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We present simple proofs of Conway-Gordon-Sa
hs' theorem on

graphs in 3-dimensional spa
e and van Kampen-Flores' theorem on

nonrealizability of hypergraphs in 4-dimensional spa
e. The proofs

use a redu
tion to lower dimensions. Our exposition is simpli�ed

and so a

essible to students who know basi
 geometry of

3-dimensional spa
e and who are ready to learn straightforward

4-dimensional generalizations. We use elementary language whi
h

allows to present the main ideas without te
hni
alities.

https://users.mccme.ru/skopenko/


�èñ.: The impossible 
ube, an impossible proje
tion, the Penrose triangle, the

blivet



Impossible 
onstru
tions and intrinsi
 linking

`Impossible 
onstru
tions' like the impossible 
ube, the Penrose triangle,

the blivet et
 are well-known, mainly due to pi
tures by Maurits Cornelis

Es
her. The pi
tures do not allow the global spatial interpretation

be
ause of 
ollision between lo
al spatial interpretations to ea
h other.

In geometry, topology and graph theory there are also famous basi


examples of `impossible 
onstru
tions' (of whi
h lo
al parts are

`possible'). See also

[B26℄ P. Bruegel. Die Elster auf dem Galgen, 1526,

https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen

[GSS+℄ Proje
tions of skew lines, presented by A. Gaifullin, A.

Shapovalov, A. Skopenkov and M. Skopenkov,

http://www.turgor.ru/lktg/2001/index.php

[CKS+℄ New ways of weaving baskets, presented by G. Chelnokov, Yu.

Kudryashov, A.Skopenkov and A. Sossinsky,

http://www.turgor.ru/lktg/2004/lines.en/index.htm

https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen
http://www.turgor.ru/lktg/2001/index.php
http://www.turgor.ru/lktg/2004/lines.en/index.htm


We exhibit a striking relation of `impossible 
onstru
tions' in

four-dimensional spa
e to `intrinsi
 linking' results in three-dimensional

spa
e. Su
h a relation was found by M. Skopenkov in 2003. He used it

to obtain a short proof of the Menger 1929 
onje
ture (�rst proved by

B. Ummel in 1978 using 
ompli
ated 
al
ulations) and its

generalizations.

Let us state the beautiful result on `intrinsi
 linking'. We abbreviate

`three-dimensional spa
e R
3
' to `3-spa
e'. Analogous meaning has

`4-spa
e'.



Linked triangles

Take two triangles in 3-spa
e no 4 of whose 6 verti
es lie in the same

plane. The triangles are 
alled linked, if the outline of the �rst triangle

interse
ts the part of the plane bounded by the outline of the se
ond

triangle exa
tly at one point. (It is not obvious from the de�nition that

the property of being linked is symmetri
.) E.g. the triangles A1A3A5

and A2A4A6 are linked. (The proje
tion is realizable.)
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�èñ.: Linked triangles



Theorem (Linear Conway�Gordon�Sa
hs Theorem; 1981-1983)

If no 4 of 6 points in 3-spa
e lie in the same plane, then there are two

linked triangles with verti
es at these 6 points.

We shall redu
e this result to impossibility of the following 
onstru
tion

in the plane:

�èñ.: Nonplanar graph K5

Lemma

From any 5 points in the plane one 
an 
hoose two disjoint pairs su
h

that the segment joining the �rst pair interse
ts the segment joining the

se
ond pair. (This is a `linear' version of nonplanarity of K5.)



Hypergraphs

We present a natural generalization of nonplanarity of K5: beautiful and

nontrivial examples of two-dimensional analogues of graphs

non-realizable in 3- and 4-spa
e.

�èñ.: Realizations in 3-spa
e of the 
omplete 3-homogeneous hypergraph on 5
verti
es and of the produ
t of the 
omplete graphs on 5 and on 2 verti
es.



Su
h analogues are 3-homogeneous, or 2-dimensional hypergraphs

de�ned as 
olle
tions of 3-element subsets of a �nite set.

Hypergraphs play an important role in mathemati
s. One 
annot

imagine topology and 
ombinatori
s without them. They are also used

in 
omputer s
ien
e and bioinformati
s.

For brevity, we omit `3-homogeneous, or 2-dimensional'. For instan
e, a


omplete hypergraph on k verti
es is the 
olle
tion of all 3-element

subsets of a k-element set.

�èñ.: Realizations in 3-spa
e of the square of the 
omplete graph on 2
verti
es, of the produ
t of the 
omplete graphs on 2 and on 3 verti
es and of

the square of the 
omplete graph on 3 verti
es. A subdivision of quadrilaterals

analogous to the leftmost �gure is not shown.



Realizability of hypergraphs

Realizability of a hypergraph in d -dimensional Eu
lidean spa
e is

de�ned similarly to the realizability of a graph in the plane: one `draws'

a triangle for every three-element subset.

A `small shift' (or `general position') argument shows that every graph

is realizable in 3-spa
e. A straightforward generalization shows that

every hypergraph is realizable in 5-spa
e. It is easy to see (and we shall

prove below) that the 
omplete hypergraph on 6 verti
es is

non-realizable in 3-spa
e. Already in the early history of topology

(1920s) mathemati
ians tried to 
onstru
t hypergraphs non-realizable in

4-spa
e. E. van Kampen and A. Flores in 1932-34 proved that the


omplete hypergraph on 7 verti
es is not realizable in 4-spa
e. This is

one of the �rst results of both 
ombinatorial (algebrai
) topology and

topologi
al 
ombinatori
s, areas of ongoing a
tive resear
h.

We shall state this result in terms of systems of points, like the above

lemma for nonplanarity of K5. So we do not use the notions of a

hypergraph and its realizability. However, we did mention hypergraphs

in order to motivate the results.



What is 4-spa
e?

One 
an de�ne

• the line as the set of all real numbers;

• the plane as the set of all ordered pairs (x , y) of real numbers;

• 3-spa
e as the set of all ordered triples (x , y , z) of real numbers;

• 4-spa
e as the set of all ordered quadruples (x , y , z , t) of real
numbers.

Then one 
an `analyti
ally' de�ne lines in a plane, lines and planes in

3-spa
e, lines, planes and (3-dimensional) hyperplanes in 4-spa
e.

Usually only the simplest properties are dedu
ed from the analyti


de�nition (or just a

epted as axioms). More 
ompli
ated properties 
an

be dedu
ed from the simplest ones `syntheti
ally' (i.e., as in s
hool

geometry, without using the analyti
 de�nition).



Main result for 4-spa
e

A triangle is the part of the plane bounded by the outline of a triangle.

Theorem (Linear Van Kampen-Flores Theorem; 1932-1934)

From any 7 points in 4-spa
e one 
an 
hoose two disjoint triples su
h

that the two triangles with verti
es at the triples interse
t.

Observe that `typi
al' interse
tion of two segments in the plane is either

empty set or a point. Analogously, `typi
al' interse
tion

• of a segment and a triangle in 4-spa
e is empty.

• of two triangles in 4-spa
e is either empty set or a point.

An analogue of the above theorem

• is true for 5 points in the plane or 6 points in 3-spa
e.

• is false for 4 points in the plane, 5 points in 3-spa
e or 6 points in

4-spa
e (in R
d
take the d + 1 verti
es and an interior point of a

d -simplex).



Lowering of dimension: simple examples

Often it is 
onvenient to redu
e a planar problem to a linear one (i.e.,

to a problem in a line), and a spatial problem to a planar one. Similarly,

the best approa
h to some 4-dimensional problems is an analogy to, or

a redu
tion to, spatial ones.

Observe that

• for ea
h two points not belonging to a line in 3-spa
e there exists a

broken line whi
h joins these points and does not interse
t the line.

• for ea
h plane in 3-spa
e there exist two points not in this plane su
h

that any broken line joining them interse
ts the plane.

Analogously,

• for ea
h two points not belonging to a 2-dimensional plane in 4-spa
e

(e.g. to the plane x = y = 0) there exists a broken line whi
h joins

these points and does not interse
t the plane.

• for ea
h hyperplane in 4-spa
e (e.g. for the hyperplane x = 0) there
exist two points not in this hyperplane su
h that any broken line joining

them interse
ts the hyperplane.



Lowering of dimension: proofs of main results

A striking idea is to redu
e the 4-dimensional Linear Van Kampen -

Flores Theorem to 3-dimensional Linear Conway - Gordon - Sa
hs

Theorem. Be
ause of su
h `lowering of dimension' a reader unfamiliar

with 4-spa
e need not be s
ared. Before su
h a redu
tion we redu
e the

3-dimensional theorem to the lemma on 5 points in the plane.

Lemma (5PP)

From any 5 points in the plane one 
an 
hoose two disjoint pairs su
h

that the segment joining the �rst pair interse
ts the segment joining the

se
ond pair.

This is easily proved by analyzing the 
onvex hull of the points. In order

to illustrate the `lowering of dimension' argument in the simplest

situation we present another proof, by redu
tion to the following trivial

1-dimensional statement.

Take 4 points on a line, 2 red and 2 blue. The red and the blue pairs of

points are 
alled linked if they alternate: red-blue-red-blue or

blue-red-blue-red. Any 4 points in a line 
an be 
olored in 2 red and 2

blue so that the red pair is linked with the blue pair.



Proof of the 5PP Lemma.

Denote the points by O,A,B ,C ,D. If for some two points

X ,Y ∈ {A,B ,C ,D} the point X belongs to the segment OY , then we

are done. Otherwise we 
an assume that the points A,B ,C ,D are seen

from O in this order. Then the outlines of the triangles OAC and OBD

have an interse
tion point di�erent from O. Hen
e some two sides of

the triangles have disjoint verti
es and interse
t.

�èñ.: To the proof of the 5PP Lemma



A weaker version of the Linear Conway�Gordon�Sa
hs Theorem

We illustrate the `lowering of the dimension' idea of proof of the LCGS

Theorem by a spatial analogue of the lemma on 5 points in the plane.

Lemma

From any 6 points in 3-spa
e one 
an 
hoose disjoint pair and triple

su
h that the segment joining points of the pair interse
ts the triangle

spanned by the triple.

We have seen that the analogue of this lemma for 5 points is false.



Äîêàçàòåëüñòâî.

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' plane slightly below the point O.

Take the interse
tion of this plane with the segment OAj , for every

given point Aj . Then by the lemma on 5 points in the plane there are 4

given points A,B ,C ,D su
h that the triangles OAB and OCD have a


ommon point other than O. Now the lemma follows.

O

A5 A4

A2

A3

A1

�èñ.: A plane in 3-spa
e interse
ts the segments OAj by points A′

j .



Proof of the LCGS Theorem.

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' plane α slightly below the point O.

Denote by A′

1
, . . . ,A′

5
the interse
tion points of α and segments joining

O to other given points.

In 3-spa
e a segment p is below a segment q (looking from point O), if

there exists a half-line OX with the endpoint O that interse
ts the

segment p at a point P := p ∩ OX , the segment q at a point

Q := q ∩OX , P 6= Q, so that Q is in the segment OP . So in the plane

α we obtain a pi
ture analogous to the following:
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�èñ.: A pi
ture in the `horizontal' plane slightly below the point O



Sin
e no 4 of the given points O,A1, . . . ,A5 lie in the same plane, the

number of those sides of the triangle A3A4A5 that are higher than A1A2

equals to the number of interse
tion points of the outline of the triangle

A3A4A5 with the triangle OA1A2. Also, a segment 
annot interse
t a

triangle by more than 2 points. All this implies that the triangles OA1A2

and A3A4A5 are linked if and only if A1A2 is below an odd number of

sides of the triangle A3A4A5.

Remark. Now it su�
es to prove that if no 3 of 5 points in the plane lie

in the same line and the interse
tion points (di�erent from verti
es) of

segments joining these points are marked so as to show that one

segment `passes below the other', then there is a segment that is below

exa
tly one side of its `
omplementary' triangle. This 
an be proved by


onsidering all possible 
ases. Su
h an argument hard to generalize to

higher dimensions. So instead of giving details, let us present a 
ounting

argument that gives the `quantitative' version of the LCGS Theorem.



`Quantitative' (algebrai
 modulo 2) versions

The `quantitative' versions of the above results are as follows.

Lemma (quantitative 5PP)

If no 3 of 5 points in the plane lie in the same line, then the number of

interse
tion points of interiors of segments joining the 5 points is odd.

This is easily proved by analyzing the 
onvex hull of the points, or by

redu
tion to the 
orresponding trivial `quantitative' version of the

previous 1-dimensional statement.

Theorem (quantitative LCGS)

If no 4 of 6 points in 3-spa
e lie in the same plane, then the number of

linked unordered pairs of triangles with verti
es at these 6 points is odd.

Theorem (quantitative LVKF)

If no 5 of 7 points in 4-spa
e lie in the same 3-dimensional hyperplane,

then the number of interse
tion points of triangles with verti
es at these

7 points is odd.



Proof of the quantitative LCGS Theorem.

The beginning is in the above proof of the LCGS Theorem. Then the

following numbers have the same parity:

• the number of linked unordered pairs of triangles formed by given

points;

• the number of segments AiAj that are below an odd number of sides

of their `
omplementary' triangles AkAlAm,

{i , j , k , l ,m} = {1, 2, 3, 4, 5};
• the number of ordered pairs (AiAj ,AkAl) of segments of whi
h the

�rst is below the se
ond;

• the number of interse
tion points of segments whose verti
es are

A′

1
, . . . ,A′

5
.

By the quantitative 5PP lemma the latter number is odd.



Proof of the LVKF Theorem

We may assume that there is a unique `highest' point O among the

given ones. Consider a `horizontal' 3-dimensional hyperplane α slightly

below the point O. Denote by A′

1
, . . . ,A′

6
the interse
tion points of α

and segments joining O to other given points A1, . . . ,A6. Clearly, no 4

of the obtained 6 points lie in the same plane. Hen
e by the LCGS

Theorem there are two linked triangles with verti
es at these points.

O

A5 A4

A2

A3
A6

A1

�èñ.: To the proof of the quantitative LVKF Theorem. A hyperplane in

4-spa
e (shown as a plane in 3-spa
e) interse
ts the segments OA1, . . . ,OA6

at 6 points A′

1
, . . . ,A′

6
whi
h are verti
es of two linked triangles.



Denote by ∆1 and ∆2 the triangles formed by given points so that the

linked triangles are the interse
tions α ∩ O∆1 and α ∩ O∆2 of the

hyperplane α with tetrahedra O∆1 and O∆2 (e.g. ∆1 = A2A3A4 and

∆2 = A1A5A6). Denote by γ the plane 
ontaining O and the

interse
tion line of the planes of the linked triangles. Then γ ∩ α is a

line and ∆γ

j := γ ∩ O∆j is a triangle (j = 1, 2). The side of ∆γ

j not


ontaining O is γ ∩∆j . The two sides of ∆γ

j 
ontaining O form the

interse
tion of γ and the lateral surfa
e of the tetrahedron O∆j (whose

base is ∆j).

�èñ.: Se
tion by the plane γ: ∆γ

1
= OAC , ∆γ

2
= OBD.



Sin
e the triangles α ∩ O∆1 and α ∩ O∆2 are linked, the interse
tion

points of the line γ ∩ α and the outlines of ∆γ

1
and ∆γ

2
alternate along

the line. Hen
e the outlines have a 
ommon point distin
t from O.

This point is either the interse
tion of the sides γ ∩∆1 and γ ∩∆2 or,

without loss of generality, of the side γ ∩∆1 and the union of the two

sides of ∆γ

2

ontaining O. In the �rst 
ase ∆1 interse
ts ∆2. In the

se
ond 
ase ∆1 interse
ts the lateral surfa
e of the tetrahedron O∆2.

�èñ.: Linked triangles and alternating pairs of points



Important remarks

(1) The quantitative LVKF Theorem follows by a simple additional


ounting (analogous to the proof of the quantitative LCGS Theorem)

using the quantitative LCGS Theorem.

(2) We present elementary statements and simple proofs of the linear

versions of 
lassi
al results. Our proofs are easily generalized to the

pie
ewise linear (PL) and topologi
al versions.

(3) Comparison with other expositions. The quantitative (linear, PL and

topologi
al) CGS and VKF theorems have alternative simple proofs

based on showing that the parity in the statement is independent of the

set of given points. That proof and the proof sket
hed here are

presumably the simplest known proofs (`proofs from the Book'). Usually

the VKF theorem is proved using the Borsuk-Ulam theorem; su
h a

proof requires some knowledge of algebrai
 topology.

Short algebrai
 proofs of the linear versions (in the spirit of the

`standard' proof of the Radon theorem) are given by Sober�on and

Bogdanov-Matushkin. However, those proofs do not generalize to PL

(or topologi
al) versions.



Multiple interse
tion and linking

Realizations (=embeddings) are maps without self-interse
tions. For

topologi
al 
ombinatori
s and dis
rete geometry it is interesting to

study of maps whose self-interse
tions are `not too 
ompli
ated'. An

important parti
ular 
ase is studying maps without triple interse
tions

and, more generally, maps without r -tuple interse
tions. Let us

formulate the triple analogues of the above-dis
ussed results.

Theorem (Linear Sarkaria Theorem; 1991)

From any 11 points in 3-spa
e one 
an 
hoose 3 pairwise disjoint triples

whose 3 
onvex hulls have a 
ommon point.

It is surprising that proof of su
h an elementary result involves algebrai


topology. It would be interesting to obtain an elementary proof.

Let us formulate the analogue of this result for triple linking.



There are three Borromean triangles in 3-spa
e: they are pairwise

unlinked but linked together.

Theorem (Linear Negami Theorem; 1991)

There is N su
h that if no 4 of N points in 3-spa
e lie in the same

plane, then there are three Borromean triangles with the verti
es at

these points.

It would be interesting to obtain an analogue of this result with spe
i�


N. Show that one 
annot take N = 10. Can one take N = 11? One 
an

make 
omputer experiments to solve this problem using equivalent

de�nitions of Borromean triangles (E. Kogan, arXiv:1908.03865).

�èñ.: Borromean triangles; 
f. https://en.wikipedia.org/wiki/Valknut


