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We present simple proofs of Conway-Gordon-Sahs' theorem on

graphs in 3-dimensional spae and van Kampen-Flores' theorem on

nonrealizability of hypergraphs in 4-dimensional spae. The proofs

use a redution to lower dimensions. Our exposition is simpli�ed

and so aessible to students who know basi geometry of

3-dimensional spae and who are ready to learn straightforward

4-dimensional generalizations. We use elementary language whih

allows to present the main ideas without tehnialities.

https://users.mccme.ru/skopenko/


�èñ.: The impossible ube, an impossible projetion, the Penrose triangle, the

blivet



Impossible onstrutions and intrinsi linking

`Impossible onstrutions' like the impossible ube, the Penrose triangle,

the blivet et are well-known, mainly due to pitures by Maurits Cornelis

Esher. The pitures do not allow the global spatial interpretation

beause of ollision between loal spatial interpretations to eah other.

In geometry, topology and graph theory there are also famous basi

examples of `impossible onstrutions' (of whih loal parts are

`possible'). See also

[B26℄ P. Bruegel. Die Elster auf dem Galgen, 1526,

https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen

[GSS+℄ Projetions of skew lines, presented by A. Gaifullin, A.

Shapovalov, A. Skopenkov and M. Skopenkov,

http://www.turgor.ru/lktg/2001/index.php

[CKS+℄ New ways of weaving baskets, presented by G. Chelnokov, Yu.

Kudryashov, A.Skopenkov and A. Sossinsky,

http://www.turgor.ru/lktg/2004/lines.en/index.htm

https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen
http://www.turgor.ru/lktg/2001/index.php
http://www.turgor.ru/lktg/2004/lines.en/index.htm


We exhibit a striking relation of `impossible onstrutions' in

four-dimensional spae to `intrinsi linking' results in three-dimensional

spae. Suh a relation was found by M. Skopenkov in 2003. He used it

to obtain a short proof of the Menger 1929 onjeture (�rst proved by

B. Ummel in 1978 using ompliated alulations) and its

generalizations.

Let us state the beautiful result on `intrinsi linking'. We abbreviate

`three-dimensional spae R
3
' to `3-spae'. Analogous meaning has

`4-spae'.



Linked triangles

Take two triangles in 3-spae no 4 of whose 6 verties lie in the same

plane. The triangles are alled linked, if the outline of the �rst triangle

intersets the part of the plane bounded by the outline of the seond

triangle exatly at one point. (It is not obvious from the de�nition that

the property of being linked is symmetri.) E.g. the triangles A1A3A5

and A2A4A6 are linked. (The projetion is realizable.)
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�èñ.: Linked triangles



Theorem (Linear Conway�Gordon�Sahs Theorem; 1981-1983)

If no 4 of 6 points in 3-spae lie in the same plane, then there are two

linked triangles with verties at these 6 points.

We shall redue this result to impossibility of the following onstrution

in the plane:

�èñ.: Nonplanar graph K5

Lemma

From any 5 points in the plane one an hoose two disjoint pairs suh

that the segment joining the �rst pair intersets the segment joining the

seond pair. (This is a `linear' version of nonplanarity of K5.)



Hypergraphs

We present a natural generalization of nonplanarity of K5: beautiful and

nontrivial examples of two-dimensional analogues of graphs

non-realizable in 3- and 4-spae.

�èñ.: Realizations in 3-spae of the omplete 3-homogeneous hypergraph on 5
verties and of the produt of the omplete graphs on 5 and on 2 verties.



Suh analogues are 3-homogeneous, or 2-dimensional hypergraphs

de�ned as olletions of 3-element subsets of a �nite set.

Hypergraphs play an important role in mathematis. One annot

imagine topology and ombinatoris without them. They are also used

in omputer siene and bioinformatis.

For brevity, we omit `3-homogeneous, or 2-dimensional'. For instane, a

omplete hypergraph on k verties is the olletion of all 3-element

subsets of a k-element set.

�èñ.: Realizations in 3-spae of the square of the omplete graph on 2
verties, of the produt of the omplete graphs on 2 and on 3 verties and of

the square of the omplete graph on 3 verties. A subdivision of quadrilaterals

analogous to the leftmost �gure is not shown.



Realizability of hypergraphs

Realizability of a hypergraph in d -dimensional Eulidean spae is

de�ned similarly to the realizability of a graph in the plane: one `draws'

a triangle for every three-element subset.

A `small shift' (or `general position') argument shows that every graph

is realizable in 3-spae. A straightforward generalization shows that

every hypergraph is realizable in 5-spae. It is easy to see (and we shall

prove below) that the omplete hypergraph on 6 verties is

non-realizable in 3-spae. Already in the early history of topology

(1920s) mathematiians tried to onstrut hypergraphs non-realizable in

4-spae. E. van Kampen and A. Flores in 1932-34 proved that the

omplete hypergraph on 7 verties is not realizable in 4-spae. This is

one of the �rst results of both ombinatorial (algebrai) topology and

topologial ombinatoris, areas of ongoing ative researh.

We shall state this result in terms of systems of points, like the above

lemma for nonplanarity of K5. So we do not use the notions of a

hypergraph and its realizability. However, we did mention hypergraphs

in order to motivate the results.



What is 4-spae?

One an de�ne

• the line as the set of all real numbers;

• the plane as the set of all ordered pairs (x , y) of real numbers;

• 3-spae as the set of all ordered triples (x , y , z) of real numbers;

• 4-spae as the set of all ordered quadruples (x , y , z , t) of real
numbers.

Then one an `analytially' de�ne lines in a plane, lines and planes in

3-spae, lines, planes and (3-dimensional) hyperplanes in 4-spae.

Usually only the simplest properties are dedued from the analyti

de�nition (or just aepted as axioms). More ompliated properties an

be dedued from the simplest ones `synthetially' (i.e., as in shool

geometry, without using the analyti de�nition).



Main result for 4-spae

A triangle is the part of the plane bounded by the outline of a triangle.

Theorem (Linear Van Kampen-Flores Theorem; 1932-1934)

From any 7 points in 4-spae one an hoose two disjoint triples suh

that the two triangles with verties at the triples interset.

Observe that `typial' intersetion of two segments in the plane is either

empty set or a point. Analogously, `typial' intersetion

• of a segment and a triangle in 4-spae is empty.

• of two triangles in 4-spae is either empty set or a point.

An analogue of the above theorem

• is true for 5 points in the plane or 6 points in 3-spae.

• is false for 4 points in the plane, 5 points in 3-spae or 6 points in

4-spae (in R
d
take the d + 1 verties and an interior point of a

d -simplex).



Lowering of dimension: simple examples

Often it is onvenient to redue a planar problem to a linear one (i.e.,

to a problem in a line), and a spatial problem to a planar one. Similarly,

the best approah to some 4-dimensional problems is an analogy to, or

a redution to, spatial ones.

Observe that

• for eah two points not belonging to a line in 3-spae there exists a

broken line whih joins these points and does not interset the line.

• for eah plane in 3-spae there exist two points not in this plane suh

that any broken line joining them intersets the plane.

Analogously,

• for eah two points not belonging to a 2-dimensional plane in 4-spae

(e.g. to the plane x = y = 0) there exists a broken line whih joins

these points and does not interset the plane.

• for eah hyperplane in 4-spae (e.g. for the hyperplane x = 0) there
exist two points not in this hyperplane suh that any broken line joining

them intersets the hyperplane.



Lowering of dimension: proofs of main results

A striking idea is to redue the 4-dimensional Linear Van Kampen -

Flores Theorem to 3-dimensional Linear Conway - Gordon - Sahs

Theorem. Beause of suh `lowering of dimension' a reader unfamiliar

with 4-spae need not be sared. Before suh a redution we redue the

3-dimensional theorem to the lemma on 5 points in the plane.

Lemma (5PP)

From any 5 points in the plane one an hoose two disjoint pairs suh

that the segment joining the �rst pair intersets the segment joining the

seond pair.

This is easily proved by analyzing the onvex hull of the points. In order

to illustrate the `lowering of dimension' argument in the simplest

situation we present another proof, by redution to the following trivial

1-dimensional statement.

Take 4 points on a line, 2 red and 2 blue. The red and the blue pairs of

points are alled linked if they alternate: red-blue-red-blue or

blue-red-blue-red. Any 4 points in a line an be olored in 2 red and 2

blue so that the red pair is linked with the blue pair.



Proof of the 5PP Lemma.

Denote the points by O,A,B ,C ,D. If for some two points

X ,Y ∈ {A,B ,C ,D} the point X belongs to the segment OY , then we

are done. Otherwise we an assume that the points A,B ,C ,D are seen

from O in this order. Then the outlines of the triangles OAC and OBD

have an intersetion point di�erent from O. Hene some two sides of

the triangles have disjoint verties and interset.

�èñ.: To the proof of the 5PP Lemma



A weaker version of the Linear Conway�Gordon�Sahs Theorem

We illustrate the `lowering of the dimension' idea of proof of the LCGS

Theorem by a spatial analogue of the lemma on 5 points in the plane.

Lemma

From any 6 points in 3-spae one an hoose disjoint pair and triple

suh that the segment joining points of the pair intersets the triangle

spanned by the triple.

We have seen that the analogue of this lemma for 5 points is false.



Äîêàçàòåëüñòâî.

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' plane slightly below the point O.

Take the intersetion of this plane with the segment OAj , for every

given point Aj . Then by the lemma on 5 points in the plane there are 4

given points A,B ,C ,D suh that the triangles OAB and OCD have a

ommon point other than O. Now the lemma follows.

O

A5 A4

A2

A3

A1

�èñ.: A plane in 3-spae intersets the segments OAj by points A′

j .



Proof of the LCGS Theorem.

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' plane α slightly below the point O.

Denote by A′

1
, . . . ,A′

5
the intersetion points of α and segments joining

O to other given points.

In 3-spae a segment p is below a segment q (looking from point O), if

there exists a half-line OX with the endpoint O that intersets the

segment p at a point P := p ∩ OX , the segment q at a point

Q := q ∩OX , P 6= Q, so that Q is in the segment OP . So in the plane

α we obtain a piture analogous to the following:
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�èñ.: A piture in the `horizontal' plane slightly below the point O



Sine no 4 of the given points O,A1, . . . ,A5 lie in the same plane, the

number of those sides of the triangle A3A4A5 that are higher than A1A2

equals to the number of intersetion points of the outline of the triangle

A3A4A5 with the triangle OA1A2. Also, a segment annot interset a

triangle by more than 2 points. All this implies that the triangles OA1A2

and A3A4A5 are linked if and only if A1A2 is below an odd number of

sides of the triangle A3A4A5.

Remark. Now it su�es to prove that if no 3 of 5 points in the plane lie

in the same line and the intersetion points (di�erent from verties) of

segments joining these points are marked so as to show that one

segment `passes below the other', then there is a segment that is below

exatly one side of its `omplementary' triangle. This an be proved by

onsidering all possible ases. Suh an argument hard to generalize to

higher dimensions. So instead of giving details, let us present a ounting

argument that gives the `quantitative' version of the LCGS Theorem.



`Quantitative' (algebrai modulo 2) versions

The `quantitative' versions of the above results are as follows.

Lemma (quantitative 5PP)

If no 3 of 5 points in the plane lie in the same line, then the number of

intersetion points of interiors of segments joining the 5 points is odd.

This is easily proved by analyzing the onvex hull of the points, or by

redution to the orresponding trivial `quantitative' version of the

previous 1-dimensional statement.

Theorem (quantitative LCGS)

If no 4 of 6 points in 3-spae lie in the same plane, then the number of

linked unordered pairs of triangles with verties at these 6 points is odd.

Theorem (quantitative LVKF)

If no 5 of 7 points in 4-spae lie in the same 3-dimensional hyperplane,

then the number of intersetion points of triangles with verties at these

7 points is odd.



Proof of the quantitative LCGS Theorem.

The beginning is in the above proof of the LCGS Theorem. Then the

following numbers have the same parity:

• the number of linked unordered pairs of triangles formed by given

points;

• the number of segments AiAj that are below an odd number of sides

of their `omplementary' triangles AkAlAm,

{i , j , k , l ,m} = {1, 2, 3, 4, 5};
• the number of ordered pairs (AiAj ,AkAl) of segments of whih the

�rst is below the seond;

• the number of intersetion points of segments whose verties are

A′

1
, . . . ,A′

5
.

By the quantitative 5PP lemma the latter number is odd.



Proof of the LVKF Theorem

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' 3-dimensional hyperplane α slightly

below the point O. Denote by A′

1
, . . . ,A′

6
the intersetion points of α

and segments joining O to other given points A1, . . . ,A6. Clearly, no 4

of the obtained 6 points lie in the same plane. Hene by the LCGS

Theorem there are two linked triangles with verties at these points.

O

A5 A4

A2

A3
A6

A1

�èñ.: To the proof of the quantitative LVKF Theorem. A hyperplane in

4-spae (shown as a plane in 3-spae) intersets the segments OA1, . . . ,OA6

at 6 points A′

1
, . . . ,A′

6
whih are verties of two linked triangles.



Denote by ∆1 and ∆2 the triangles formed by given points so that the

linked triangles are the intersetions α ∩ O∆1 and α ∩ O∆2 of the

hyperplane α with tetrahedra O∆1 and O∆2 (e.g. ∆1 = A2A3A4 and

∆2 = A1A5A6). Denote by γ the plane ontaining O and the

intersetion line of the planes of the linked triangles. Then γ ∩ α is a

line and ∆γ

j := γ ∩ O∆j is a triangle (j = 1, 2). The side of ∆γ

j not

ontaining O is γ ∩∆j . The two sides of ∆γ

j ontaining O form the

intersetion of γ and the lateral surfae of the tetrahedron O∆j (whose

base is ∆j).

�èñ.: Setion by the plane γ: ∆γ

1
= OAC , ∆γ

2
= OBD.



Sine the triangles α ∩ O∆1 and α ∩ O∆2 are linked, the intersetion

points of the line γ ∩ α and the outlines of ∆γ

1
and ∆γ

2
alternate along

the line. Hene the outlines have a ommon point distint from O.

This point is either the intersetion of the sides γ ∩∆1 and γ ∩∆2 or,

without loss of generality, of the side γ ∩∆1 and the union of the two

sides of ∆γ

2
ontaining O. In the �rst ase ∆1 intersets ∆2. In the

seond ase ∆1 intersets the lateral surfae of the tetrahedron O∆2.

�èñ.: Linked triangles and alternating pairs of points



Important remarks

(1) The quantitative LVKF Theorem follows by a simple additional

ounting (analogous to the proof of the quantitative LCGS Theorem)

using the quantitative LCGS Theorem.

(2) We present elementary statements and simple proofs of the linear

versions of lassial results. Our proofs are easily generalized to the

pieewise linear (PL) and topologial versions.

(3) Comparison with other expositions. The quantitative (linear, PL and

topologial) CGS and VKF theorems have alternative simple proofs

based on showing that the parity in the statement is independent of the

set of given points. That proof and the proof skethed here are

presumably the simplest known proofs (`proofs from the Book'). Usually

the VKF theorem is proved using the Borsuk-Ulam theorem; suh a

proof requires some knowledge of algebrai topology.

Short algebrai proofs of the linear versions (in the spirit of the

`standard' proof of the Radon theorem) are given by Sober�on and

Bogdanov-Matushkin. However, those proofs do not generalize to PL

(or topologial) versions.



Multiple intersetion and linking

Realizations (=embeddings) are maps without self-intersetions. For

topologial ombinatoris and disrete geometry it is interesting to

study of maps whose self-intersetions are `not too ompliated'. An

important partiular ase is studying maps without triple intersetions

and, more generally, maps without r -tuple intersetions. Let us

formulate the triple analogues of the above-disussed results.

Theorem (Linear Sarkaria Theorem; 1991)

From any 11 points in 3-spae one an hoose 3 pairwise disjoint triples

whose 3 onvex hulls have a ommon point.

It is surprising that proof of suh an elementary result involves algebrai

topology. It would be interesting to obtain an elementary proof.

Let us formulate the analogue of this result for triple linking.



There are three Borromean triangles in 3-spae: they are pairwise

unlinked but linked together.

Theorem (Linear Negami Theorem; 1991)

There is N suh that if no 4 of N points in 3-spae lie in the same

plane, then there are three Borromean triangles with the verties at

these points.

It would be interesting to obtain an analogue of this result with spei�

N. Show that one annot take N = 10. Can one take N = 11? One an

make omputer experiments to solve this problem using equivalent

de�nitions of Borromean triangles (E. Kogan, arXiv:1908.03865).

�èñ.: Borromean triangles; f. https://en.wikipedia.org/wiki/Valknut


