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Abstract

The Whitney trick for cancelling double intersections is one of the
main tools in the topology of manifolds. Analogues of the Whitney
trick for multiple intersections were ‘in the air’ since 1960s.
However, only in this century they were stated, proved and applied
to obtain interesting results.
I shall describe multiple Whitney trick in codimension ≥ 3
(Mabillard-Wagner 2015), in codimension 2
(Avvakumov-Mabillard-Skopenkov-Wagner 2015 [AMSW]) and
when general position multiple intersections have positive
dimension (Mabillard-Wagner 2016 and Skopenkov 2017).
These were most difficult steps of recent counterexamples to the
topological Tverberg conjecture (found in a series of papers by
M. Özaydin, M. Gromov, P. Blagojević, F. Frick, G. Ziegler, I.
Mabillard and U. Wagner) and of stronger counterexamples
([AMSW], Avvakumov-Karasev-Skopenkov 2019).

[Sk16] A. Skopenkov, A user’s guide to the topological Tverberg
Conjecture, Russian Math. Surveys, 73:2 (2018), 323–353; full
version: arXiv:1605.05141.



1. The Whitney trick for multiple intersections

Theorem (Strong Whitney Embedding theorem 1944)

Any compact k-dimensional manifold embeds into R2k .

For references to classical results and their discussion see surveys:
[Sk06] A. Skopenkov, Embedding and knotting of manifolds in
Euclidean spaces, London Math. Soc. Lect. Notes, 347 (2008)
248–342; arXiv:math/0604045.
[Sk16c] A. Skopenkov, Embeddings in Euclidean space: an introduction
to their classification, to appear in Boll. Man. Atl.
http://www.map.mpim-bonn.mpg.de/Embeddings_in_Euclidean_

space:_an_introduction_to_their_classification
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Figure: Algebraic intersection number and ‘Whitney trick’ in the plane
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Strong Whitney Embedding theorem is proved using the following
lemma.
We work in the PL category which we omit; in particular, all disks,
balls and maps are PL. Analogous results hold in the smooth category.
A map f : Dk → Bd is called proper, if f −1Sd−1 = Sk−1.

Lemma (Whitney 1944)

If f : D1 t D2 → B2k is a proper general position map of disjoint union
of k-dimensional disks such that the algebraic intersection number
fD1 · fD2 is zero, then there is a proper general position map

f ′ : D → B2k such that f ′ = f on ∂(D1tD2) and f ′D1∩f ′D2 = ∅.

The case k ≥ 3 is a version of the Whitney trick; the case k = 2 is an
exercise on elementary link theory; the case k = 1 is trivial.
Whitney trick fails for 2-surfaces in 4-manifolds (Kervaire-Milnor 1961).



Denote by D = D1 t . . . t Dr the disjoint union of r disks of dimension
k(r − 1).

Lemma (r -fold Local Disjunction 2015)

If k ≥ 2 and f : D → Bkr is a proper general position map such that
the r-fold algebraic intersection number fD1 · . . . · fDr is zero, then
there is a proper general position map

f ′ : D → Bkr such that f ′ = f on ∂D and f ′D1∩ . . .∩ f ′Dr = ∅.
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Figure: Triple intersection sign and Whitney trick



This is a simplified r -fold Whitney trick.
The case r = 2 is the above Local Disjunction lemma.
The case r , k ≥ 3 is essentially due to Mabillard-Wagner [MW15].
The case r ≥ 3, k = 2 is due to
Avvakumov-Mabillard-Skopenkov-Wagner [AMSW].

Before reading the idea of proof (§3) a reader might want to look at
striking applications (§2).
The analogue for k = 1 clearly holds when r = 2 and fails for each
r ≥ 3 [AMSW].

n1 p1 p2 n2

S1

S1

S1

Figure: The boundary of a counterexample to the analogue for k = 1



1A. Some applications of double Whitney trick

Theorem (van Kampen 1932; Wu 1955; Shapiro 1957; Weber
1967; Čadek-Krčál-Voǩŕınek 2013)

If 2d ≥ 3k + 3 (in particular, d = 2k ≥ 6), then there is an algorithm
deciding if given finite k-dimensional simplicial complex (hypergraph)
embeds into Rd .

This result is proved using h-principle for embeddings, i.e.
embeddability criterion involving Z2-equivariant maps to Sd−1 from the
configuration space K̃ of ordered pairs of distinct points of a complex
K (Haefliger-Weber 1963-67).
The deleted product K̃ = K 2 is

K̃ := {(x , y) ∈ K × K : x 6= y}.

Figure: The deleted product



Suppose that f : K → Rd is an embedding of a subset K ⊂ Rm. Then
the map f̃ : K̃ → Sd−1 is well-defined by the Gauss formula

f̃ (x , y) =
f (x)− f (y)

|f (x)− f (y)|
.

We have f̃ (y , x) = −f̃ (x , y), i.e. this map is equivariant with respect
to the ‘exchanging factors’ involution (x , y) 7→ (y , x) on K̃ and the
antipodal involution on Sd−1. Thus the existence of an equivariant map
K̃ → Sd−1 is a necessary condition for the embeddability of K in Rd .

Theorem (Weber 1967; h-principle for embeddings)

If 2d ≥ 3k + 3 and K is a finite k-dimensional simplicial complex, then
this condition is also sufficient.

Figure: The Gauss map



Proof of h-principle for embeddings: generalization of Whitney trick to
the case when general position multiple intersections have positive
dimension (but still codimension d − k ≥ 3).

Dream since the 1960’s: prove analogue of h-principle for embeddings
replacing pairs by triples and d > 3k/2 by d > 4k/3, etc (but still
codimension d − k ≥ 3).

Counterexamples by Segal-Spież 1992, Freedman-Kruskal-Teichner
1994, Segal-S-Spież 1998, Gonçalves-S 2006, see survey [Sk06, §5].

The general h-principle was introduced by Gromov in 1969as a
generalizationof the 1959 Smale-Hirsch classification of immersions.



Another problem: the homotopy classes of equivariant maps K̃ → Sd−1

are in general hard to calculate. (The same is true for isovariant maps.)
This is formalized by the following result.

Theorem (Matoušek-Tancer-Wagner 2011, de
Mesmay-Rieck-Sedgwick-Tancer, 2017)

For every fixed d , k such that 3 ≤ d ≤ 3k
2 + 1 the algorithmic problem

of recognizing PL embeddability of k-dimensional simplicial complexes
into Rd is NP-hard.

The paper [FWZ] announces the analogous result with ‘NP-hard’
replaced by ‘undecidable’ (for k + 3 ≤ d < 3k

2 + 1). However, there is a
mistake exhibited in [Sk20e] and recognized by the authors of [FWZ].
[FWZ] M. Filakovský, U. Wagner, S. Zhechev, Embeddability of
simplicial complexes is undecidable. Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611975994.47

[Sk20e] A. Skopenkov, Extendability of simplicial maps is undecidable,
arXiv:2008.00492.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611975994.47
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975994.47


The h-principle for embeddings for combinatorial (=PL) manifolds does
work under dimension restrictions weaker than 2d ≥ 3k + 3 (S 1997,
2002).

The Haefliger classification of higher-dimensional links (in codimension
≥ 3) includes higher-dimensional Borromean and Brunnian links, i.e.
3-linkings and r -linkings.

There are readily calculable isotopy classifications results for
k-manifolds in Rd when 2d < 3k + 3 (S 2008, 2011, 2019, Crowley-S
2008, 2016, Cencelj-Repovš-M.Skopenkov 2012, M.Skopenkov 2015).
Their proofs do not use use multiple Whitney trick (although for links
perhaps it may be recovered using multiple Whitney trick).

The Goodwillie-Weiss calculus of embeddings [We96] might have a version of
Whitney trick behind it [Go90]. So far that approach has not led to any new
readily calculable classifications [Sk16c, Remark 2.1], but it gives results on
higher homotopy groups of the space of embeddings.
[Go90] T. Goodwillie, A multiple disjunction lemma for smooth concordance
embeddings Memoirs of the AMS, 1990.
[We96] M. Weiss, Calculus of embeddings, Bull. of the AMS, 33:2 (1996)
177-187.



Classification of higher-dimensional ornaments [Me17] (circulated
earlier) used a simple version of triple Whitney trick.
[Me17] S. Melikhov, Gauss type formulas for link map invariants,
arXiv:1711.03530.

The h-principle for almost embeddings [MW15] (see §2) uses a multiple
Whitney trick and was motivated by the topological Tverberg
conjecture.
[MW15] I. Mabillard and U. Wagner, Eliminating Higher-Multiplicity
Intersections, I. A Whitney Trick for Tverberg-Type Problems.
arXiv:1508.02349.

We need to speak about PL balls of different dimensions and we will
use the word ‘disk’ for lower-dimensional objects and ‘ball’ for
higher-dimensional ones in order to clarify the distinction (even though,
formally, the disk Dd is the same as the ball Bd).



2. Counterexamples to the topological Tverberg conjecture
Any d + 2 points in d-space can be split into 2 disjoint subsets whose
convex hulls intersect (Radon theorem).
Denote by ∆N the N-dimensional simplex.

Theorem (topological Radon theorem; Bajmóczy-Bárány 1979)

For any d and continuous map ∆d+1 → Rd there are two disjoint faces
whose images intersect.

This is interesting as a simplicial version of the Borsuk-Ulam theorem.

Usual proof: apply Borsuk-Ulam theorem for certain configuration space, see
e.g. excellent book of Matousek 2003.
Simple proof: for a generic map f : ∆d+1 → Rd the parity of the number of
intersection points in f σ ∩ f τ for all non-ordered pairs {σ, τ} of disjoint faces
does not depend on f , see e.g. the survey [Sk18].
[Sk18] A. Skopenkov. Invariants of graph drawings in the plane, Arnold Math.
J., 6 (2020) 21–55; full version: arXiv:1805.10237.



Any 3d − 2 points in Rd can be decomposed into 3 groups such that
all the 3 convex hulls of the groups have a common point (Tverberg
theorem for r = 3, 1966).

Conjecture (topological Tverberg conjecture)

For any r , d and any continuous map f : ∆(d+1)(r−1) → Rd there are
pairwise disjoint faces σ1, . . . , σr ⊂ ∆(d+1)(r−1) such that
f (σ1) ∩ . . . ∩ f (σr ) 6= ∅.
This conjecture was considered a central unsolved problem of
topological combinatorics.
The conjecture was proved for r a prime by Bárány-Shlosman-Szűcs
(1981), and then for r a prime power by Özaydin (unpublished, 1987)
and A. Volovikov (1996). See a short exposition accessible to
non-specialists in the survey [Sk16].



Recently and somewhat unexpectedly, it turned out that there are
counterexamples for r not a prime power. For the counterexample
papers by Özaydin (1987), Gromov (2010), Blagojević-Frick-Ziegler
(2014), Frick (2015) and Mabillard-Wagner (2015) are important.

I do not distribute the credits for the counterexample, because the exact

description of contribution of particular authors is complex. I describe here

the structure of the proof so that a reader could make his/her own opinion.

See the details in §2A and in survey [Sk16].

Counterexamples were constructed first for d ≥ 3r + 1 (see above) and
then for d ≥ 2r + 1 [AMSW].

For d < 2r (e.g. d = 2) and r not a prime power this conjecture is still
open. (I did not check the counterexample for d = 3r presented in [MW15].

If correct, it presumably allows to improve the counterexample for d ≥ 2r + 1

to d = 2r .)

Counterexamples use a relation to the following r -fold van
Kampen–Flores conjecture.



From any 2k + 3 points in 2k-space one can choose 2 pairwise disjoint
collections of k + 1 points whose convex hulls intersect (linear van
Kampen-Flores theorem, 1932).

Theorem (van Kampen-Flores 1932)

For any continuous map ∆2k+2 → R2k there are two disjoint
k-dimensional faces whose images intersect.

Denote by ∆k
N the union of k-faced of ∆N (i.e. the complete

(k + 1)-regular hypergraph on N + 1 vertices). The theorem implies
that ∆k

2k+2 is not embeddable into R2k .

Usual proof: apply Borsuk-Ulam theorem for certain configuration space, see
e.g. excellent book of Matousek 2003.
Simple proof: for a generic map f : ∆k

2k+2 → R2k the parity of the number of
intersection points in f σ ∩ f τ for all non-ordered pairs {σ, τ} of disjoint faces
does not depend on f , see e.g. the survey [Sk18].



From any 11 points in 3-space one can choose 3 pairwise disjoint
triples whose 3 convex hulls have a common point (linear Sarkaria
theorem, 1991).

Conjecture (r -fold van Kampen–Flores)

For any r , k and any continuous map f : ∆(kr+2)(r−1) → Rkr there are
pairwise disjoint k(r − 1)-dimensional faces σ1, . . . , σr ⊂ ∆(kr+2)(r−1)

such that f (σ1) ∩ . . . ∩ f (σr ) 6= ∅.
This is true for a prime power r (Sarkaria 1991, Volovikov 1996) and is
false for other r (Mabillard-Wagner [MW15] + Özaydin 1987).

Counterexamples were constructed using the multiple Whitney trick
(see §1), first for k ≥ 3 [MW15] and then for k = 2 [AMSW].
For k = 1 and r not a prime power this conjecture is still open.



A continuous map f : K → Rd of a simplicial complex K is an almost
r-embedding if f σ1 ∩ . . . ∩ f σr = ∅ whenever σ1, . . . , σr are pairwise
disjoint faces of K .

Theorem (Counterexample to the r -fold van Kampen–Flores
conjecture; Ozaydin 1987 + Mabillard-Wagner 2015)

If r is not a prime power and k ≥ 3, then there is an almost

r -embedding ∆
k(r−1)
(kr+2)(r−1) → Rkr .

Lemma (Constraint; Gromov 2010, Blagojević-Frick-Ziegler 2014,
Frick 2015)

If there is an almost r -embedding ∆
k(r−1)
(kr+2)(r−1) → Rkr , then there is an

almost r -embedding ∆(kr+2)(r−1) → Rkr+1.

Taking k = 3 we obtain

Theorem (Counterexample to the topological Tverberg conjecture)

If r is not a prime power, then there is an almost r -embedding
∆(3r+2)(r−1) → R3r+1.



Let us prove the Constraint Lemma for r = 6 and k = 3 (this makes
the argument more accessible; the general case is analogous).
Take an almost 6-embedding ∆15

100 → R18 of the union of
15-dimensional faces of ∆100. Extend it arbitrarily to a map
f : ∆100 → R18. Denote by ρ(x) the distance from x ∈ ∆100 to ∆15

100.
It suffices to prove that f × ρ : ∆100 → R19 is an almost 6-embedding.
Suppose to the contrary that 6 points x1, . . . , x6 ∈ ∆100 lie in pairwise
disjoint faces and are mapped to the same point under f × ρ.
Dimension of one of those faces does not exceed 101

6 − 1, so it is at
most 15. W.l.o.g. this is the first face, hence ρ(x1) = 0. Then
ρ(x2) = . . . = ρ(x6) = ρ(x1) = 0, i.e. x1, . . . , x6 ∈ ∆15

100. Now the
condition f (x1) = . . . = f (x6) contradicts the fact that f |∆15

100
is an

almost 6-embedding.

The following straightforward generalization is required for stronger
counterexamples of [AKS].
Let N = (s + 2)r − 2. If there is an almost r -embedding of the union of
s-faces of ∆N in Rd−1, then there is an almost r -embedding ∆N → Rd .



3. Stronger counterexamples to the TTC

Theorem ([AKS])

If r is not a prime power and N := (d + 1)r − r
⌈d + 2

r + 1

⌉
− 2, then

there is an almost r -embedding ∆N → Rd .

[AKS] S. Avvakumov, R. Karasev and A. Skopenkov, Stronger
counterexamples to the topological Tverberg conjecture,
arxiv:1908.08731.
According to a private communication by F. Frick the bound of [BFZ15,
Theorem 5.4] together with the counterexample in [AMSW, Theorem
1.1] gives an almost r -embedding ∆F → Rd for r not a prime power, d

sufficiently large, and F some integer close to (d + 1)r −
r + 1

2

r + 1
(d + 1).

The above theorem provides even stronger counterexamples to the
topological Tverberg conjecture: for d large compared to r we have
N > (d + 1)(r − 1) and even N > F .



Conjecture 5.5 of [BFZ15] states that for r < d not a prime power
there is an almost r -embedding ∆(d+1)r−2 → Rd and there are no

almost r -embeddings ∆(d+1)r−1 → Rd .
(The case d ≤ r of the conjecture is trivially covered by known results.)
Theorem 5.4 from [BFZ15] is based on the following construction of
high-dimensional counterexamples by taking k-fold join power of
low-dimensional ones (analogous to the well-known [Sk16, Lemma
1.5]).

Lemma (Blagojević-Frick-Ziegler [BFZ15, Lemma 5.2])

If there is an almost r -embedding ∆a → Rd , then for each k there is
an almost r -embedding ∆k(a+1)−1 → Rk(d+1)−1.

Proof. For two maps f : ∆a → Bp and g : ∆b → Bq define the join

f ∗ g : ∆a+b+1 = ∆a ∗∆b → Bp ∗ Bp = Bp+q+1

by the formula (f ∗ g)(λx ⊕ µy) := λf (x)⊕ µf (y). A join of almost
r -embeddings is an almost r -embedding. Hence the k-fold join power
of an almost r -embedding ∆a → Bd is an almost r -embedding
∆k(a+1)−1 → Bk(d+1)−1.



We think our counterexamples are mostly interesting because their
proof requires non-trivial ideas, see below. Thus we do not spell out
even stronger counterexamples which presumably could be obtained by
combining our counterexamples with the above procedure of [BFZ15].
The above theorem of [AKS] follows from the above generalization of
the Constraint Lemma and the following stronger counterexample to
the r -fold van Kampen-Flores conjecture.
By general position, any k-complex admits an almost r -embedding in

Rk+
⌈
k+1
r−1

⌉
. A counterexample to the r -fold van Kampen–Flores

conjecture asserts that if r is not a prime power and k is divisible by

r − 1, then any k-complex admits an almost r -embedding in Rk+
k

r−1 .

Theorem ([AKS])

If r is not a prime power, then any k-complex admits an almost

r -embedding in Rk+
⌈
k+3
r

⌉
.

This follows from the Equivariant map Theorem and Metastable global
disjunction Theorem below.



Denote by Σr the permutation group of r elements. Let Rd×r := (Rd)r

be the set of real d × r -matrices. The group Σr acts on Rd×r by
permuting the columns. Denote

diag r = diag r ,d := {(x , x , . . . , x) ∈ Rd×r | x ∈ Rd}.

Theorem (Equivariant map; [AKS])

If r is not a prime power and X is a complex with a free PL action of
Σr , then there is a Σr -equivariant map X → R2×r − diag r .

This improves the Özaydin Theorem, see the survey [Sk16, Theorem
3.5]. This theorem follows by Lemmas below in §3A. The proof is
analogous to Theorem 5.1 of S. Avvakumov, R. Karasev. Envy-free
division using mapping degree, arXiv:1907.11183.

Theorem (Metastable global disjunction; [MW16, Sk17])

Assume that K is a k-complex and rd ≥ (r + 1)k + 3. There exists an
almost r -embedding f : K → Rd if and only if there exists a
Σr -equivariant map to Rd×r − diag r from

K×r∆ :=
⋃
{σ1×· · ·×σr : σi a simplex of K , σi∩σj = ∅ for every i 6= j}.



[MW16] I. Mabillard and U. Wagner. Eliminating Higher-Multiplicity
Intersections, II. The Deleted Product Criterion in the r-Metastable
Range. arxiv:1601.00876.
[Sk17] A. Skopenkov, Eliminating higher-multiplicity intersections in
the metastable dimension range, arxiv:1704.00143.

Proof of the stronger counterexample to the r-fold van
Kampen-Flores conjecture. Let K be any k-complex and

d := k +
⌈k + 3

r

⌉
. Since r is not a prime power, by the Equivariant

map Theorem there is a Σr -equivariant map K×r∆ → R2×r − diag r .
The composition of this map with the r -th power of the inclusion
R2 → Rd gives a Σr -equivariant map K×r∆ → Rd×r − diag r . We have
rd ≥ (r + 1)k + 3. Hence by the Metastable global disjunction
Theorem there is an almost r -embedding K → Rd .



3A. Deduction of stronger counterexamples

Lemma
Let G be a finite group acting on Sn. If there exists a degree zero
G-equivariant self-map of Sn, then any complex X with a free action of
G has a G-equivariant map X → Sn.

See the historical remarks and a proof in [AK19, §5].

Denote by S
d(r−1)−1
Σr

⊂ Rd×r − δr the set formed by all d × r -matrices
in which the sum of the elements in each row is zero, and the sum of
the squares of all the matrix elements is 1. This set is invariant under
the action of Σr . This set is homeomorphic to the sphere of dimension
d(r − 1)− 1.



Lemma (Main)

If r is not a prime power, then there is a degree zero Σr -equivariant

self-map of S2r−3
Σr

= S
2(r−1)−1
Σr

.

Proof. Since r is not a prime power, the greatest common divisor of
the binomial coefficients

(r
k

)
, k = 1, . . . , r − 1 is 1. Hence −1 is an

integer linear combination of the binomial coefficients. Denote by
C ⊂ S2r−3

Σr
the set of 2× r -matrices whose second row is zero, and the

entries of the first row involve only two numbers. A special map is a
Σr -equivariant self-map f of S2r−3

Σr
which is a local homeomorphism in

some neighborhood of C . The identity map of S2r−3
Σr

is a special map
of degree 1. Thus the lemma is implied by the following assertion.
For any r , any k = 1, . . . , r − 1 and any special map f there are special
maps f+, f− such that deg f± = deg f ±

(r
k

)
.



Idea of the proof of the assertion. Denote by R2r−2
Σr

the subspace of

R2×r of 2× r -matrices for which the sum in each row zero. We
construct an equivariant homotopy

h : S2r−3
Σr

× I → R2r−2
Σr

of the composition h0 of f with the standard inclusion.

Figure: The homotopy ‘pushes’ certain point c ∈ C towards the origin in R2×r

so that the origin is a regular value of h



The images of h0 and h1 miss the origin. Apply the central projection
from the origin to define for t = 0, 1 the equivariant map

ft : S2r−3
Σr

→ S2r−3
Σr

by ft(x) =
ht(x)

|ht(x)|
.

Then f0 = f . We construct f1 (i.e., c and h) in two ways f1,+, f1,− so
that the difference deg f1 − deg f0 is ±

(r
k

)
. More precisely, we obtain

deg f1,± − deg f0 = ±
(r
k

)
degc f , where degc f ∈ {+1,−1} is the local

degree of f at c . We use the fact that this difference equals to the
local degree of h at the origin, which is a regular value of h. The
construction of f1,− is easier, while for f1,+ we use the reflection w.r.t.
a certain hyperplane.



4. Idea of proof of r-fold Local Disjunction Lemma
Before I sketch the idea of proof, let me recall the statement.
Denote by D = D1 t D2 t D3 the disjoint union of three 2k-disks.

Lemma (3-fold Local Disjunction 2015)

If k ≥ 2 and f : D → B3k is a proper general position map such that
fD1 · fD2 · fD3 = 0, then there is a proper general position map

f ′ : D → B3k such that f ′ = f on ∂D and f ′D1∩f ′D2∩f ′D3 = ∅.



If two triple points of opposite signs in fD1 ∩ fD2 ∩ fD3 are contained in
one connected component of fD1 ∩ fD2, then we can ‘cancel’ them by
double Whitney trick applied to fD1 ∩ fD2 and fD3 (see fig. left, where
fD1 is the square section and fD2, fD3 are curvilinear sections). If not
(fig. right), then we need to first achieve this property by an analogue
of double Whitney trick applied to fD1 and fD2.
This is analogous to ‘surgery of the intersection’ fD1 ∩ fD2 as described
by Haefliger 1963, Habegger-Kaiser 1998, Cencelj-Repovš-M.Skopenkov
2012, Melikhov 2017. Application of this construction is non-trivial and
is an important achievement of Mabillard and Wagner.

Figure: Why triple Whitney trick is non-trivial?



Figure: Surgery of the intersection fD1 ∩ fD2: piping

Figure: Surgery of the intersection fD1 ∩ fD2: unpiping



5. Metastable dimension range
Let me present the r -fold Whitney trick when general position r -tuple
intersections have positive dimension. See applications in §2.
Denote by D = D1 t . . . t Dr the disjoint union of r disks of dimension
k(r − 1).
Let Bd×r := (Bd)r . Denote

δr := {(x , x , . . . , x) ∈ Rd×r | x ∈ Rd}.

Theorem (Metastable r -fold local disjunction; Mabillard-Wagner
2016, S 2017)

Assume that rd ≥ (r + 1)k + 3 and f : D → Bd a proper map such
that f ∂D1 ∩ . . . ∩ f ∂Dr = ∅. If the map

f r : ∂(D1 × . . .× Dr )→ Bd×r − δr

extends to D1 × . . .× Dr , then there is a proper

f : D → Bd such that f = f on ∂D and f D1∩. . .∩f Dr = ∅.



Passage from the case (r − 1)d = rk of [MW15, AMSW] to the case
rd ≥ (r + 1)k + 3 considered here is non-trivial because here general
position r -tuple intersections are no longer isolated points. This makes
surgery of intersection more complicated. More importantly, this brings
in ‘extendability of f r ’ obstruction, which is harder to work with than
the ‘sum of the signs of the global r -fold points’ integer obstruction.

The proof involves
• generalization to enough highly-connected stably parallelizable
manifolds instead of disks, and to a realization theorem;
• Smale-Hirsch immersion theory;
• studies of homotopy classes as framed bordism classes (Pontryagin
construction).



A (n1, . . . , nr )-Whitney map is a proper map f : N → Bd of disjoint
union N = N1 t . . . t Nr of r smooth compact manifolds, possibly with
boundary, of dimensions n1, . . . , nr such that

(∗) rd ≥ (n1 + n2 + . . .+ nr ) + ni + 3 for each i .

Denote
w := n1 + n2 + . . .+ nr − (r − 1)d .

This is the dimension of general position r -tuple intersection
fN1 ∩ . . . ∩ fNr . The inequality (*) is equivalent to d ≥ ni + w + 3
(which is more convenient to use).



For a Whitney map f : N → Bd set N× := N1× . . .×Nr . Define a map

f r : N× → Bd×r by f r (x1, . . . , xr ) := (fx1, . . . , fxr ).

We use the same notation for maps defined by the same formula on
subsets N× and assuming values in Bd×r − δr ; since the domain and
the range are specified, no confusion would appear.

Theorem (Metastable Local Disjunction)

Let f : N → Bd be a (n1, . . . , nr )-Whitney map of disjoint union of
(w + 1)-connected stably parallelizable manifolds such that
f ∂N1 ∩ . . . ∩ f ∂Nr = ∅. There exists a map f : N → Bd such that

f = f on ∂N and f N1 ∩ . . . ∩ f Nr = ∅

if and only if the map f r : ∂(N×)→ Bd×r − δr extends to N×.



An s-frimmersion is a proper smooth framed immersion
N1 t . . . t Nr → Bd of disjoint union of smooth manifolds whose
restrictions to the components are transverse to each other, f |Ni

is
self-transverse for each i = 1, . . . , r − 1 and

Σ(f |Nr ) := {x ∈ Nr : |f |−1
Nr

fx | > 1}

is the image of a self-transverse immersion of a finite disjoint union of
manifolds of dimensions at most s.

Proposition

Let f : N → Bd be an (n1, . . . , nr )-Whitney (nr − w − 3)-frimmersion
such that
(1) f ∂N1 ∩ . . . ∩ f ∂Nr = ∅,
(2) the map f r : ∂N× → Bd×r − δr extends to N×, and
(3) if r ≥ 3, then every Ni is (w + 1)-connected.
Then there exists a map f : N → Bd such that

f = f on Nr ∪ ∂N and f N1 ∩ . . . ∩ f Nr = ∅.



Lemma (Surgery of Intersection)

Let P and Q be k-connected smooth p- and q-manifolds, possibly with
boundary. Assume that f : P t Q → Bd is a (q − k − 2)-frimmersion
and

k ≤ min{d − p − 2, (p + q − d − 2)/2}.

Then there is a (q − k − 2)-frimmersion f1 : P t Q → Bd such that
f1 = f on ∂P t Q, and

M(f1) := {(x , y) ∈ P × Q : f1x = f1y}

is a smooth k-connected (p + q − d)-manifold.


