the key transcription regulator Spo0A through the phosphorelay.
- Subsequent events depend on the cell compartment-specific action of a series of RNA polymerase sigma factors.
- Analysis of genes in the Spo0A regulon has helped delineate the mechanisms of axial chromatin formation and asymmetric division.
- There have been considerable advances in our understanding of critical controls that act to regulate the phosphorelay and to activate the sigma factors.

Time-Series Microarray Alignment

Project

Literature Issue Database Issue Microarray Issue Microarray Alignment

Genes names extraction

abner

[Settles, 2005] Training annotated corpus Conditional random fields Models Uses regular expression formalism No explicit syntactic and semantic rules

60611 nouns phrases (CorpusM) 82903 nouns phrases (CorpusH)

genia

[Tsuruoka *et al*, 2005] Training annotated corpus Part-of-speech tagging with cyclic dependency network Maximum Entropy Classifier No explicit syntactic and semantic rules

37607 nouns phrases (CorpusM) 48909 nouns phrases (CorpusH)

lingpipe

[Carpenter, 2004] Training annotated corpus Bayesian Generative Model and Maximum Likelihood Viterbi decoder No explicit syntactic and semantic rules

80308 nouns phrases (CorpusM) 93673 nouns phrases (CorpusH)

nlprot

[Mika *et al*, 2004] Training corpus Syntactic-Rules and Support Vector Machine classifiers Use of biology name dictionaries No explicit semantic rules.

42427 nouns phrases (CorpusM) 48086 nouns phrases (CorpusH)

Time-Series Microarray Alignment

Expert Extraction Software : Metacore, Ingenuity, David

Ingenuity

http://www.ingenuity.com/ Ingenuity Systems, Inc. (California, USA) IPA - ingenuity pathway analysis software (licence = 6000€/year; 25000 users)

- 1.7 millions « biological findings »
- Own ontology (knowledge base)

- Since 1997
- Knowledge base (ontology) build upon criteria :
 - 300 reviews (full papers)
 - manual extraction (1000 documentalists)
 - 5 years
 - update each 3-month , 80000 new findings
 - optimized rules for manual scan (less people required)

- Link with Gene Ontology (GO)
- Available Synonyms and homonyms names (« ingenuity facets »)
- Grabbed information from NCBI, Swissprott and Kegg
- 12 branches in the global ontology (only 3 in GO)

Time-Series Microarray Alignment

- expert extraction interpretation-dependent
- multipe-interpretation in documents
- merging results from automatic extraction and expert extraction can be more riched if hypotheseoriented

Projec Literat Databa Micros Micros	t ture Issue ase Issue array Issue array Alignment	Crossing	g Informa Ingenui	tion Source	s on Extracti	on Tools
Gen	e Lists					
extr	acted from In	ngenuity				
abo	ut <i>developmet</i>	Tissue + development (A)	Connective + tissue (B)	Cellular + development (C)	$A \cap B \cap C$	proliferation + development (D)
	From. Ingenuity	615	532	482	52	
	From GO					204
	∩ CorpusM	А	В	С	$A \cap B \cap C$	D
	abner. + genia + lingpipe + nlprot	342	293	293	38	90
	∩ CorpusH	А	В	С	$A \cap B \cap C$	D
	abner. + genia + lingpipe + nlprot	333	289	268	40	79
Institut Nation	al de la Recherche Agronomique	1	Fime-Series Micr	oarray Alignment	13	Matt

Project Literature Issue Database Issue Microarray Issue Microarray Alignment	Crossing Inform	ation Sources //migale.jouy.inra.f	r/time/
Time , De	ocument , Biology	petite police po	s pas identifié
vous êtes ici : accueil » liste:	s ingenuity		
navigation Accueil Listes Ingenuity MouseNet HumanNet SubtiNet	Listes Ingenuity Niveau supérieur <u>Tissue+Development</u> <u>Cellular+Development</u> Connective+Tissue		•• Octo Di Lu Ma 5 6 7 12 13 14 19 20 21 26 27 28
Connexion	Cellular+Tissue+Connective Cancer		
Mot de passe	Profileration Cancer+Proliferation		Mathémat Information & Génome

What about knowledge from microarrays

- Knowledge are related to large sets of genes at a same time
 - High-throuhgput data management and analysis
- We can identify groups
 - acting in a same way,
 - or associations between a gene and others in a same context (biological hypothesis)

ID_REF	NAME	GSM23	3324 GSM2	3325 GSM26	6511 GSM23	3326 GSM2	3327 GSM23	328 GSM233	330 C
3069	3069	-0.12095261	-0.159064695	-0.112117298	-0.442279081	0.044055627	-0.138586163 -	0.030866648 1	
2173	2173	-0.134408201	-0.160850872	-0.043401834	-0.381694889	-0.124970576	-0.249941744 (0.046745013 1	
1105	1105	-1.550597412	-0.675447603	-0.146603474	-2.525728644	-0.566395475	-1.945910149 -	0.211309094 1	
4449	4449	-0.064720191	0.066624028	-0.152385454	-0.234877715	-0.041641026	-0.162003333 (0.064983488 1	
1520	1520	-0.063476064	0.041528459	0.030614636	-0.186829974	-0.155733209	-0.066511481 -	0.038183787 1	
560	560	-0.379489622	-0.341170757	-0.538660423	-3.496507561	-0.149345289	-0.972986076 -	0.035755649 1	
1706	1706	-0.027779564	-0.024667232	-0.110130824	-0.304353607	-0.037582711	-0.234010656 -	0.12351371 1	
3334	3334	-0.236664298	-0.030277259	0.086709399	-0.394753453	-0.115896291	-0.139846692 (0.056384719 1	

Measure

Log (base 2) of the ratio of the mean of Channel 2 (635 nm) to Channel 1 (532 nm)

Value : between -10 (very inhibited) and +10 (very activated)

Time-Series Microarray Alignment

Datasets of interest

- GSE 1414 only kinetics about **bovine** and dealing with same biological problem : elongation and implantation in bovine embryo (2,000 unique genes) (Ushizawa et al, Reprod Biol Endocrinol, 2004) *on-going INRA-home made microarray*
- GSE 9046 time-course experiment with embryoid bodies of CGR8 **mouse** embryonic stem cells (12,000 unique genes) (Mitiku and Baker, Dev Cell. 2007) *INRA-home made microarray about a kinetics of development in mouse, based totipotent embryo stem cell (degrelle et al, dev biol, 2005)*
- GSE 3553 interesting for **human** cell differentiation in trophoblast in human under effect of BMP4 (25,000 unique genes) (Xu et al, Nat Biotechnol. 2002)

What about knowledge from microarrays

[Aach, 2001]

Issue

- Time-series microarrays with several timepoints (3 to 10)
- Two different species (for instance bovine / human or bovine / mouse)

Challenge

[Husmeier, 2001]

18

- state of the art : clustering is largely used but only work for same conditions, in our case, microarrays are different-conditions made
- state of the art : time warping is used for timecomparison scales (curve alignment) but in our case time scales are different from one species to another and a same ortholog gene can occur at different time-point because of genome evolution over time.

Time-Series Microarray Alignment

What about knowledge from microarrays

	r	Г1		T2	,	Т3		T4		T5	T6
G1											
G2											
G3											
G4											
G5											
G6											
		T' 1	-	T'2		Τ'.	3	T'4			
G7	'										
G8											
G3											
G9											
G10)										
G1	1									180.2	010033160
Time	e-Ser	• ies Mi	croa	• • rrav Alic	• mme	ent		19	Jus-	M	011100 000130 110100 D0111

Mathématiqu Informatique & Génome

Goal

Patterns
 Identification

•

•

- Data format i matrix-like
- 2 tables

A combinatorics issue

The issue of Alignment

- How to place G8 before G2 or during G2 ?
- We can not fit T1 and T'1, T2 and T'2 ...
- Even infer that T4 = T'2 is not jusiified by the fact it is the same gene G3

A combinatorics issue

Dobinski formula

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

Number of partitions of size n

T1	T2	T3	T4	T5	T6
G2	G2				
			G3	G3	
G5	G5			G5	G5

T'1	T'2	T'3	T'4
G8			
	G3	G3	
G10			G10

Very small set of constraints about strict order (<), such as G2 before G3 G3 before and after G10 G8 before G3etc

G2 G5	G3	G3 G5	G8 G10	G3	G10	
G2 G5 G8 G10	G3	G3 G5	G5 G10			
G2	G2G5	G8	G10	G3		G10
G5 G2	G5	G8		G10		G3
	G2	G10	G3		G3	G5

And many many many others ...

Time-Series Microarray Alignment

A solution in a two-step clustering

- Step 1: make clusters of similar genes into a unique time-series
 - relative expression profile
- Step 2 : make a clustering between 2-sets of clusters through common points
 - consensus clustering over two sets of clusters

Project Literature Issue Database Issue Microarray Issue

- make clusters of similar genes expression • profile
- using a classical euclidian-distance • metrics and dendrogram computation
- See TreeView (1998) ullethttp://rana.lbl.gov/EisenSoftware.htm

Time-Series Microarray Alignment

Step 2

- make consensus clustering between two sets of clusters
- Works if some objects belongs to both sets of clusters
- Result is a set of MegaClusters overlapping microarrays (idea of alignment)

Dictionary of Genes [G1-G6] from microarray Bio1, [G1;G7-G12] from microarray Bio2 (G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12) partition Bio1 (C1, C1, C1, C2, C2, C2, C3, C4, C5, C6, C7, C8) (C16, C10, C11, C12, C13, C14, C15, C15, C15, C16, C16, C16)

result (C1, C1, C1, C2, C2, C2, C3, C3, C3, C1, C1, C1)

Because G1 belongs to C1 and C16, C1 and C16 are merged

Time-Series Microarray Alignment

Consensus clustering approach

Definition

Merging of several clustering into a unique clustering

Three kinds of clusterings:

- axiomatic (we suppose we can formalize property of the resulting partition
- constructive (some rules are given to achieve the merging)
- optimization (a criteria to minimize is defined)

Consensus clustering approach

membership matrix (clusters/partitions)

	P_1	P_2	
C_1	1	0	we deduce from the matrix
C_2	0	1	

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$
simultaneous clusters
 $C_1 C_2$ cluster 1 precedes
 $C_2 C_1$ cluster 2 precedes

membership matrix (megaclusters/partitic

 $M_1 = 1 = 0$ we deduce from the matrix

$$\begin{cases} \begin{pmatrix} M_1 \\ M_2 \end{pmatrix} (t, P_1) & \text{if } S \leq q_1(t) \land S \leq q_2(t) \\ M_1 M_2(t, P_1) & \text{if } S \leq q_1(t) \leq q_2(t) \\ M_2 M_1(t, P_1) & \text{if } q_1(t) \geq q_2(t) \geq S \end{cases}$$

 $P_1 P_2$

 $M_2 \ 1 \ 1$

Time-Series Microarray Alignment

optimization approach for consensus

$$\{C_1, \dots, C_B\} \longrightarrow \sum_{b=1}^B w_b d(C, C_b)^p \Rightarrow \min_{C \in \mathcal{C}} d \text{ is a dissimilarity measure}$$

Let M_1, \ldots, M_B and M denote the membership matrices of the elements of the ensemble and their sought least squares consensus partition,

$$\sum_{b} w_b \min_{\Pi_b} \|M - M_b \Pi_b\|^2 \Rightarrow \min_M$$

permutation matrices Π_1, \ldots, Π_B Euclidean partition dissimilarity

fix the
$$\Pi_b$$
 let $\bar{M} = s^{-1} \sum_b w_b M_b \Pi_b$ where $s = \sum_b w_b$

$$\sum_b w_b \|M - M_b \Pi_b\|^2 = s(\|M - \bar{M}\|^2) + \sum_b w_b \|M_b\|^2 - s\|\bar{M}\|^2$$
maximizing $s^2 \|\bar{M}\|^2 = \sum_{\beta,b} w_\beta w_b \operatorname{tr}(\Pi'_\beta M'_\beta M_b \Pi_b)$

Time-Series Microarray Alignment

Consensus clustering approach

- CLUE library
 - R-project
 - function *cl_consensus(method="DWH")*
 - Fuzzy clustering

• E. Dimitriadou, A. Weingessel and K. Hornik (2002). A combination scheme for fuzzy clustering. *International Journal of Pattern Recognition and Artificial Intelligence*, **16**, 901–912

Consensus clustering approach

- CLUE library
 - heuristic-based
 - locally single-pass through the ensemble of clusterings
 - starting with

$$\tilde{M}_1 = M_1$$

 \tilde{M}_b is obtained from \tilde{M}_{b-1} by optimally matching $M_b \Pi_b$ to this

taking a weighted average of \tilde{M}_{b-1} and $M_b \Pi_b$ in a way that \tilde{M}_b is the weighted average of the first $b \ M_\beta \Pi_\beta$

Result is a fuzzy membership but it is possible to get a hard clustering

C1(1, 1, 2, 2) C2(3,3,3,4)

Memberships:[,1][,2][1,]0.01.0[2,]0.01.0[3,]0.50.5[4,]1.00.0

Hard clustering (1 1 2 2)

Temporal profile

Time-Series Microarra

Time Correlation Matrix

• Use notion of precedence and simultaneity, using the symbol **B** for *before*, **A** for *after* and **D** for during

- about expression
- for a given gene
- comparison between time neigbourghood

$$\begin{cases} A_g(t, P) & if S \leq q_g(t+1, P) \\ B_g(t, P) & if S \leq q_g(t-1, P) \\ D_g(t, P) & if \frac{q_g(t, P)}{q_G(t, P)} \geq S \end{cases}$$

Temporal profile

Cluster	Target	T1(Bio)	l) T2(Bio	1)T3(bio1	T1(Bio2)	T2(Bio2)	<i>T3(Bio2)</i>	
1	4	AD	ABD	ABD	BD			
2	4					В	Α	D

Cluster	Target	T1(Bio	1) T2(Bio	o1)T3(bio	1)T4(Bio)	1) T1(Bio2)	T2(Bio2)	T3(Bio2)
p	4	AD	ABD	ABD	BD	В	Α	D

For a given Gene, for instance G4,

We take its MegaCluster (c1, c2) obtained from consensus clustering For each timepoint and for each cluster, for instance T3 (microarray 1) and cluster 1 we test if expression is high during (D), before (T2)or after (at T4). It is ok for before and during so the value for T3-C1 is BD.

Comparison of temporal profile

- Jaccard index similarity $J(A, B) = |A \cap B|/|A \cup B|$.
- A given a gene G and its Time matrix correlation TMC(G)
- We look for all genes have similar their TMC to G one.
- for each gene in both microarray (dictionary of gene)
 - Compute J(TMC(G), TMC(g))
 - Export all genes if J > 0.99

Algorithm – AlibR (R Script)

- 1. Read 2 Datasets (D) and input a Given Gene (G)
- 2. Compute mean expression values for clusters
- 3. Create Gene Dictionary
- 4. Create Partition of Gene Dictionary with Clusters for D
- 5. Apply consensus
- 6. Create a Mapping MegaCluster <-> clusters (MGC)
- 7. Generate the Temporal Matrix (TM) for all clusters
- 8. Compute a submatrix of TM for G (TMG) using MGC
- 9. For each gene g
 - 1. compute submatrix (TMg) using MGC and
 - 2. compute Jaccard value J

10. Export Temporally Similar Gene List with J < 0.99

Time-Series Microarray Alignment

Complexity

- Tests has been done on 30% of microarrays (~9000 genes)
- Time-computation 20-lines microarray 0.42 s 0.5 Mb 600-lines microarray 18.25 100 Mb S 2000-lines microarray 60.50 900 Mb S 15000-lines microarray 18000 7000 Mb S
- DHW consensus method complexity
 - O(n x k) in memory
 - O(n x k^3) in time
 - Optimisation solver $O(n^2)$ in memory (Hungarian algorithm)

Time-Series Microarray Alignment

•

•

Similar genes...

target	similarity	Bovine (I	B) & Huma	n (H) array	s	Bovine (B) & Murin	e (M) array	S
genes	threshold	megacluster	B & H			megacluster	B & M		
		(#cluster)	genes	B genes	H genes	(#cluster)	genes	B genes	M genes
alas	Tb=0.7 ;T=0.9	16	14	18	0	12	25	43	37
algs	Tb=0.7 ;T=0.1	11	14	18	0	15	12	20	0
eif2s3	Tb=0.7 ;T=0.9	16	12	10	0	15	208	298	2265
	Tb=0.7 ;T=0.1	10	76	81	574	5	6	16	0

Time-Series Microarray Alignment

Similar genes... case of ALG5

Microarray bovine/human : similarity threshold0.1/0.7

Microarray Bovine	
gene: bp107457	Microarray Bovine & Human
gene: bpl11933	gene: vsig4
gene: bpl10819	gene: cask
gene: af069434	gene: hdac1
gene: y16359	gene: mmp14
gene: bp111692	gene: vegfa
gene: bp110718	gene: syt1
gene: loc536818	gene: actr2
gene: cfdp2	gene: akap9
gene: bp110964	gene: furin
gene: loc509824	gene: alg5
gene: bp112639	gene: mmp1
gene: u01924	gene: foxred1
gene: bp109437	gene: npepps
gene: loc531522	gene: sdf4
gene: sepx1	
gene: aa112300	
gene: v00125	

Time-Series Microarray Alignment

Project Literature Issue Database Issue Microarray Issue

Similar genes... case of ALG5

Crossing with IPA (ingenuity)

genes	networks	score
Alg5 bov hum	Connective tissue disorders, genetic disorders, cancer	22
Alg5 bov mus	Cancer, cell to cell signalling and interaction, cellular assembly and organisation	14
	assembly and organisation	14_1 (100 A 100 000000000000000000000000000

Time-Series Microarray Alignment

Similar genes... case of ALG5

Network 1: alg5_bov_hum - 2008-09-16 08:43 PM : alg5_bov_hum.bt

© 2000-2008 Ingenuity Systems, Inc. All rights reserved.

Similar genes... case of ALG5

Network 2 : alg5_bov_hum - 2008-09-16 08:43 PM : alg5_bov_hum.bt

Similar genes... case of ALG5

Crossing with IPA (ingenuity) Microarray bovine/human

Network 1 & 2

Genes with similar time matrix correlation

- role of relationships (interaction)
 - not only based on genomic data
 - transcriptomics approach
- role of expression over time
 - not only facts about inhibition / activation
 - comparison of relative expression
 - comparative transcriptomics

conclusion

• Approach with a double-step clustering using time-dependent molecular high-throughput expression data

- Make a temporal profile over two datasets by consensus clustering even if a gene does not belong to one of them
- Fast and easy to understand
- Need to make deeper benchmark with Ingenuity Usage for validation
- Need re-programming for time/memory optimization (R + C-language)

Dr Isabelle Hue (INRA, BDR Unit) (Reproductive and Developmental Biology)

INRA has recently signed a cooperation agreement with the **Russian Foundation for Basic Research** (**RFBR/RFFI**)

call for project proposals on 1st septembre 2008

MERCI СПАСИБО

Time-Series Microarray Alignment

