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We present simple proofs of Conway-Gordon-Sachs’ theorem on
graphs in 3-dimensional space and van Kampen-Flores' theorem on
nonrealizability of hypergraphs in 4-dimensional space. The proofs
use a reduction to lower dimensions. Our exposition is simplified
and so accessible to students who know basic geometry of
3-dimensional space and who are ready to learn straightforward
4-dimensional generalizations. We use elementary language which
allows to present the main ideas without technicalities.
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Puc.: The impossible cube, an impossible projection, the Penrose triangle, the
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Impossible constructions and intrinsic linking

‘Impossible constructions’ like the impossible cube, the Penrose triangle,
the blivet etc are well-known, mainly due to pictures by Maurits Cornelis
Escher. The pictures do not allow the global spatial interpretation
because of collision between local spatial interpretations to each other.
In geometry, topology and graph theory there are also famous basic
examples of ‘impossible constructions’ (of which local parts are
‘possible’). See also

[B26] P. Bruegel. Die Elster auf dem Galgen, 1526,
https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen
[GSS+] Projections of skew lines, presented by A. Gaifullin, A.
Shapovalov, A. Skopenkov and M. Skopenkov,
http://www.turgor.ru/lktg/2001/index.php

[CKS+] New ways of weaving baskets, presented by G. Chelnokov, Yu.
Kudryashov, A.Skopenkov and A. Sossinsky,
http://www.turgor.ru/lktg/2004/lines.en/index.htm


https://de.wikipedia.org/wiki/Die_Elster_auf_dem_Galgen
http://www.turgor.ru/lktg/2001/index.php
http://www.turgor.ru/lktg/2004/lines.en/index.htm

We exhibit a striking relation of ‘impossible constructions’ in
four-dimensional space to ‘intrinsic linking’ results in three-dimensional
space. Such a relation was found by M. Skopenkov in 2003. He used it
to obtain a short proof of the Menger 1929 conjecture (first proved by
B. Ummel in 1978 using complicated calculations) and its
generalizations.

Let us state the beautiful result on ‘intrinsic linking’. We abbreviate

‘three-dimensional space R3’ to ‘3-space’. Analogous meaning has
‘4-space’.



Linked triangles

Take two triangles in 3-space no 4 of whose 6 vertices lie in the same
plane. The triangles are called linked, if the outline of the first triangle
intersects the part of the plane bounded by the outline of the second
triangle exactly at one point. (It is not obvious from the definition that
the property of being linked is symmetric.) E.g. the triangles A;A3As
and AzA4Ag are linked. (The projection is realizable.)

As Ag

>- Ay
Ay

As Ay

Puc.: Linked triangles



Theorem (Linear Conway—Gordon—Sachs Theorem; 1981-1983)
If no 4 of 6 points in 3-space lie in the same plane, then there are two
linked triangles with vertices at these 6 points.

We shall reduce this result to impossibility of the following construction
in the plane:

Puc.: Nonplanar graph Ks

Lemma

From any 5 points in the plane one can choose two disjoint pairs such
that the segment joining the first pair intersects the segment joining the
second pair. (This is a ‘linear” version of nonplanarity of Ks.)



Hypergraphs

We present a natural generalization of nonplanarity of Ks: beautiful and
nontrivial examples of two-dimensional analogues of graphs
non-realizable in 3- and 4-space.

Puc.: Realizations in 3-space of the complete 3-homogeneous hypergraph on 5
vertices and of the product of the complete graphs on 5 and on 2 vertices.



Such analogues are 3-homogeneous, or 2-dimensional hypergraphs
defined as collections of 3-element subsets of a finite set.

Hypergraphs play an important role in mathematics. One cannot
imagine topology and combinatorics without them. They are also used
in computer science and bioinformatics.

For brevity, we omit ‘3-homogeneous, or 2-dimensional’. For instance, a
complete hypergraph on k vertices is the collection of all 3-element
subsets of a k-element set.
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Puc.: Realizations in 3-space of the square of the complete graph on 2
vertices, of the product of the complete graphs on 2 and on 3 vertices and of
the square of the complete graph on 3 vertices. A subdivision of quadrilaterals
analogous to the leftmost figure is not shown.




Realizability of hypergraphs

Realizability of a hypergraph in d-dimensional Euclidean space is
defined similarly to the realizability of a graph in the plane: one ‘draws’
a triangle for every three-element subset.

A ‘small shift’ (or ‘general position’) argument shows that every graph
is realizable in 3-space. A straightforward generalization shows that
every hypergraph is realizable in 5-space. It is easy to see (and we shall
prove below) that the complete hypergraph on 6 vertices is
non-realizable in 3-space. Already in the early history of topology
(1920s) mathematicians tried to construct hypergraphs non-realizable in
4-space. E. van Kampen and A. Flores in 1932-34 proved that the
complete hypergraph on 7 vertices is not realizable in 4-space. This is
one of the first results of both combinatorial (algebraic) topology and
topological combinatorics, areas of ongoing active research.

We shall state this result in terms of systems of points, like the above
lemma for nonplanarity of Ks. So we do not use the notions of a
hypergraph and its realizability. However, we did mention hypergraphs
in order to motivate the results.



What is 4-space?

One can define

e the /ine as the set of all real numbers;

e the plane as the set of all ordered pairs (x, y) of real numbers;

e 3-space as the set of all ordered triples (x, y, z) of real numbers;

e 4-space as the set of all ordered quadruples (x, y, z, t) of real
numbers.

Then one can ‘analytically’ define lines in a plane, lines and planes in
3-space, lines, planes and (3-dimensional) hyperplanes in 4-space.
Usually only the simplest properties are deduced from the analytic
definition (or just accepted as axioms). More complicated properties can
be deduced from the simplest ones ‘synthetically’ (i.e., as in school
geometry, without using the analytic definition).



Main result for 4-space
A triangle is the part of the plane bounded by the outline of a triangle.

Theorem (Linear Van Kampen-Flores Theorem; 1932-1934)

From any 7 points in 4-space one can choose two disjoint triples such
that the two triangles with vertices at the triples intersect.

Observe that ‘typical’ intersection of two segments in the plane is either
empty set or a point. Analogously, ‘typical’ intersection

e of a segment and a triangle in 4-space is empty.

e of two triangles in 4-space is either empty set or a point.

An analogue of the above theorem

e is true for 5 points in the plane or 6 points in 3-space.

e is false for 4 points in the plane, 5 points in 3-space or 6 points in
4-space (in RY take the d 4 1 vertices and an interior point of a
d-simplex).



Lowering of dimension: simple examples

Often it is convenient to reduce a planar problem to a linear one (i.e.,
to a problem in a line), and a spatial problem to a planar one. Similarly,
the best approach to some 4-dimensional problems is an analogy to, or
a reduction to, spatial ones.

Observe that

e for each two points not belonging to a line in 3-space there exists a
broken line which joins these points and does not intersect the line.

e for each plane in 3-space there exist two points not in this plane such
that any broken line joining them intersects the plane.

Analogously,

e for each two points not belonging to a 2-dimensional plane in 4-space
(e.g. to the plane x = y = 0) there exists a broken line which joins
these points and does not intersect the plane.

e for each hyperplane in 4-space (e.g. for the hyperplane x = 0) there
exist two points not in this hyperplane such that any broken line joining
them intersects the hyperplane.



Lowering of dimension: proofs of main results

A striking idea is to reduce the 4-dimensional Linear Van Kampen -
Flores Theorem to 3-dimensional Linear Conway - Gordon - Sachs
Theorem. Because of such ‘lowering of dimension’ a reader unfamiliar
with 4-space need not be scared. Before such a reduction we reduce the
3-dimensional theorem to the lemma on 5 points in the plane.

Lemma (5PP)

From any 5 points in the plane one can choose two disjoint pairs such
that the segment joining the first pair intersects the segment joining the
second pair.

This is easily proved by analyzing the convex hull of the points. In order
to illustrate the ‘lowering of dimension’ argument in the simplest
situation we present another proof, by reduction to the following trivial
1-dimensional statement.

Take 4 points on a line, 2 red and 2 blue. The red and the blue pairs of
points are called linked if they alternate: red-blue-red-blue or
blue-red-blue-red. Any 4 points in a line can be colored in 2 red and 2
blue so that the red pair is linked with the blue pair.



Proof of the 5PP Lemma.

Denote the points by O, A, B, C, D. If for some two points

X,Y € {A, B, C,D} the point X belongs to the segment OY, then we
are done. Otherwise we can assume that the points A, B, C, D are seen
from O in this order. Then the outlines of the triangles OAC and OBD
have an intersection point different from O. Hence some two sides of

the triangles have disjoint vertices and intersect. O
C
D '
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Puc.: To the proof of the 5PP Lemma



A weaker version of the Linear Conway—Gordon—Sachs Theorem

We illustrate the ‘lowering of the dimension’ idea of proof of the LCGS
Theorem by a spatial analogue of the lemma on 5 points in the plane.

Lemma

From any 6 points in 3-space one can choose disjoint pair and triple
such that the segment joining points of the pair intersects the triangle
spanned by the triple.

We have seen that the analogue of this lemma for 5 points is false.



[okazaTenscTso.

We may assume that there is a unique ‘highest’ point O among the
given ones. Consider a ‘horizontal’ plane slightly below the point O.
Take the intersection of this plane with the segment OA;, for every
given point A;. Then by the lemma on 5 points in the plane there are 4
given points A, B, C, D such that the triangles OAB and OCD have a
common point other than O. Now the lemma follows. O

A [ A\

Puc.: A plane in 3-space intersects the segments OA; by points AJ’-.




Proof of the LCGS Theorem.

We may assume that there is a unique ‘highest’ point O among the
given ones. Consider a ‘horizontal’ plane « slightly below the point O.
Denote by Aj, ..., Ag the intersection points of o and segments joining
O to other given points.

In 3-space a segment p is below a segment q (looking from point O), if
there exists a half-line OX with the endpoint O that intersects the
segment p at a point P := pN OX, the segment g at a point
Q:=gnNOX, P+# Q, so that Q is in the segment OP. So in the plane
« we obtain a picture analogous to the following:

.—13 A 2

Puc.: A picture in the ‘horizontal’ plane slightly below the point O



Since no 4 of the given points O, A;, ..., As lie in the same plane, the
number of those sides of the triangle A3A;As that are higher than A; A
equals to the number of intersection points of the outline of the triangle
A3A4As with the triangle OA1A,. Also, a segment cannot intersect a
triangle by more than 2 points. All this implies that the triangles OA1 A
and A3A4As are linked if and only if A1As is below an odd number of
sides of the triangle A3A4As.

Remark. Now it suffices to prove that if no 3 of 5 points in the plane lie
in the same line and the intersection points (different from vertices) of
segments joining these points are marked so as to show that one
segment ‘passes below the other’, then there is a segment that is below
exactly one side of its ‘complementary’ triangle. This can be proved by
considering all possible cases. Such an argument hard to generalize to
higher dimensions. So instead of giving details, let us present a counting
argument that gives the ‘quantitative’ version of the LCGS Theorem.



‘Quantitative’ (algebraic modulo 2) versions
The ‘quantitative’ versions of the above results are as follows.
Lemma (quantitative 5PP)

If no 3 of 5 points in the plane lie in the same line, then the number of
intersection points of interiors of segments joining the 5 points is odd.

This is easily proved by analyzing the convex hull of the points, or by
reduction to the corresponding trivial ‘quantitative’ version of the
previous 1-dimensional statement.

Theorem (quantitative LCGS)

If no 4 of 6 points in 3-space lie in the same plane, then the number of
linked unordered pairs of triangles with vertices at these 6 points is odd.

Theorem (quantitative LVKF)

If no 5 of 7 points in 4-space lie in the same 3-dimensional hyperplane,
then the number of intersection points of triangles with vertices at these
7 points is odd.



Proof of the quantitative LCGS Theorem.

The beginning is in the above proof of the LCGS Theorem. Then the
following numbers have the same parity:

e the number of linked unordered pairs of triangles formed by given
points;

e the number of segments A;A; that are below an odd number of sides
of their ‘complementary’ triangles AxA/Am,

{i,j k,,m} = {1,2,3,4,5);

e the number of ordered pairs (AjA;, AcA) of segments of which the
first is below the second;

e the number of intersection points of segments whose vertices are

Al .. AL

By the quantitative 5PP lemma the latter number is odd. O



Proof of the LVKF Theorem

We may assume that there is a unique ‘highest’ point O among the
given ones. Consider a ‘horizontal’ 3-dimensional hyperplane « slightly
below the point O. Denote by A],..., A the intersection points of «
and segments joining O to other given points Ay, ..., Ag. Clearly, no 4
of the obtained 6 points lie in the same plane. Hence by the LCGS
Theorem there are two linked triangles with vertices at these points.

/ As A, N\

Puc.: To the proof of the quantitative LVKF Theorem. A hyperplane in
4-space (shown as a plane in 3-space) intersects the segments OAy, ..., OAg
at 6 points Af,..., A; which are vertices of two linked triangles.



Denote by A; and A the triangles formed by given points so that the
linked triangles are the intersections « N OA; and o N OA; of the
hyperplane a with tetrahedra OA; and OA; (e.g. A1 = A2A3A4 and
Ay = A1A5Ag). Denote by v the plane containing O and the
intersection line of the planes of the linked triangles. Then y N« is a
line and A := v N OA;j is a triangle (j = 1,2). The side of A} not
containing O is v N Aj. The two sides of A;f containing O form the
intersection of v and the lateral surface of the tetrahedron OA; (whose
base is A;).

v

15} A

Puc.: Section by the plane v: A] = OAC, A} = OBD.



Since the triangles « N OA; and o N OA; are linked, the intersection
points of the line ¥ N « and the outlines of A] and A alternate along
the line. Hence the outlines have a common point distinct from O.
This point is either the intersection of the sides v N Aj and v N A; or,
without loss of generality, of the side v N Ay and the union of the two
sides of AJ containing O. In the first case A; intersects As. In the
second case A; intersects the lateral surface of the tetrahedron OA,.

Puc.: Linked triangles and alternating pairs of points



Important remarks

(1) The quantitative LVKF Theorem follows by a simple additional
counting (analogous to the proof of the quantitative LCGS Theorem)
using the quantitative LCGS Theorem.

(2) We present elementary statements and simple proofs of the linear
versions of classical results. Our proofs are easily generalized to the
piecewise linear (PL) and topological versions.

(3) Comparison with other expositions. The quantitative (linear, PL and
topological) CGS and VKF theorems have alternative simple proofs
based on showing that the parity in the statement is independent of the
set of given points. That proof and the proof sketched here are
presumably the simplest known proofs (‘proofs from the Book’). Usually
the VKF theorem is proved using the Borsuk-Ulam theorem; such a
proof requires some knowledge of algebraic topology.

Short algebraic proofs of the linear versions (in the spirit of the
‘standard’ proof of the Radon theorem) are given by Sober6n and
Bogdanov-Matushkin. However, those proofs do not generalize to PL
(or topological) versions.



Multiple intersection and linking

Realizations (=embeddings) are maps without self-intersections. For
topological combinatorics and discrete geometry it is interesting to
study of maps whose self-intersections are ‘not too complicated’. An
important particular case is studying maps without triple intersections
and, more generally, maps without r-tuple intersections. Let us
formulate the triple analogues of the above-discussed results.

Theorem (Linear Sarkaria Theorem; 1991)

From any 11 points in 3-space one can choose 3 pairwise disjoint triples
whose 3 convex hulls have a common point.

It is surprising that proof of such an elementary result involves algebraic
topology. It would be interesting to obtain an elementary proof.

Let us formulate the analogue of this result for triple linking.



There are three Borromean triangles in 3-space: they are pairwise
unlinked but linked together.
Theorem (Linear Negami Theorem; 1991)

There is N such that if no 4 of N points in 3-space lie in the same
plane, then there are three Borromean triangles with the vertices at
these points.

It would be interesting to obtain an analogue of this result with specific
N. Show that one cannot take N = 10. Can one take N = 117 One can
make computer experiments to solve this problem using equivalent
definitions of Borromean triangles (E. Kogan, arXiv:1908.03865).

A

Puc.: Borromean triangles; cf. https://en.wikipedia.org/wiki/Valknut



