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Algebrai Topology From a Geometri Standpoint

A. Skopenkov

Abstrat.

It is shown how main ideas, notions and methods of algebrai

topology naturally appear in a solution of geometri problems. The

main ideas are exposed in simple partiular ases free of tehnial

details. We keep algebrai language to a neessary minimum. So

most of the book is aessible to beginners and non-speialists,

although it ontains beautiful non-trivial results. Part of the

material is exposed as a sequene of problems, for whih hints

are provided. The book is intended for students, researhers, and

teahers, who wish to know

• why what I learn or teah is interesting and useful?

• how the main idea of a result / proof / theory is exposed in

simple terms?

• how is this idea elaborated to produe the result / proof /

theory?

Here students ould be undergraduate or postgraduate; with

majors in mathematis, omputer siene or physis. All this would

hopefully allow them to make their own useful disoveries (not

neessarily in mathematis).

Thus the book is di�erent from other textbooks on algebrai

topology.

We start from important visual objets of mathematis: graphs

and vetor �elds on surfaes, ontinuous maps and their deformations.

In ��1,2,5 basi theory of graphs on surfaes is exposed in a

simpli�ed way. In later setions I arry suh a `non-speialist', or

`user' or `omputer siene' approah to topology pretty far. The

appearing instruments inlude homology groups, obstrutions and

invariants, harateristi lasses.

The book is based on deades of teahing topology ourses in

leading mathematial enters of Mosow (Mosow State University,

Independent University of Mosow, Mosow Institute of Physis

and Tehnology).
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General information.

This is an updated English translation of a book published in

Russian in 2015, 2020 by MCCME, Mosow. This publily available

part of the preprint is for personal or private reading only. It omprises

ontents and most of setions 1, 2, 5, 6 (observe that setions 5 and 6

are essentially independent of setions 3 and 4).

Translated by I. Alexeev (�14), A. Balitskiy (��5,6,12,13), M.

Fedorov (��10,11), D. Mamaev (�15), A. Nordskova (�16), A. Pratoussevith

(��7,8,9), and N. Tsilevih (��1,2); translation is edited by the author.

Early Russian versions of this book were available sine 2008 at

https://arxiv.org/pdf/0808.1395.pdf and

http://www.mme.ru/irles/oim/obstrut.pdf .

Publishing rights.

The publishing rights are with the author.

Our ontrat with MCCME for the Russian version leaves the rights

for translations with the author.

The translation is aepted for publiation by `Mosow Leture

Notes' of Springer in January, 2021. The translation was essentially

rejeted by Springer by sending an unaeptable publishing agreement,

promising to make amends suggested by the author in May, 2021, and

neither making amends nor informing the author that the amends

are not aepted, by January, 2022 (in spite of the author's monthly

reminders). Thus no ontrat was signed, and this book is no longer

submitted to Springer. See some details in the last pages of this �le; they

ould be useful for other authors onsidering to publish with Springer.

Updates will be presented here.

A. Skopenkov is supported in part by Russian Foundation for Basi

Researh Grant No. 19-01-00169.
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� 1. Graphs in the Plane

Dass von diesem shwer lesbaren Buhe noh vor

Vollendung des ersten Jahrzehntes eine zweite

Au�age notwendig geworden ist, verdanke ih

niht dem Interesse der Fahkreise. . .

S. Freud. Die Traumdeutung, Vorwort zur zweiten Au�age

3

1.1. Introdution and Main Results

In � 1.3 we prove basi results on graphs and map olorings in the

plane, Assertions 1.1.1 and 1.3.2.

1.1.1. (a) A triangle is divided into �nitely many onvex polygons.

They an be olored in six olors in suh a way that any two polygons

sharing a ommon boundary segment reeive di�erent olors.

(b)* The same for �ve olors.

(The famous Four Color Conjeture laims that four olors are

enough, but its proof is muh more involved.)

A graph is said to be planar (or embeddable in the plane) if it an be

drawn in the plane without edges rossing. The basi notions of graph

theory are realled in � 1.2; a more rigorous de�nition of planarity is

given in � 1.3.

Embeddability of graphs (or graphs with an additional struture)

in the plane, torus, M�obius strip, and other surfaes (see � 2) is one of

the main problems in topologial graph theory [MT01℄.

Proposition 1.1.2. There is an algorithm for deiding whether

a graph is planar. (See [Sk, footnote 4℄, [Sk18, footnote 7℄.)

One of the simplest (but slow) algorithms is onstruted in �� 1.5

and 1.6 (Assertion 1.1.2 follows from Assertions 1.6.1 (f) and 1.6.3 (a)).

It is based on an important onstrution of thikening, whih arises in

many problems of topology and its appliations (synonyms: graph with

3

If within ten years of the publiation of this book (whih is very far from being

an easy one to read) a seond edition is alled for, this is not due to the interest

taken in it by the professional irles. . . (S. Freud. The Interpretation of Dreams.

Prefae to the seond edition.)
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rotations, dessin [Ha, LZ, MT01℄). The algorithm uses no nontrivial

results (suh as Kuratowski's theorem or F�ary's theorem; for the

statements, as well as for a polynomial-time algorithm, see [Sk, � 1.2

`Algorithmi results on graph planarity'℄).

The proofs of these results illustrate appliations of Euler's Formula 1.3.3 ().

(So, they are better postponed until the reader beomes familiar with

it.) This formula is proved in � 1.4, where we also explain, in the

language of algorithms, the nontriviality of this result ignored in some

expositions.

1.2. Glossary of Graph Theory

The reader is probably familiar with the notions introdued below,

but we give lear-ut de�nitions in order to �x the terminology (whih

an be di�erent in other books).

A graph G = (V, E) is a �nite set V = V (G) together with a set

E = E(G) of two-element subsets (i.e., unordered pairs of distint

elements). (A more preise term for the notion we have introdued

is graph without loops or multiple edges, or simple graph.) Elements

of the set V are alled verties, elements of the set E are alled

edges. Although edges are unordered pairs, in graph theory they are

traditionally denoted by parentheses. Given an edge (a, b), the verties
a and b are alled its endpoints, or verties.

When working with graphs, it is onvenient to use their drawings,

e.g., in the plane or in the spae (or, in more tehnial terms, maps

of their geometri realizations to the plane or to the spae, f. �5.1).

See Figs. 1.3.1, 1.3.2, 1.7.2 below. Verties are represented by points.

Every edge is represented by a polygonal line joining its endpoints. (But

only the endpoints of polygonal lines represent verties of the graph.)

The polygonal lines are allowed to interset, but their intersetion

points (other than the ommon endpoints) are not verties. Importantly,

a graph and a drawing of this graph are not the same. For example,

Figs. 1.3.2 (middle and right), 1.3.1 show di�erent drawings of the same

graph (more exatly, of isomorphi graphs). Sometimes, not all verties

are shown in a drawing, see Figs. 1.2.1 and 1.6.2 (left).

The path Pn is the graph with verties 1, 2, . . . , n and edges

(i, i + 1), i = 1, 2, . . . , n − 1. The yle Cn is the graph with verties
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Figure 1.2.1. A yle, a wedge of yles, and the graph K4

1, 2, . . . , n and edges (1, n) and (i, i + 1), i = 1, 2, . . . , n − 1. (Do not
onfuse these graphs with a path in a graph and a yle in a graph,

whih are de�ned below.)

The graph with n verties any two of whih are joined by an edge is
alled a omplete graph and denoted by Kn. If the verties of a graph

an be partitioned into two sets so that no edge joins two verties from

the same set, then the graph is said to be bipartite, and the two sets of

verties are alled its parts. By Km,n one denotes the bipartite graph

with parts of sizem and n that ontains all themn edges joining verties
from di�erent parts. See Fig. 1.3.2.

Roughly speaking, a subgraph of a given graph is a part of this

graph. Formally, a graph G is alled a subgraph of a graph H if every

vertex of G is a vertex of H and every edge of G is an edge of H. Note

that two verties of G joined by an edge in H are not neessarily joined

by an edge in G.
A path

4

in a graph is a sequene v1e1v2e2 . . . en−1vn suh that

for every i the edge ei joins the verties vi and vi+1. (The edges

e1, e2, . . . , en−1 are not neessarily pairwise distint.) A yle is a sequene

v1e1v2e2 . . . en−1vnen suh that for every i < n the edge ei joins the
verties vi and vi+1, while the edge en joins the verties vn and v1.

A graph is said to be onneted if every pair of its verties an be

joined by a path, and disonneted otherwise. A graph is alled a tree

if it is onneted and ontains no simple yles (i.e., yles that do not

pass twie through the same vertex). A spanning tree of a graph G is

any subgraph of G that is a tree and ontains all verties of G. Clearly,
every onneted graph ontains suh a subgraph.

The de�nition of the operations of deleting an edge and deleting

a vertex is lear from Fig. 1.2.2. The operation of ontrating an edge

(Fig. 1.2.2) deletes this edge from the graph, replaes its endpoints

A and B with a vertex D, and replaes eah edge from A or B to

4

In graph theory, as opposed to topology, the term `walk' is used.
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a vertex C with an edge from D to C. (In ontrast to the ase of

ontrating an edge in a multigraph, eah resulting edge of multipliity

greater than 1 is replaed with an edge of multipliity 1.) For example,
if the graph is a yle with four verties, then ontrating any its edge

results in a yle with three verties.

Figure 1.2.2. Deleting an edge G − e, ontrating an edge G/e,

and deleting a vertex G− x

In most of this book, one an use the notion of graph without loops

or multiple edges. However, everything we have said is valid for the

following generalization, whih is even indispensable in some ases.

A multigraph (or a graph with loops and multiple edges) is a square

array (matrix) of nonnegative integers symmetri with respet to the

main diagonal. The integer at the intersetion of the ith row and jth
olumn is interpreted as the number of edges (or the multipliity of the

edge) between the verties i and j if i 6= j, and as the number of loops

at the vertex i if i= j. An edge is said to be multiple if its multipliity
is greater than 1.

1.3. Graphs and Map Colorings in the Plane

A plane graph is a �nite olletion of non-self-interseting polygonal

lines in the plane suh that any two of them meet only at their ommon

endpoints (in partiular, those with no ommon endpoints are disjoint).
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The endpoints of the polygonal lines are alled the verties of the plane

graph, and the polygonal lines themselves are its edges. Thus, to a plane

graph there orresponds a graph (in the sense of � 1.2) for whih the

plane graph is a plane drawing. Sometimes, a plane graph is alled just

a graph, but this is not exatly orret, beause one and the same graph

an be drawn in the plane in di�erent ways (if it an be drawn at all),

see Fig. 1.3.1.

Figure 1.3.1. Di�erent plane drawings of a graph

A graph is said to be planar if it an be represented by a plane

graph.

1.3.1. The following graphs are planar:

(a) the graph K5 without one edge (Fig. 1.7.2); (b) any tree;

() the graph of any onvex polyhedron.

Figure 1.3.2. The nonplanar graphs K5 and K3,3

1.3.2. (a) The graph K5 is not planar. (b) The graph K3,3 is not

planar.

() For every plane onneted graph with V verties and E > 1
edges, E 6 3V − 6.

(d) Every plane graph ontains a vertex with at most 5 inident

edges.

A plane graph divides the plane into regions alled its faes. Here

is a rigorous de�nition.

A subset of the plane is said to be onneted if any two its

points an be joined by a polygonal line inside this set. (Caution:

for subsets more general than those we onsider here, the de�nition

of onnetedness is di�erent!)



1.4. Rigorous Proof of Euler's Formula 23

A fae of a plane graph G is any of the onneted parts into

whih the plane R2
is divided by the uts along all the polygonal lines

(= edges) of G, i.e., any maximal onneted subset of R2 − G. Note
that one of these parts is `in�nite'.

1.3.3. (a) Draw a plane graph G that has a fae whose boundary

ontains three pairwise disjoint yles.

(b) For every plane graph with E > 1 edges and F faes, 3F 6 2E.
()* Euler's Formula. For every onneted plane graph with

V verties, E edges, and F faes, V − E + F = 2.
(d) Find a version of Euler's Formula for a plane graph with

s onneted omponents.

As to part (b), think about how many faes an edge belongs to and

what is the smallest number of edges bounding a fae.

The proof of Euler's Formula is given below. First, using this formula

without proof, solve Problems 1.1.1 and 1.3.2.

1.4. Rigorous Proof of Euler's Formula

1.4.1. (a) We are given a non-losed non-self-interseting polygonal

line L in the plane and two points outside it. There is an algorithm

for onstruting a polygonal line that joins these points and does not

interset L.
(b) The same for a tree L in the plane whose edges are segments.

() If two segments are disjoint, then the distane between them is

positive.

Hint. To onstrut the algorithms, use indution (or reursion).

The indution step is based on deleting a pendant vertex. Cf. the

onstrution of the regular neighborhood of a tree, see Fig. 1.6.3 (left)

and the de�nition near this �gure, [BE82, � 6℄, [CR, pp. 293�294℄. Part

() an be proved by looking at the possible relative positions of the

segments.

The nontriviality of the algorithms from Problems 1.4.1 illustrates

the nontriviality of the following assertions. (A similar remark applies

to Assertion 1.4.3 (a) and Jordan's Theorem 1.4.3 (b).)

1.4.2. (a) Any non-losed non-self-interseting polygonal line L in

the plane R2
does not separate the plane, i.e., R2 − L is onneted.
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(b) No tree in the plane separates the plane.

() Deleting an edge in a plane graph dereases the number of faes

at most by 1.
(d) For any onneted plane graph with V verties, E edges, and

F faes, V − E + F 6 2.
Hint. Use the ideas from the solution of Problem 1.4.1.

1.4.3. (a) There is an algorithm that, given a losed non-self-

interseting polygonal line L in the plane and two points outside L,
deides whether these points an be joined by a polygonal line that

does not interset L.
(The same is true even if a part of the given polygonal line outside

some square ontaining the given points is deleted.)

(b) Jordan's Theorem. Any losed non-self-interseting polygonal

line L in the plane R2
divides the plane into exatly two onneted parts,

i.e., R2 − L is disonneted and is a union of two onneted sets.

Usually, by Jordan's Theorem one means a version of Theorem 1.4.3 (b)

for ontinuous urves L, whose proof is muh more involved [An03,

Ch99℄. While Theorem 1.4.3 (b) is sometimes alled the Pieewise

Linear Jordan Theorem.

A simple proof of Jordan's Theorem 1.4.3 (b) is given in [CR,

pp. 292�295℄, see Remark 1.4.8. We present a similar, but slightly more

ompliated, proof. In return, it involves an interesting Intersetion

Lemma 1.4.4 and demonstrates the parity and general position tehniques

(Lemmas 1.4.5 and 1.4.6) useful for what follows.

Sketh of the proof of Jordan's Theorem 1.4.3 (b). The laim

that the number of parts is at most 2 is simpler; it follows from

Assertions 1.4.2 (b, ). Cf. [BE82, � 6℄, [CR, pp. 293�294℄.

The laim that the number of parts is greater than 1 is more di�ult.
To prove it, pik two points that are su�iently lose to a segment of

the polygonal line L and symmetri with respet to this segment. Then

(∗) it is these points that annot be joined by a polygonal line that

does not interset L.
This is implied by the following Intersetion Lemma 1.4.4.

Lemma 1.4.4 (intersetion). Any two polygonal lines in a square

joining di�erent pairs of opposite verties must interset.
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The Intersetion Lemma an be dedued from the following Parity

Lemma 1.4.5 and Approximation Lemma 1.4.6 (a, b).

Several points in the plane are said to be in general position if

no three of them lie on the same line and no three segments between

them share a ommon interior point.

Lemma 1.4.5 (parity). If the verties of two losed plane polygonal

lines are in general position, then the polygonal lines meet in an even

number of points.

Cf. the omments and proof in [Sk, � 1.3 `The intersetion number

for polygonal lines in the plane'℄.

A polygonal line A0 . . . An is said to be vertex-wise ε-lose to

a polygonal line B0 . . . Bm if m = n and |Ai − Bi| < ε for every

i= 0, 1, . . . , n.

Lemma 1.4.6 (approximation). (a) For every ε > 0 and any

polygonal lines L1, L2 in a square joining di�erent pairs of opposite

verties there exist polygonal lines L′
1, L

′
2 in the square joining di�erent

pairs of opposite verties suh that L′
1, L

′
2 are vertex-wise ε-lose

to L1, L2 and the verties of L′
1, L

′
2 are in general position.

(b') For every pair of disjoint segments XY and ZT there is α > 0
suh that for any points X ′, Y ′, Z ′, T ′

in the plane, the inequalities

|X − X ′|, |Y − Y ′|, |Z − Z ′|, |T − T ′| < α imply that the segments

X ′Y ′
and Z ′T ′

are disjoint.

(b) If two polygonal lines L1, L2 do not interset, then there exists

ε > 0 suh that any polygonal lines L′
1, L

′
2 that are vertex-wise ε-lose

to L1, L2 do not interset either.

Sketh of the proof of Euler's Formula 1.3.3 (). Indution on

the number of edges outside a spanning tree. The indution base is

Assertion 1.4.2 (b). The indution step follows from the fat that

(∗∗) if deleting an edge from a plane graph results in a onneted

graph, then the number of faes dereases at least by 1.
This an be proved analogously to the di�ult part of Jordan's

Theorem 1.4.3 (b) using the Intersetion Lemma 1.4.4.

The Intersetion Lemma 1.4.4 is also useful for other results. It is

often (e.g. in the following problem) more onvenient to apply it instead

of Jordan's Theorem 1.4.3 (b).
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1.4.7. (a) Two bikers start at the same point moving northward

and eastward, respetively. Both return (for the �rst time) to the initial

point from south and west, respetively.

(b) Three bikers start at the same point moving westward, northward,

and eastward, respetively. All of them arrive at another point from

west, north, and east, respetively.

(a, b) Show that one of the bikers has rossed the trak of another

one. (See the middle pitures at Figs. 1.5.2 and 1.6.2 (left); the starting

point is not ounted as an intersetion point of traks; you may assume

that the paths of the bikers are polygonal lines.)

Remark 1.4.8. (a) (on the proof of Jordan's Theorem 1.4.3 (b))

Jordan's Theorem is the speial ase of Euler's Formula 1.3.3 () for

a graph that is a yle. So deduing Jordan's Theorem from Euler's

Formula would reate a viious irle.

The idea of the proof of laim (∗) is given in [CR, pp. 293�294℄,

though the laim itself (i.e., the fat that B 6= ∅) is neither stated

nor proved there. The argument uses simpli�ed versions of the Parity

Lemma (in the �fth paragraph at p. 293). At the beginning of the

argument, one must pik a diretion that is not parallel to any line

passing through two verties of the polygon (inluding nonadjaent

ones); otherwise, in the �fth paragraph at p. 293, there arise more than

two ases, ontrary to what is stated.

The proof of laim (∗) given in [BE82, � 6℄ uses the Parity

Lemma 1.4.5.

The proof of Jordan's Theorem in [Pr14

′
, pp. 19�20℄ is inomplete,

beause it uses without proof nontrivial fats similar to the Parity

Lemma. More spei�ally, for the reader not familiar with Jordan's

Theorem, the laim (given without proof) from the seond proposition

at p. 20 (as well as the fat from the �rst proposition at p. 20 that

the parity hanges ontinuously) seems to be more ompliated than

Jordan's Theorem itself, whose proof uses this laim.

(b) (on the proof of Euler's Formula 1.3.3 ()) In a beginners'

ourse, it is reasonable not to prove the above assertion (∗∗), whih
is geometrially obvious. One should only draw the reader's attention

to the fat that this assertion is not proved, to algorithmi problems

illustrating its nontriviality (f. Problems 1.4.1 and 1.4.3 (a)), and to the
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remark about `viious irle' given in the solution of Problem 1.3.2 (a).

Unfortunately, this assertion is not proved, and even not ommented

upon, in some expositions whih laim to be rigorous

5

. This might

give the wrong idea that the proof of Euler's Theorem does not use

results lose to Jordan's Theorem, and hene does not involve the

orresponding di�ulties.

1.5. Planarity of Disks with Ribbons

Consider a word of length 2n in whih eah of n letters ours

exatly twie. Take a onvex polygon in the plane. Choose an orientation

of the losed polygonal line that bounds it. Take 2n disjoint segments on
this polygonal line orresponding to the letters of the word in the order

they our in it. For eah letter, join (not neessarily in the plane) the

two orresponding segments by a ribbon (i.e., a `strethed' and `reased'

retangle) so that di�erent ribbons do not interset eah other. The

disk with ribbons orresponding to the given word is the union of

the onstruted (two-dimensional) onvex polygon and the ribbons

6

.

A ribbon is said to be twisted if the arrows on the boundary of the

polygon have the same diretion `when translated' along the ribbon,

and untwisted if they have opposite diretions (Fig. 1.5.1).

For example, the annulus and the ylinder (Fig. 2.1.2 and the text

before it) are disks with one untwisted ribbon, while the disk with

5

Here are two examples. In [Pr14

′
, proof of Theorem 1.6℄, it is not explained why

�deleting one boundary edge dereases the number of faes by 1�; this fat is not
simpler than Jordan's Theorem 1.4.3 (b), whose proof [Pr14

′
, p. 19�20℄ is nontrivial

for a beginner and ontains the gap desribed at the end of Remark 1.4.8. The proof

of Euler's Formula in [Om18, Chapter 7, � 2℄ also inludes neither explanations of

a similar fat, no referenes to Jordan's Theorem (though the nontriviality of this

theorem is disussed earlier).

6

More preisely, a disk with ribbons is any shape obtained by this onstrution;

f. the remark before Problem 2.2.2. Still more preisely, it is the pair onsisting of

this union and the union of loops orresponding to the ribbons. This terminologial

distintion is not relevant for the realizability we study here, but it is important for

alulating the number of disks with ribbons, see � 1.7 and [Sk, `Orientability and

lassi�ation of thikenings'℄.

This informal de�nition an be formalized using the notions of homeomorphism and

gluing (� 2.7 and Example 5.1.1.); f. � 1.7.
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Figure 1.5.1. Left: arrows that have opposite diretions `when

translated' along the ribbon. Right: a disk with a twisted ribbon

(the M�obius strip)

n holes (Fig. 3.9.2) is a disk with n untwisted ribbons. For other

examples of disks with untwisted ribbons, see Figs. 1.5.2 and 1.5.3.

a ab

b

c

c

c

c

b

b

a
a

Figure 1.5.2. Left: the top piture shows a multigraph with

one vertex and two loops, the middle one is a drawing of this

multigraph in the plane, and the bottom one is the orresponding

disk with untwisted ribbons; it orresponds to the word (abab).

Middle and right: the disks with three untwisted ribbons

orresponding to the words (abacbc) and (abcabc).

Ribbons a and b in a disk with untwisted ribbons are said to

interlae if the segments along whih they are glued to the polygon

alternate along its boundary, i.e., our in the yli order (abab), and
not (aabb).
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Figure 1.5.3. Disks with four untwisted ribbons (whih annot

be realized on the torus)

Lemma 1.5.1. A disk with untwisted ribbons an be ut out of the

plane if and only if it has no interlaing ribbons.

A boundary irle of a disk with ribbons is a onneted part of

the set of its points that it approahes `from one side'. This informal

de�nition is formalized in � 5.5. In Fig. 1.5.2 (middle and right), the

boundary irles are shown in bold. For example, the disks with

untwisted ribbons in Fig. 1.5.2 have one, two, and two boundary irles,

respetively.

1.5.2. (a) How many boundary irles an a disk with two untwisted

ribbons have (more preisely, �nd all F for whih there exists a disk

with two untwisted ribbons that has F boundary irles)?

(b) How many boundary irles do the disks with untwisted ribbons

in Fig. 1.5.3 have?

() How many boundary irles an a disk with �ve untwisted

ribbons have?

(d) Adding a non-twisted ribbon hanges the number of boundary

irles by ±1.
1.5.3. (a) The number of boundary irles of a disk with n untwisted

ribbons does not exeed n+ 1.
(a') The number of boundary irles of a disk with n ribbons, of

whih at least one is twisted, does not exeed n.
(b) Lemma. For a disk with n untwisted ribbons, eah of the

assumptions of Lemma 1.5.1 is equivalent to the number of boundary

irles being equal to n+ 1.
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() Given a word of length 2n in whih eah of n letters ours

exatly twie, onstrut a graph with the number of onneted omponents

equal to the number of boundary irles of the disk with untwisted

ribbons orresponding to this word. (Thus, this number an be found

by omputer without drawing a �gure.)

1.6. Planarity of Thikenings

Given a graph with n verties, onsider the union of n pairwise

disjoint onvex polygons in the plane. On eah of the losed polygonal

lines bounding the polygons take disjoint segments orresponding to the

edges inident to the orresponding vertex. For eah edge of the graph,

join (not neessarily in the plane) the orresponding two segments by a

ribbon so that the ribbons do not interset eah other (Fig. 1.6.1).

A thikening of the graph is the union of the onstruted onvex

polygons and ribbons. The graph is alled the spine, or the thinning, of

this union. A remark similar to that in footnote 6 at the beginning of

� 1.5 applies to this ase as well.

Figure 1.6.1. Joining disks with a ribbon

A thikening is said to be orientable if the boundary irles

of the polygons an be endowed with orientations so that every

ribbon beomes untwisted, i.e., the arrows on the boundaries of the

polygons have the opposite diretion `when translated' along the ribbon

(Fig. 1.5.1, left). Note that eah of the pitures in Fig. 1.6.1 an

orrespond to suh a way of joining disks with ribbons. A thikening is

said to be non-orientable if there are no suh orientations.

For example, orientable thikenings of the graphs K3,2 and K3,3 are

shown in Fig. 1.6.2.

A disk with ribbons (� 1.5) is a thikening of a multigraph onsisting

of one vertex with several loops.

The regular neighborhood of a graph drawn in the plane (or

on a surfae, see � 2.1) without edges rossing is the union of aps

and ribbons onstruted as shown in Fig. 1.6.3 (left). For a rigorous
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Figure 1.6.2. Left: the top piture shows the graph K3,2, the

middle one is a drawing of this graph in the plane, and the

bottom one is the orresponding thikening.

Right: an oriented thikening of the graph K3,3

Figure 1.6.3. Left: the aps and ribbons (alled lusters and

pipes in [MT01℄) form the regular neighborhood (thikening) of

a graph on a surfae.

Right: drawings of the graph K4 in the plane

de�nition, see � 5.9. The regular neighborhood of a graph G is an

oriented thikening of G (Fig. 1.6.3 (left)). More generally, if we have

a general position map of a graph G to the plane (or to a surfae, see

� 2.1), then we an onstrut an oriented thikening ofG `orresponding'

to this map (Figs. 1.5.2 and 1.6.2 (left), Fig. 1.6.3 (right)).

An oriented thikening is said to be planar if it an be ut out of

the plane.
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1.6.1. (a) Every thikening of a tree is planar.

(b) Every orientable thikening of a yle is planar.

() Every orientable thikening of a uniyli graph is planar. (A

graph is said to be uniyli if it beomes a tree after deleting an edge.)

(d) Is the orientable thikening of the graph K3,2 shown in

Fig. 1.6.2 (left) planar?

(e) Whih of the orientable thikenings of the graphK4 (Fig. 1.6.3 (right))

are planar?

(f) A graph is planar if and only if it has a planar orientable

thikening.

(g) A rotation system of a graph is an assignment to eah vertex of an

oriented yli order on the edges inident to this vertex. Every graph

has �nitely many rotation systems (moreover, there is an algorithm

searhing through those rotation systems).

Deiding the planarity of graphs redues to deiding the planarity

of orientable thikenings, see Assertion 1.6.1 (f, g).

1.6.2. (a) De�ne the operation of ontrating an edge of a thikening

so that it would give the operation of ontrating an edge of a graph

and preserve planarity.

(b) Draw the thikenings obtained from the thikenings of the

graph K4 (Fig. 1.6.3 (right)) by ontrating the `top horizontal' edge.

1

2

3

6

5

4

Figure 1.6.4. Walking around a spanning tree

Theorem 1.6.3. (a) There is an algorithm for deiding the planarity

of thikenings.

(b) Eah of the following onditions on an orientable thikening of

a onneted graph G is equivalent to the planarity of this thikening.
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(I) For every spanning tree T , going along the boundary of the

thikening of T (Fig. 1.6.4) we obtain a yli sequene of edges not

from T , in whih every edge ours twie; then any two edges in this

sequene do not alternate, i.e., our in the yli order (aabb), and
not (abab).

(E) The number of boundary irles of the thikening is E − V + 2,
where V and E are the numbers of verties and edges.

(Boundary irles of a thikening are de�ned analogously to boundary

irles of a disk with ribbons.)

(S) The thikening `does not ontain' the `�gure eight' and `letter

theta' subthikenings shown in Figs. 1.5.2 and 1.6.2 (left). (More

preisely, the graph does not ontain a subgraph homeomorphi to one

of the graphs shown in the top pitures of these �gures suh that the

restrition of the thikening to this subgraph is homeomorphi to one

of the thikenings shown in the bottom pitures of these �gures.)

1.6.4. Every orientable thikening

(a) of a tree has one boundary irle;

(b) of a yle has two boundary irles.

() of a onneted graph with V verties and E edges has at most

E − V + 2 boundary irles.

1.6.5. Every non-orientable thikening of a onneted graph with

V verties and E edges has at most E − V + 1 boundary irles.

Hint: Assertions 1.6.4. and 1.6.5 follow from Assertions 1.5.3.a,a'.

1.7. Hieroglyphs and Orientable Thikenings*

In this subsetion we give an interpretation of the onstrutions

from �� 1.5 and 1.6. A representation of a hieroglyph is a word of

length 2n in whih eah of n letters ours exatly twie. A hieroglyph

is an equivalene lass of suh words up to renaming of letters and

yli shift. Other names: hord diagram, one-vertex multigraph with

rotations.

Hieroglyphs are drawn as shown in Figs. 1.5.2 (left) and 1.7.1, i.e.,

as families of loops in the plane with a ommon vertex. A yli order

is determined by enumerating the segments inident to the vertex in

the ounterlokwise diretion.
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Wissen war ein bisshen Shaum, der �uber eine

Woge tanzt. Jeder Wind konnte ihn wegblasen,

aber die Woge blieb.

E.M.Remarque. Die Naht von Lissabon

7

In � 2.1 we reall the de�nitions of basi surfaes. The reader may

omit this subsetion and return to it when neessary. Subsetion 2.2

ontains intuitive problems about utting surfaes and utting out of

surfaes. Here we state Riemann's and Betti's Theorems 2.3.5, whih

are used to prove than a surfae annot be ut out of another surfae.

Subsetion 2.4 ontains basi results about graphs and map olorings

on surfaes (Theorems 2.4.4, 2.4.5 (b), 2.4.7). They are similar to the

results from �� 1.1 and 1.3 about graphs and map olorings in the

plane. The proofs involve an analog of Euler's Formula, namely, Euler's

Inequality 2.5.3 (a). This inequality is proved in � 2.5 together with

Riemann's Theorem 2.3.5 (a). In � 2.6, an algorithm is onstruted for

deiding whether a graph an be realized on a given surfae (i.e.,

Theorem 2.4.5 (b) is proved). In � 2.7 we informally introdue and

study the notion of topologial equivalene of surfaes. In partiular,

Assertions 2.7.8 (b) and 2.7.9 (b) demonstrate one of the main ideas of

the proof of Theorem 5.6.2 on lassi�ation of surfaes. Subsetion 2.8

ontains versions of the previous examples and results for non-orientable

surfaes.

2.1. Examples of Surfaes

If you are not familiar with Cartesian oordinates in the spae, then

at the beginning of the book you may omit oordinate de�nitions and

work with intuitive desriptions and drawings (given after oordinate

de�nitions).

7

Knowledge was a spek of foam daning on top of a wave. Every gust of wind

ould blow it away; but the wave remained. (E.M. Remarque. The Night in Lisbon)
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The sphere S2
is the set of points (x, y, z) ∈ R3

suh that

x2 + y2 + z2 = 1:

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

This is the same thing as the set of all points (x, y, z) of the form

(cos ϕ cos ψ, sin ϕ cos ψ, sin ψ).

диск цилиндр
лента
Мёбиуса

сфера S2 тор T 2 проективная

плоскость RP 2
бутылка

Клейна K2

Figure 2.1.1. The surfaes obtained by gluing together sides of a retangle

In what follows, by a retangle we mean a two-dimensional part of

the plane (and not its boundary), and `gluing' inludes a `ontinuous

deformation' that drags the points to be glued to eah other.

The sphere is obtained from a retangle ABCD by `gluing together'

the pairs of adjaent sides

−−→
AB and

−−→
AD,

−−→
CB and

−−→
CD with the diretions

indiated in the piture (the fourth olumn in Fig. 2.1.1).

The annulus is the set {(x, y) ∈ R2 : 16 x2 + y2 6 2} (Fig. 6.3.1).
The lateral surfae of a ylinder (Fig. 2.1.2 (right)) is the set

{(x, y, z) ∈ R3 : x2 + y2 = 1, 06 z 6 1}.

Eah of these shapes is obtained from a retangle ABCD by `gluing

together' the pair of opposite sides

−−→
AB and

−−→
DC `with the same

diretion' (the seond olumn in Fig. 2.1.1).
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Figure 2.1.2. The torus, M�obius strip, and lateral surfae of a ylinder

The torus T 2
is the shape obtained by rotating the irle (x− 2)2 + y2 = 1

about the Oy axis (Fig. 2.1.2 (left)).
The torus is the `surfae of a doughnut'. It is obtained from

a retangle ABCD by `gluing together' the pairs of opposite sides−−→
AB and

−−→
DC,

−−→
BC and

−−→
AD `with the same diretion' (the �fth olumn

in Fig. 2.1.1).

The M�obius strip is the set of points in R3
swept by a bar

of length 1 rotating uniformly about its enter as this enter moves

uniformly along a irle of radius 9 when the bar makes half a turn

(Fig. 2.1.2 (middle)).

The M�obius strip is obtained from a retangle ABCD by `gluing

together' two opposite sides

−−→
AB and

−−→
CD `with opposite diretions' (the

third olumn in Fig. 2.1.1).

Figure 2.1.3. The spheres with two and three handles
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The sphere with g handles Sg, where g > 1, is the set of points
(x, y, z) ∈R3

suh that

x2 +

g∏

k=1

((z − 4k)2 + y2 − 4)2 = 1.

The sphere with 0 handles is the sphere S2
. The sphere with one handle

is the torus. The spheres with two and three handles are shown in

Fig. 2.1.3.

Figure 2.1.4. A `hain of irles' in the plane

The equation

g∏
k=1

((z − 4k)2 + y2 − 4) = 0 de�nes a `hain of irles'

in the plane Oyz (Fig. 2.1.4). The sphere with g handles is the boundary
of the `tubular neighborhood' of this hain in the spae. Hene, the

sphere with g handles is obtained from the sphere by `utting out'

2g disks and then attahing g urvilinear lateral surfaes of ylinders

to g pairs of boundary irles of these disks (Fig. 2.1.5).

Figure 2.1.5. Attahing a handle

The sphere with g handles and a hole Sg,0 is the part of the
sphere with g handles that lies below or on the plane situated slightly

below the tangent plane at the top point (i.e., the part of Sg that lies
in the domain z 6 4g + 2). This shape is obtained from the sphere with

handles by `utting out a hole'.



48 � 2. Intuitive Problems About Surfaes

(a) (b)

Figure 2.1.6. The Klein bottle: (a) gluing; (b) a drawing in R3

Informally, the Klein bottle is obtained from a retangle ABCD by

`gluing together' the pairs of opposite sides, the pair

−−→
AB,

−−→
DC `with the

same diretion', and the other pair

−−→
BC,

−−→
DA `with opposite diretions'

(Fig. 2.1.6 (a)).

Consider in R4
the irle x2 + y2 = 1, z = t = 0 and the family

of three-dimensional normal planes to this irle. Stritly speaking, the

Klein bottleK is the set of points in R4
swept by a irle ω as its enter

moves uniformly along the irle under onsideration, while the irle ω
itself rotates uniformly by angle π (in the moving three-dimensional

normal plane, about its own diameter moving together with this plane).

The projetion of the Klein bottle to R3
is shown in Fig. 2.1.6 (b).

In what follows, `surfae' is a olletive term for the shapes de�ned

above, and not a mathematial term (f. the de�nition of a 2-manifold
in � 4.5).

2.2. Cutting Surfaes and Cutting out of Surfaes

In the problems of this subsetion, you are asked to give not rigorous

proofs, but large, omprehensible, and preferably beautiful pitures.

2.2.1. (a) For every n there exist n points in R3
suh that the

segments between them have no ommon interior points (i.e., every

graph an be drawn in R3
without edges rossing).

(b) Every graph an be drawn without edges rossing on a book with

a ertain number of sheets (Fig. 2.2.1; the de�nition is given after the

�gure) depending on the graph. More preisely, for every n there exists

an integer k, as well as n points and n(n − 1)/2 non-self-interseting

polygonal lines on a book with k sheets suh that every pair of points is
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joined by a polygonal line and no polygonal line intersets the interior

of another polygonal line.

() The same as in part (b) with 3 sheets instead of k.

Figure 2.2.1. A book with three sheets

In R3
onsider n retangles XY BkAk, k = 1, 2, . . . , n, any two of

whih have only the segment XY in ommon. The book with n sheets

is the union of these retangles; see Fig. 2.2.1 for the ase n= 3.

(a) (b)

Figure 2.2.2. Nonstandard (a) annuli; (b) M�obius strips

A nonstandard annulus is any shape obtained from a retangle by

gluing a pair of opposite sides `with the same diretion' (Fig. 2.2.2 (a)).

This informal de�nition an be formalized using the notions of homeo-

morphism and gluing (� 2.7 and Example 5.1.1.). In a similar way

one de�nes a nonstandard M�obius strip (Fig. 2.2.2 (b)), torus with a

hole, Klein bottle with a hole, et. They will be used only in this

subsetion (one uts nonstandard shapes out of standard ones); the

word `nonstandard' will be omitted.

2.2.2. Cut the M�obius strip so as to obtain
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(a) an annulus; (b) an annulus and a M�obius strip.

2.2.3. Cut the Klein bottle (Fig. 2.1.6) so as to obtain

(a) two M�obius strips; (b) one M�obius strip.

2.2.4. Cut out the following shapes from the book with three sheets

(Fig. 2.2.1):

(a) a M�obius strip; (b) a torus with a hole;

() a sphere with two handles and a hole;

(d) a Klein bottle with a hole.

2.2.5. Let A, B, C, D be points on the boundary irle of a torus

with a hole (in this order along the irle). A retangle A′B′D′C ′
is

attahed to the torus with a hole by gluing AB to A′B′
and CD to C ′D′

.

From the resulting shape (i.e., from a torus with a hole and a M�obius

strip), ut out three pairwise disjoint M�obius strips.

2.3. Impossibility of Cutting and Separating Curves

2.3.1. (a) A torus with a hole annot be ut out of the plane.

(b) For k < n, a sphere with n handles and a hole annot be ut out
of the sphere with k handles.

() Two disjoint M�obius strips annot be ut out of the M�obius strip.

(d) Find all g, m, g′, m′
for whih g′ tori with a hole and m′

M�obius

strips (all g′ +m′
shapes pairwise disjoint) an be ut out of a disk with

g handles and m M�obius strips (see the de�nitions before Figs. 2.1.5

and 2.8.1).

Proof of (a). Part (a) follows from the Intersetion Lemma 1.4.4

or from the (essentially equivalent) nonplanarity of the graph K5

(Assertion 1.3.2 (a)), beause the analogues of these results for the torus

are false (f. Assertion 2.4.1 (a)).

Alternatively, assume to the ontrary that a torus with a hole is

ut out of the plane. Take a losed non-self-interseting urve γ on this
torus with a hole suh that γ does not separate it (Assertion 2.3.2.a).

In the next paragraph we prove that γ does not separate the sphere,

ontraditing Jordan's Theorem 1.4.3 (b) (the details are neessary

beause e.g. the boundary irle of the disk does not separate the disk,

but does separate the plane ontaining the disk).
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Pik any two points in the plane that do not lie on γ. Join them

with a polygonal line α `in general position' with respet to γ. This
polygonal line meets γ in a �nite number of points. For eah suh

point A, take a small segment αA of α that ontains A in its interior.

The endpoints of αA lie on the torus with a hole. Hene, they an be

joined by a polygonal line α′
A that does not interset γ. Replae eah

segment αA with α′
A. We obtain a polygonal line that joins the given

points and does not interset γ.

Comments on the proof of (b,,d). Part (b) follows from Theorem 2.3.5 ()

and Assertion 2.3.3.. Part (b) an also be dedued from Assertion 2.4.4 (),

or from Theorem 2.3.5 (a) and Assertion 2.3.3.a (observe that both

Assertion 2.4.4 () and Theorem 2.3.5 (a) use Euler's Inequality 2.5.3 (a)).

The details of dedution from Theorems 2.3.5 () or 2.3.5 (a) have to be

heked, f. (a).

Analogously, parts () an be dedued from either of Assertions 2.8.2 (a),

2.8.2 () or 2.8.3 (b).

To solve part (d), it is helpful to use Assertion 2.8.5 (), see also

Assertion 2.6.6 and Problem 6.7.7.

2.3.2. (a) Draw a losed urve on the torus suh that utting along

this urve does not separate the torus.

(b) The same for the M�obius strip.

() Draw two losed urves on the torus suh that utting along

their union does not separate the torus.

(d) Draw two losed disjoint urves on the Klein bottle suh that

utting along their union does not separate the Klein bottle.

Curves and graphs on the torus an be easily de�ned by regarding

the torus as obtained from a retangle by gluing. A (pieewise linear)

urve on the torus is then a family of polygonal lines in the retangle

satisfying ertain onditions (work out these onditions!). In a similar

way, other surfaes an be obtained from plane polygons by gluing (for

spheres with handles, see Problem 2.3.4). This allows one to de�ne

urves and graphs on other surfaes. Another formalization is given in

� 5, see also � 4.

2.3.3. On the sphere with g handles Sg there are
(a) g losed pairwise disjoint urves, whose union does not separate

Sg.
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(b) 2g losed urves, of whih any two interset by a �nite number

of points, and whose union does not separate Sg.
() a non-separating wedge of 2g yles.

2.3.4. For every g > 0, obtain Sg by gluing together sides of

a 4g-gon. (See visualization in https://www.youtube.om/wath?v=

G1yyfPShgqw and in https://www.youtube.om/wath?v=U5N5mg3MePM.)

It turns out that utting the torus along the union of any two disjoint

losed urves inevitably separates the torus. This is a speial ase of the

following generalizations of Jordan's Theorem 1.4.3 (b).

Theorem 2.3.5. (a) (Riemann) The union of any g + 1 pairwise

disjoint losed urves on Sg separates Sg.
(b) (Betti) Suppose that on Sg there are 2g + 1 losed urves, of

whih any two interset by a �nite number of points. Then the union of

the urves separates the sphere with g handles.
() Any wedge of 2g + 1 yles drawn without self-intersetions on

Sg separates Sg.

Here the urves are allowed to be self-interseting; however, the ase

of non-self-interseting urves is the most interesting, and the general

ase an be easily redued to it.)

These results (stritly speaking, for the pieewise linear ase) follow

from Euler's Inequality 2.5.3 (a). For part () the dedution is lear, for

parts (a,b) see � 2.5.

2.4. Graphs on Surfaes and Map Colorings

The de�nition and disussion of a drawing of a graph on a surfae

without edges rossing is analogous to the ase of the plane, see � 1.3.

The formalization is outlined after Problem 2.3.2 and desribed in � 5.2,

but an be omitted on �rst aquaintane.

The torus, M�obius strip, and other shapes are assumed to be

transparent, i.e., a point (or a subset) that `lies on one side of a surfae'

`lies on the other side as well'. In a similar way, in geometry we speak

about a triangle in the plane, rather than a triangle on the upper (or

lower) side of the plane.

2.4.1. Draw the following graphs on the torus without edges

rossing:
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(a) K5; (b) K3,3; () K6; (d) K7; (e)* K4,4; (f)* K6,3.

The de�nition of a graph realizable on the torus or on a sphere

with handles is analogous to that of a planar graph.

Proposition 2.4.2. Any graph an be realized on a sphere with

a ertain number (depending on the graph) of handles.

2.4.3. (a) The graphK8; (b) the graphK5,4; ()* the graphK5 ⊔K5

are not realizable on the torus.

To prove Assertions 2.4.3 and 2.4.4, we need Euler's Inequality 2.5.3 (a).

Here is a version of Assertion 2.4.3 for spheres with handles.

Proposition 2.4.4. (a) The graph Kn is not realizable on a sphere

with less than (n − 3)(n − 4)/12 handles.

(b) The graph Km,n is not realizable on a sphere with less than

(m− 2)(n − 2)/4 handles.

()* The disjoint union of g + 1 opies of the graph K5 is not

realizable on the sphere with g handles Sg.

In view of Assertions 2.4.4 (a, ), for every g there is a graph (for

example, Kg+15 or the disjoint union of g + 1 opies of K5) that is not

realizable on Sg (the seond of these graphs is realizable on Sg+1). The

estimations in Assertion 2.4.4 are sharp [Pr14, 13.1℄.

Theorem 2.4.5. For every g there is an algorithm for deiding

whether a graph is realizable on Sg.

This result is dedued from Theorem 2.6.8 (a).

2.4.6. A map on the torus is a partition of the torus into (urved)

polygons. A oloring of a map on the torus is said to be proper if

di�erent polygons sharing a ommon boundary urve have di�erent

olors. Is it true that any map on the torus has a proper oloring with

(a) 5 olors; (b) 6 olors?

It turns out that any map on the torus has a proper oloring

with 7 olors. This is a speial ase of the following result. A map on

Sg handles and a proper oloring of suh a map are de�ned analogously
to the ase of the torus.

Theorem 2.4.7 (Heawood). If 0 < g < (n − 2)(n − 3)/12, then
every map on Sg has a proper oloring with n olors.
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The version of this theorem for g = 0 is true: this is the Four Color
Conjeture. In view of Ringel's results on embeddings ofKn [Pr14, 13.1℄

n− 1 olors are not su�ient for g > (n− 2)(n − 3)/12.
Heawood's Theorem 2.4.7 is implied by the following result, whose

proof relies on Euler's Inequality 2.5.3 (a).

2.4.8. (a) Any graph drawn on the torus without edges rossing has

a vertex with at most 6 inident edges.
(b) If 0 < g < (k − 1)(k − 2)/12, then any graph drawn on Sg

without edges rossing has a vertex with at most k inident edges.

2.5. Euler's Inequality for Spheres with Handles

Given a graph drawn on a surfae without edges rossing, a fae

is any of the onneted parts into whih utting along all edges of the

graph divides the surfae.

On the torus there are two losed urves suh that utting along

them divides the torus into di�erent numbers of parts (Problem 2.3.2 (a)).

So, the number of faes depends on the way the graph is drawn on the

given surfae. However, we still have a version of Euler's Formula for

surfaes. These are the following inequalities 2.5.1 (d) and 2.5.3 (a).

2.5.1. (a, b, , d) The same as in Assertions 1.4.2, with the plane

replaed by a sphere with handles and a planar graph replaed by

a graph drawn on the sphere with handles without edges rossing.

(d

′
) In a parliament onsisting of n members there are several

(pairwise distint) 3-person ommissions. It is known that if two

persons x, y belong to a ommission, then the set {x, y} is ontained in
exatly two ommissions. Suh two ommissions are said to be adjaent.

It is also known that for any two persons A, B there is a sequene of

ommissions suh that A is in the �rst ommission, B is in the last

ommission, and any two onseutive ommissions are adjaent. Show

that the number of ommissions is not less than 2n− 4.
(e) If G is a subgraph of a onneted graph H on a sphere with

handles, then VG − EG + FG > VH −EH + FH .
Hint. Part (e) follows from part (). Use the operations of deleting

an edge, or deleting a hanging vertex.
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Warning. Part (e) is not true for a disonneted graph H, but is

true for a disonneted graph H if every onneted omponent ontains

a vertex of G.

2.5.2. Given a onneted graph with V verties and E edges drawn

on the torus without edges rossing, denote by F the number of faes.

(a) If the graph (more exatly, its drawing) ontains a parallel, then

F = E − V .
Hint. Cut the torus along the parallel. The result is a plane graph

lying between two its yles. Apply Euler's Formula to this graph.

(b) F > E − V .
Clari�ation. Prove the assertion under the following assumption:

the graph meets a parallel in a �nite number of points, and utting the

graph along the parallel with subsequently unfolding it into the plane

results in a union of polygonal lines (a more learned way of saying this

is that the given embedding of the graph into the torus is pieewise

linear and in general position with respet to the parallel).

Hint. Use part (a) and Assertion 2.5.1 (e).

2.5.3. (a) Euler's Inequality

8

. Given a onneted graph with

V verties and E edges drawn on Sg without edges rossing, denote

by F the number of faes. Then

V − E + F > 2− 2g.

(b) Given a graph with V verties, E edges, and s onneted

omponents drawn on Sg without edges rossing, denote by F the

number of faes. Then V − E + F > 1 + s− 2g.

Euler's Inequality 2.5.3 (a) an be proved analogously to the ase of

the torus 2.5.2 (b) using Assertion 2.3.4.

Sketh of proof of Riemann's Theorem 2.3.5 (a). Consider the ase

of the torus (the general ase is proved analogously). Suppose that the

union of two disjoint losed urves does not separate the torus. We may

assume that the urves are simple. Similarly to the proof of Jordan's

Theorem 1.4.3 (b), we use the orientability of the torus to onlude

8

Usually, instead of Euler's Inequality, whih is su�ient for solving many

interesting problems, one onsiders the more ompliated Euler's Formula 5.9.2 (f.

Assertion 2.5.2 (a)), whose statement involves the notion of a ellular subgraph.
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that there are a `�gure eight' and a irle that are non-self-interseting,

disjoint, and whose union does not separate the torus. Joining the �gure

eight and the irle by an ar on the torus, we obtain a graph with

V − E = −2 that does not separate the torus, ontraditing Euler's

Inequality.

Betti's Theorem 2.3.5 (b) follows from Euler's Inequality 2.5.3 (b)

(or from Euler's Inequality 2.5.3 (a) and Riemann's Theorem 2.3.5 (a);

the details are similar to the arguments in [Bi20, bottom of p. 6℄).

2.6. Realizability of Hieroglyphs and Orientable Thikenings

Disks with untwisted ribbons are de�ned in � 1.5. We will all them

hieroglyphs, f. � 1.7. A hieroglyph is said to be realizable on a given

surfae if it an be ut out of this surfae.

2.6.1. (a, b, ) The hieroglyphs orresponding to the words (abab),
(abcabc), and (abacbc) (Fig. 1.5.2) are realizable on the torus.

A solution of (b, ) is presented in Fig. 2.6.1.

2.6.2. The hieroglyphs shown in Fig. 1.5.3

(a

′
, b

′
, 

′
, d

′
) are realizable on the sphere with two handles.

(a, b, , d) are not realizable on the torus.

For a proof of (a

′
, b

′
, 

′
, d

′
) pik two interlaing ribbons and show

that the disk with the two remaining ribbons is realizable on the torus

(a proof via attahing ribbons one by one also works, but is more

ompliated). Parts (a,b,,d) are proved analogously to Assertion 2.3.1 (b)

(in fat, every hieroglyph with 4 ribbons that has one boundary irle
annot be realized on the torus).

Denote by h(M) the number of boundary irles of a hieroglyph or

a thikening M .

2.6.3. (a) If a hieroglyph M is ut out of the sphere with g handles
Sg, then the number of obtained onneted omponents of Sg −M does

not exeed h(M).
(a') If a hieroglyph M with n ribbons is ut out of Sg, then

h(M)> n+ 1− 2g.
(b) For every g there exists a hieroglyph not realizable on Sg.
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() If a hieroglyph M is realizable on Sg and removing any of

its ribbons results in a hieroglyph non-realizable on Sg, then M has

2g + 2 ribbons.

Here part (a') follows from part (a) and Euler's Inequality 2.5.3 (a)

(f. Assertion 2.3.1 (b)). Part (b) follows by part (a') (take e.g.

hieroglyph (a1b1a1b1 . . . ag+1bg+1ag+1bg+1)).

2.6.4. (a) Every hieroglyph with 3 ribbons is realizable on the torus.
(b) Does there exist a hieroglyph with 4 ribbons that has two

boundary irles?

() Every hieroglyph with 4 ribbons that has three boundary irles
is realizable on the torus.

(d) Every hieroglyph with n ribbons that has at least n− 1 boundary
irles is realizable on the torus.

The proof is analogous to that of Assertions 2.6.2(a

′
, b

′
, 

′
, d

′
), f.

Assertions 1.5.3 (a, b).

Theorem 2.6.5. (a) For every g there is an algorithm for deiding

whether a hieroglyph is realizable on Sg.
(b) Eah of the following onditions on a hieroglyph M with

n ribbons is equivalent to its realizability on Sg.
(E) The inequality h(M)> n+ 1− 2g holds.
(I) Among any 2g + 1 rows of the interlaement matrix (see

the de�nition below) there are several (> 1) rows whose sum is zero

modulo 2. (In other words, the rank of the interlaement matrix over Z2

does not exeed 2g.)

The interlaement matrix of a hieroglyph with n ribbons is the n× n
matrix whose a × b ell ontains 1 if a 6= b and the letters a and b do
not interlae, and 0 otherwise. Cf. � 6.7.

Here part (a) follows from (b). The ondition (E) is neessary for

the realizability by Assertion 2.6.3.a'. The su�ieny of (E) is proved

analogously to Assertion 2.6.4, f. Assertion 2.7.8 (b) and its proof.

Criterion (I) an be proved analogously to Assertion 2.7.8 ().

The rank rkM of a hieroglyph M is the rank of its interlaement

matrix over Z2. The rank measures the `omplexity of intersetions' on

the hieroglyph.
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2.6.6. A hieroglyph M an be ut out of a hieroglyph M ′
if and

only if rkM 6 rkM ′
.

Orientable thikenings are de�ned in �� 1.6 and 1.7. A thikening

is said to be realizable on a given surfae if it an be ut out of this

surfae.

2.6.7. Does there exist an orientable thikening of

(a) the graph K4; (b) the graph K5

that is not realizable on the torus?

Theorem 2.6.8. (a) For every g there is an algorithm for deiding

whether a thikening is realizable on Sg.
(b) Eah of the following onditions on an orientable thikening M

of a onneted graph is equivalent to its realizability on Sg.
(E) The inequality 2g > 2− V + E − h(M) holds, where V and E

are the numbers of verties and edges of the graph.

(I) =2.6.5.b(I).

Given an orientable thikening of a onneted graph G and a

spanning tree, we onstrut a hieroglyph orresponding to the edges

not in the tree (Fig. 1.6.4). The interlaement matrix, orresponding to

the tree, of the orientable thikening is the interlaement matrix of the

resulting hieroglyph. The rank of an orientable thikening is the rank of

its interlaement matrix (orresponding to an arbitrary tree) over Z2.

Theorem 2.6.8 is redued to Theorem 2.6.5 by ontrating an edge

or onsidering a spanning tree.

c

a b

b

a c

Figure 2.6.1. The disks with ribbons orresponding to the words

(abcabc) and (abacbc) on the torus

2.7. Topologial Equivalene (Homeomorphism)

2.7.1. Can the graph K5 be drawn without edges rossing
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(a) on the sphere; (b) on the lateral surfae of a ylinder (Fig. 2.1.2)?

In this setion, we do not give a rigorous de�nition of the notion

of homeomorphism (topologial equivalene); for a rigorous de�nition,

see � 5.2. To `prove' that shapes are homeomorphi, in this setion you

must draw a hain of pitures similar to Fig. 2.7.1.

Here it is allowed to temporarily ut a shape, and then glue together

the `edges' of the ut. For example,

• the sphere with a point removed is homeomorphi to the plane,

and the lateral surfae of a ylinder is homeomorphi to the annulus on

the plane (here a hain of pitures an be obtained from the solution

of Problem 2.7.1);

• the sphere with one handle (Fig. 2.1.5) is homeomorphi to the

torus (Fig. 2.1.2);

• the disk with two ribbons (Fig. 2.7.1 (right)) is homeomorphi to
the torus with a hole (Fig. 2.7.1 (left));

Figure 2.7.1. The torus with a hole is homeomorphi to the disk

with two ribbons

• the three ribbons in Fig. 2.2.2 (b) are homeomorphi (here we an
no longer do without utting);

• the two ribbons in Fig. 2.2.2 (a) are homeomorphi (here again we
annot do without utting).

The ribbons in Fig. 2.2.2 (a) and in Fig. 2.2.2 (b) are not homeomorphi.

We will deal with nonhomeomorphi shapes in � 5, after introduing

a rigorous de�nition and other notions, whih allow one to turn the

informal arguments of this setion into rigorous proofs.

One should not onfuse the notion of homeomorphism with that of

isotopy, see Problem 6.6.1 (b) and � 15.5.

2.7.2. (a, b) The shapes in Fig. 1.5.2 (middle and right) are

homeomorphi to the torus with two holes.
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Figure 2.7.2. Are these shapes homeomorphi?

() The shape in Fig. 2.7.2 (left) is homeomorphi to the torus with

a hole.

(d) Is the shape in Fig. 1.6.2 (right) homeomorphi to a sphere with

handles and holes? If yes, with how many handles and holes?

2.7.3. (a, b, , d) The shapes in Fig. 1.5.3 are homeomorphi to the

sphere with two handles and a hole.

2.7.4. Cutting the torus

(a) along any non-separating yle results in a shape homeomorphi

to the annulus;

(b) along any non-separating `�gure eight' results in a shape

homeomorphi to the disk (i.e., to a onvex polygon).

2.7.5. The regular neighborhoods of di�erent drawings of a graph

in the plane without edges rossing (i.e., of isomorphi plane graphs,

see Fig. 1.3.1) are homeomorphi.

Conerning hieroglyphs and thikenings, see �� 2.6 and 1.5�1.7.

2.7.6. (a) Every hieroglyph with two ribbons is homeomorphi

either to the disk with two holes or to the disk with one hole.

(b) (Riddle) To what surfaes an an orientable thikening of the

graph K4 be homeomorphi?

Proposition 2.7.7. (a) Any thikening of a tree is homeomorphi

to the disk D2
.

(b) Any disk with non-twisted ribbons, for whih no two ribbons

interlae, is homeomorphi to the disk with holes.

() Let M be a thikening of a onneted graph with V verties and

E edges. If V − E + h(M) = 2, then M is homeomorphi to the sphere

with h(M) holes.
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Proposition 2.7.7. is proved using Proposition 2.7.7.ab (together

with Assertions 1.5.3.a,b and 1.6.4.; f. Euler formulas 2.7.9 (b)

and 2.8.11 (b)).

Proposition 2.7.8. (a) Two hieroglyphs with the same number of

ribbons are homeomorphi if and only if they have the same number of

boundary irles.

(b) Euler's Formula. Let M be a hieroglyph with n ribbons. Then

h(M)− n is odd, h(M)6 n+ 1, and M is homeomorphi to the sphere

with (n+ 1− h(M))/2 handles and h(M) holes.
()* Mohar's Formula. Let M be a hieroglyph of rank r with

n ribbons. Then r is even and M is homeomorphi to the sphere with

r/2 handles and n+ 1− r holes.
The names `Euler's Formula' and `Mohar's Formula' for Assertions 2.7.8,

2.7.9, and 2.8.8 (see below) are not widely used. Cf. Problems 5.9.2

and 6.7.5 (f, g).

Proposition 2.7.9. (a) Two orientable thikenings of a onneted

graph are homeomorphi if and only if they have the same number of

boundary irles.

(b) Euler's Formula. Assume that M is an orientable thikening of

a onneted graph with V verties and E edges. Then V − E + h(M) is
even, V − E + h(M) 6 2, and M is homeomorphi to the sphere with

(2− V + E − h(M))/2 handles and F holes.

()* Mohar's Formula. Assume thatM is an orientable thikening of

rank r of a onneted graph with V verties and E edges. Then r is even,
V − E + r 6 1, and M is homeomorphi to the sphere with r/2 handles
and 2− V + E − r holes.

2.8. Non-Orientable Surfaes*

Graphs and Map Colorings on a Disk with M�obius strips

2.8.1. Draw the following graphs on the M�obius strip without edges

rossing:

(a) K3,3; (b) K3,4; () K5; (d) K6.

2.8.2. (a) Euler's Inequality. Assume that a onneted graph with

V verties and E edges is drawn on the M�obius strip without edges
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rossing so that it does not interset the boundary irle. Denote by F
the number of faes. Then V − E + F > 1.

(b) The graph K7 annot be realized on the M�obius strip.

() The graph K5 ⊔K5 annot be realized on the M�obius strip.

(d) Any map on the M�obius strip has a proper oloring with 6 olors.

Figure 2.8.1. The disk with M�obius strips

The disk with m M�obius strips (Fig. 2.8.1) is the union of the

disk and m ribbons suh that

• eah ribbon is glued along a pair of opposite sides to the boundary
irle S of the disk, and the diretions on these sides determined by an

arbitrary diretion on S `oinide along the ribbon',

• the ribbons are `separated', i.e., there are m pairwise disjoint ars

on S suh that the endpoints of the ith ribbon are glued to two disjoint
subars ontained in the ith ar for every i= 1, 2, . . . , m.

2.8.3. (a) Draw m losed non-self-interseting pairwise disjoint

urves on the disk with m M�obius strips suh that their union does

not separate the disk with m M�obius strips.

(b) The union of any m + 1 pairwise disjoint losed urves on the

disk with m M�obius strips separates it.

() Any graph an be drawn without edges rossing on a disk with

a ertain number (depending on the graph) of M�obius strips.

(d) For every m> 0, obtain the disk with mM�obius strips by gluing

from a regular 4m-gon.

2.8.4. (a) Euler's Inequality. Assume that a onneted graph with

V verties and E edges is drawn without edges rossing on the disk with
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m M�obius strips, so that the graph does not interset the boundary

irle. Denote by F the number of faes. Then V − E + F > 2−m.
(b) State and prove versions of Theorem 2.4.4 for the disk with

m M�obius strips, where m 6= 2.
() State a prove a version of Heawood's Theorem 2.4.7 for the disk

with m M�obius strips, where m 6= 2.

It turns out that the graphK7 annot be realized on the Klein bottle

(i.e., on the disk with 2 M�obius strips), and that any map on the Klein

bottle has a proper oloring with 6 olors [Fr34, SK86℄.

Homeomorphi Non-Orientable Surfaes

2.8.5. (a) The M�obius strip with a handle is homeomorphi to the

M�obius strip with an inverted handle, see Fig. 2.1.5, 2.8.2 (a).

(b) The shape in Fig. 2.8.2 (b) (i.e., the disk with two `twisted'

`separated' ribbons) is homeomorphi to the Klein bottle with a hole

(Fig. 2.1.6).

(a) (b) ()

Figure 2.8.2. (a) Attahing an inverted handle (f. Fig. 2.1.5).

(b) The disk with two `twisted' `separated' ribbons () The disk

with ribbons orresponding to the word (aabcbc) with w(a) = 1

and w(b) = w(c) = 0.

() The shape in Fig. 2.8.2 () is homeomorphi to the disk with

three M�obius strips.

(d) The shapes in Fig. 2.8.3 (a) are homeomorphi.

(e) The shapes in Fig. 2.8.3 (b) (i.e., an annulus with two `twisted'

`separated' ribbons glued to the same boundary irle and an annulus
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∼=
? ∼=

?

(a) (b)

Figure 2.8.3. (a) Are the boundary irles of the M�obius strip

with a hole equivalent? (b) Are these annuli with two M�obius

strips homeomorphi?

with two `twisted' ribbons glued to di�erent boundary irles) are

homeomorphi.

Beautiful examples from Problems 2.8.5 (d, e) are of importane

sine they show that dissimilar shapes an still be homeomorphi.

Disks with Twisted Ribbons

Given a disk with ribbons and a ribbon k in it, set w(k) = 1 if the
ribbon is twisted, and w(k) = 0 otherwise.

Figures 2.8.2 (b, ) and 1.5.1 (right), 2.8.1 show, respetively,

• the disk with ribbons orresponding to the word (aabb) for whih
w(a) = w(b) = 1;
• the disk with ribbons orresponding to the word (aabcbc) for whih

w(a) = 1 and w(b) = w(c) = 0;
• the disk with n M�obius strips, i.e., the disk with ribbons orre-

sponding to the word (1122 . . . nn) for whih w(1) = w(2) = . . .= w(n) = 1.

2.8.6. (a) How many boundary irles an a disk with two ribbons

have?

(b) To what surfaes an a disk with two ribbons be homeomorphi?

() To one of the boundary irles of the disk with n M�obius strips

and k > 0 holes, a twisted (with respet to this boundary irle) ribbon

is attahed. The resulting shape is homeomorphi to the disk with

n+ 1 M�obius strips and k holes.
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2.8.7. State and prove versions of Theorems 2.6.5 (a, b) for the

realizability of disks with ribbons on the disk with m M�obius strips.

Proposition 2.8.8. (a) Two disks with the same number of ribbons

are homeomorphi if and only if they have the same number of boundary

irles and either both have a twisted ribbon or neither has one.

(b) Euler's Formula. Assume that M is a disk with n ribbons among

whih there is a twisted one, andM has h boundary irles. Then h6 n,
and M is homeomorphi to the disk with n + 1 − h M�obius strips and

h− 1 holes.

()* Mohar's Formula. The interlaement matrix of a hieroglyph

with ribbons 1, 2, . . . , n and nonzero map w : {1, 2, . . . , n} → {0, 1} is
de�ned analogously to the interlaement matrix of a hieroglyph, with

the di�erene that the diagonal ell a × a ontains the number w(a).
Denote by r the rank of the interlaement matrix over Z2. Then

the orresponding disk with ribbons is homeomorphi to the disk with

r M�obius strips and n− r holes.

Thikenings of Graphs

2.8.9. (a) The thikening in Fig. 2.8.4 annot be realized on the

M�obius strip.

(b) Every thikening of a uniyli graph an be realized on the

M�obius strip.

() Whih thikenings of the graphK4 an be realized on the M�obius

strip?

Figure 2.8.4. Thikenings that annot be realized on the M�obius strip
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I should say it meant something simple and ob-

vious, but then I am no philosopher!

I.Murdoh. The Sea, the Sea.

5.1. Hypergraphs and their geometri realizations

Let us give a ombinatorial de�nition of two-dimensional surfaes

(and somewhat more general objets). This de�nition is onvenient for

theoretial purposes as well as for storing in omputer memory; f. �1.2.

A two-dimensional hypergraph

13

(or 2-hypergraph, for short)

(V, F ) is a olletion F of three-element subsets of a �nite set V . The
elements of V and F are alled verties and faes (or hyperedges) of

the 2-hypergraph. An edge of a 2-hypergraph is a two-element subset

of the vertex set that is ontained in a fae.

склейка

Figure 5.1.1. Building (the geometri realization of) a omplete

2-hypergraph with 4 verties

Example 5.1.1. (a) A omplete 2-hypergraph with n verties (or

the two-dimensional skeleton of an (n− 1)-dimensional simplex ) is the
olletion of all three-element subsets of an n-element set. See Figure 5.1.1
for n = 4 and Figure 5.1.2 for n = 5. In this setion the omplete 2-

hypergraph on 4 verties is alled the sphere S2
.

13

Sometimes alled a 3-uniform hypergraph, or a dimensionally homogeneous

(pure) two-dimensional simpliial omplex, see [Sk, � 5℄
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Figure 5.1.2. A omplete 2-hypergraph with 5 verties

(b) The book with n pages is the 2-hypergraph with verties

a, b, 1, 2, . . . , n and faes {a, b, j}, j = 1, 2, . . . , n. See Figure 2.2.1 for
n= 3.

() Suppose one has a 2-hypergraph, and a gluing diagram showing

whih pairs of edges should be identi�ed, so that no two verties

of interseting faes get identi�ed. Then one an obtain a new 2-

hypergraph by gluing the edges aording to the diagram. For instane,

Figure 2.1.1 shows the 2-hypergraphs obtained by gluing the sides of

a square (triangulations are not shown there; see �5.9 and �6.2 for the

formalization).

(d) A triangulation of 2-manifold (see �4.6) an be naturally viewed
as a 2-hypergraph, whih is also alled a triangulation.

For 16 i6 n, denote by en,i ∈ Rn the point whose i-th oordinate

is 1 whereas the others are 0. The onvex hull ∆n of the points

en+1,1, . . . , en+1,n+1 ∈Rn+1
is alled

14

the n-dimensional simplex. It is
a onvex polyhedron with n+ 1 verties; the union of its edges `forms'

the omplete graph Kn+1. The geometri realization (or body) of a

2-hypergraph (V, F ) is the union of those two-dimensional faes of the

simplex with vertex set V that orrespond to the faes from F .
Main results stated in this setion (but not used later) are Theorems

5.2.4, 5.3.1, 5.3.3, and 5.6.2.

14

One ould de�ne the n-dimensional simplex as the onvex hull

of (0, . . . , 0), en,1, . . . , en,n ∈ Rn
. This might be more visually intuitive but

this is less onvenient for us.
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Remark 5.1.2 (on geometri realization of hypergraphs). Similarly

to the ase of graphs, one builds a geometri shape from a 2-hypergraph,

and alls it the geometri realization (f. the above rigorous de�nition).

Informally speaking, the shape is obtained by gluing several triangles

orresponding to the faes. The gluing proedure does not have to

happen in three-dimensional spae; the proedure is either done in

higher dimensions, or even abstratly, without any referene to an

ambient spae.

For example, Figure 5.1.1 shows how to build the geometri

realization of the omplete 2-hypergraph with 4 verties. The geometri
realization of the 2-hypergraph that is obtained as a surfae triangulation

is homeomorphi to that surfae. More generally, 2-hypergraphs, just

like graphs, an be spei�ed by geometri shapes, inluding `smooth' or

self-interseting ones. See the last two rows of Figure 2.1.1. One shape

spei�es multiple 2-hypergraphs.

Usually all these 2-hypergraphs are homeomorphi (see �5.2, Theorem 5.2.4

and the example before Problem 10.3.3). Then a 2-hypergraph bears

the name of the shape. In this ase non-isomorphi but homeomorphi

2-hypergraphs have the same name.

Despite having a geometri realization, a 2-hypergraph is a ombinatorial

objet. It is impossible, say, to take a point on its fae. However, `taking

a point on a fae of the geometri realization of a 2-hypergraph' an be

formalized as `taking the newly added vertex of the new 2-hypergraph

obtained by the subdivision of that fae'; see Figure 5.2.2 on the right.

We will not follow suh a level of formality.

The de�nition of a 2-hypergraph isomorphism is analogous to

the one for graphs. 2-Hypergraphs (V, F ) and (V ′, F ′) are alled

isomorphi if there is a 1�1 orrespondene f : V → V ′
satisfying the

following property: verties A, B, C ∈ V lie in the same fae if and only

if the verties f(A), f(B), f(C) ∈ V ′
lie in the same fae.

5.2. Homeomorphi 2-hypergraphs

Remark 5.2.1 (homeomorphism of graphs). (a) The operation

of edge subdivision is shown in Figure 5.2.1. Two graphs are alled

homeomorphi if one of them an be obtained from the other using

edge subdivisions and the inverse operations. Equivalently, two graphs
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are homeomorphi if there is a graph that an be obtained from either

of the two using edge subdivisions.

Figure 5.2.1. Edge subdivision

(b) The de�nition of a homeomorphism for subsets of Eulidean

spae is given in �3.1. It turns out that graphs G1 and G2 are

homeomorphi if and only if the realizations |G1| and |G2| are homeomorphi.
This riterion motivates the de�nition of a graph homeomorphism,

whih allows us to study ertain shapes using ombinatorial language.

() A one-dimensional polyhedron is a homeomorphism lass of

graphs. A topologist is usually interested in polyhedra even if alling

them graphs. On the other hand, graphs and their realizations are

onvenient tools for studying polyhedra and storing them in omputer

memory. A ombinatorialist or disrete geometer are mostly interested

in graphs, though they might �nd polyhedra useful as well.

The de�nition of homeomorphi (ombinatorial topology equivalent)

2-hypergraphs is analogous to the one for graphs.

The operation of an edge subdivision of a 2-hypergraph is shown

in Figure 5.2.2, on the left.

5.2.2. The operation of a fae subdivision in Figure 5.2.2, on the right,

an be expressed using edge subdivision and its inverse.

Two 2-hypergraphs are said to be homeomorphi, if one of them

an be obtained from the other (to be preise, from a 2-hypergraph

isomorphi to the latter, see the end of �5.1) using the operations of edge

subdivision and its inverse.

5.2.3. (a) The 2-hypergraph with verties 0, 1, . . . , n and faes

{0, 1, 2}, {0, 2, 3}, . . . , {0, n − 1, n} is homeomorphi to omplete 2-

hypergraph with three verties.

(b) The same for the set of faes {0, 1, 2}, {0, 2, 3}, . . . , {0, n− 1, n}, {0, n, 1}.
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Figure 5.2.2. Subdivision of an edge and a fae

() The 2-hypergraphs in eah separate olumn of Figure 2.1.1 are

homeomorphi to eah other (for some triangulation of square), while

the 2-hypergraphs from di�erent olumns are not.

Hint : the material of the following setions an be used in order to

prove that ertain 2-hypergraphs are not homeomorphi.

(d)* Any two triangulations of triangle are homeomorphi.

Theorem 5.2.4. (a) Two-dimensional hypergraphs are homeomorphi

if and only if their geometri realizations are homeomorphi.

(b) The 2-hypergraphs orresponding to di�erent triangulations of

the same 2-manifold in Rm (see �4.5) are homeomorphi.

This is an important statement (`Hauptvermutung'). It illustrates

the onnetion between the notions of `ombinatorial' homeomorphism

of 2-hypergraphs and `topologial' homeomorphism of their geometri

realizations.

Theorem 5.2.4 is neither proved nor used in this book. This

result is nontrivial even when one of the 2-hypergraphs is a triangle

(Assertion 5.2.3 (d)) or a sphere with handles (�2.1).

15

15

Be areful: visually intuitive explanations of this and analogous results might

not be proofs! For example, in [Pr14, proof of Theorem 11.5℄ the following things are

not de�ned: `surfae edges', `pieewise linear graph on the surfae', and `transverse

intersetion of edges'. To overome this, one needs a version of Triangulation

Theorem 4.6.4. An easier way is to prove the equality of the Euler harateristis

not for arbitrary losed two-dimensional surfaes, but for the examples in question,
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A two-dimensional polyhedron is a homeomorphism lass of 2-

hypergraphs. An analogue of Remark 5.2.1. is valid for 2-hypergraphs.

A graph is said to be embeddable (or realizable) in a 2-hypergraph

if a ertain 2-hypergraph homeomorphi to the given one ontains a

graph homeomorphi to the given one.

5.3. Reognition of 2-hypergraphs being homeomorphi

Theorem 5.3.1. There exists an algorithm deiding whether

(a) a 2-hypergraph is homeomorphi to the sphere S2
;

(b) two arbitrary 2-hypergraphs are homeomorphi.

Theorem 5.3.1 is neither proved nor used in this book. Theorem 5.3.1 (a)

follows from Theorem 5.3.3 on sphere reognition. The latter and

Theorem 5.6.2 on lassi�ation of surfaes an be regarded as important

speial ases of Theorem 5.3.1 (b), whih suggest how to prove the

general ase (see Problem 5.5.2 (b) and the notion of attahing word

before Problem 10.5.4). Let us introdue the notions required to state

these speial ases.

A 2-hypergraph is alled onneted, if any two verties an be

joined by a path along the edges.

A 2-hypergraph is alled loally Eulidean, if for every its vertex v,
the faes ontaining v form a hain

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an} or

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an}, {v, an, a1}
for some pairwise distint verties a1, . . . , an.

E.g. 2-hypergraphs that are triangulations of surfaes in Figure 2.1.1,

or of a disk with ribbons (� 1.5), are loally Eulidean.

5.3.2. (a) For whih n is the omplete 2-hypergraph on n verties

loally Eulidean?

(b) There is a 2-hypergraph that is not loally Eulidean but with

eah edge inident to two faes.

() A 2-hypergraph homeomorphi to a loally Eulidean one is

loally Eulidean itself.

and take in plae of G2 the spei� triangulation that we onstruted (this su�es

for Theorem 11.5). Even after this, the phrase `Graph G1 an be modi�ed in order

to...' in not obvious; it seems that this fat is as di�ult as Theorem 5.2.4.b.
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The Euler harateristi of a 2-hypergraph K with V verties,

E edges and F faes is the number

χ(K) := V − E + F.

The methods for omputing the Euler harateristis are presented

in �5.4.

Theorem 5.3.3 (Sphere reognition). A 2-hypergraph is homeomorphi

to the sphere S2
if and only if it is onneted, loally Eulidean, and

its Euler harateristi equals 2.

A sketh of the proof is presented in �5.5. For higher dimensional

analogues see �10.1.

5.4. Euler harateristi of a 2-hypergraph

5.4.1. (a�i) Find the Euler harateristi of the triangulations

onstruted in your solution of Problem 4.6.3.

The Euler harateristi an be omputed easier (for example, in

Problem 5.4.1) not by de�nition but using its properties. They are

presented below.

5.4.2. (a) (Riddle) Guess and prove the formula for the Euler

harateristi of a union.

(b) Cutting a hole dereases the Euler harateristi by 1.

5.4.3. (a) The Euler harateristis of homeomorphi 2-hypergraphs

are equal.

(b) The triangulations of spheres with distint numbers of handles,

whih you onstruted in Problem 4.6.3 (e), are not homeomorphi.

(This fat is not obvious sine seemingly di�erent shapes might happen

to be homeomorphi, see �2.7 and espeially �2.8.)

5.4.4. Find the Euler harateristi of

(a) the disk with m M�obius bands (see Figure 2.8.1 and de�nition

thereafter);

(b) the Klein bottle with g handles;
() the projetive plane with g handles;
(d) the sphere with m M�obius bands attahed;

(e) the sphere with m M�obius bands attahed, and h holes ut.
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5.4.5. Whih 2-hypergraphs from Problem 5.4.4 (b, , d) are homeomorphi?

5.4.6. Denote by K a triangulation of 2-manifold.
(a) The Riemann Theorem. Suppose g +m pairwise disjoint loops

are hosen inK so that utting along any of the �rst g of them gives two

boundary irles, and utting along any of the last m of them gives one

boundary irle. If 2g +m > 2 − χ(K) then the union of these loops

splits the triangulation.

(b) The Euler inequality. A onneted subgraph G of K with

V verties and E edges splits the triangulation into at leastE − V + χ(K)
parts. In other words, χ(G)> χ(K).

()* What is the minimum number of parts in a splitting of K by a

subgraph with V verties, E edges and s onneted omponents?

The Riemann Theorem 5.4.6 (b) generalizes the Riemann Theorem 2.3.5 (a)

and is implied by the following assertion (f. [Pr14, � 11.4℄).

5.4.7. Cut a triangulation of 2-manifold along a non-splitting urve
that is built from some edges of the triangulation. The resulting

triangulation of 2-manifold has the same Euler harateristi as the

original one.

Answers to 5.4.1. (a, b) 0; (, h) 2; (d, i) 1; (e, f, g) 2g.

5.5. Proof of Sphere Reognition Theorem 5.3.3

Theorem 5.3.3 is redued to its version for thikenings (Proposition

2.7.7.) using Assertion 5.5.1.d.

The boundary ∂N of a loally Eulidean 2-hypergraph N is the

union of all its edges eah of whih is ontained in a single fae.

5.5.1. (a) The boundary is a disjoint union of yles, i.e., graphs

homeomorphi to a triangle.

(b) The number of boundary irles is the same for homeomorphi

loally Eulidean 2-hypergraphs.

() 2-Hypergraphs `representing' annulus and M�obius band are not

homeomorphi.

(d) Let K ∼= L be triangulations of 2-manifolds. Let SK and

SL be onneted omponents of ∂K and ∂L, respetively. Then

K ∪SK
con SK ∼= L ∪SL

con SL.
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Proof of Theorem 5.3.3. The `only if' part follows from Assertion 5.3.2 ()

and Assertion 5.4.3 (a), along with the result of Problem 5.4.1 (a).

The `if' part is harder. (Being losed and orientable, see ��5.6, 5.7,

is also needed for this part, but is implied by the other hypothesis in

Theorem 5.3.3.) Denote by K the given triangulation of 2-manifold.
Denote by V, E, F, n the number of its verties, edges, faes, and

boundary irles.

Take the unionM of aps and ribbons orresponding to verties and

edges of the triangulation. (See an informal explanation near Fig. 1.6.3

(left) and a rigorous de�nition below.) By Assertions 5.2.3.a,b any

path, any ribbon, and any ap is homeomorphi to D2
. Hene M is a

thikening of the union of edges. Clearly,M has F + n boundary irles.
Sine V − E + F = 2, by and onnetivity and Assertions 1.6.4., 1.6.5
we have n= 0. Then by Proposition 2.7.7. M is homeomorphi to the

disk with h − 1 = F − 1 holes. The thikening M is K with F holes.

Hene by Assertion 5.5.1.d K ∼= S2
.

The baryentri subdivision G′
of a graph G is obtained by subdividing

all its edges. The baryentri subdivision of a fae of a 2-hypergraph

is the result of the replaement of the fae by six new faes that

are obtained by drawing the `medians' in the triangle representing

the fae (Figure 5.5.1). The baryentri subdivision K ′
of a 2-

hypergraph K is the result of the baryentri subdivision of all its

faes.

Figure 5.5.1. Baryentri subdivision

Sine the baryentri subdivision an be obtained via edge subdivisions,

K ′ ∼=K.
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Denote byK ′′
the 2-hypergraph obtained from a 2-hypergraph K by

baryentrially subdividing it twie. We will use the following notation

(see Figure 1.6.3 on the left, where a triangulation of 2-manifold K is

shown):

• a ap is the union of the faes of the triangulation K ′′
that ontain

a ertain vertex of the triangulation K;

• a ribbon is the union of the faes of the triangulation K ′′
that

interset a ertain edge of the triangulation K but avoid the verties of

the triangulation K;

• a path is a onneted omponent of the union of the remaining

faes of the triangulation K ′′
, i.e., the union of all faes of K ′′

belonging

neither to aps nor to ribbons.

5.5.2. (a) There exists an algorithm that takes a 2-hypergraph

homeomorphi to S2
and outputs a sequene of edge subdivisions and

inverse operations that transform the 2-hypergraph to S2
.

(b) There exists an algorithm reognizing whether a 2-hypergraph

is homeomorphi to the book with 3 pages.

5.6. Classi�ation of surfaes

Lemma 5.6.1 (homogeneity). Let p and q be any two faes of a

loally Eulidean 2-hypergraph K. If both p and q are disjoint from ∂K,

then K − p and K − q are homeomorphi.
From a loally Eulidean 2-hypergraph one an obtain other loally

Eulidean 2-hypergraphs by

• utting a hole (more preisely, removing a fae disjoint from the

boundary; this is well-de�ned by Homogeneity Lemma 5.6.1),

• attahing a handle, see Figure 2.1.5 (more preisely, utting two

holes and attahing to their boundary a ertain triangulation of the

lateral surfae of a ylinder), or

• attahing a M�obius band, or a ross-ap, see Figure 5.6.1.

Before we prove in Assertions 5.8.1, 5.8.2 that attahing a handle,

and a M�obius band operations are well-de�ned, we do not assume that.

Theorem 5.6.2 (Classi�ation of surfaes). Every onneted loally

Eulidean 2-hypergraph is homeomorphi to a triangulation of either

a sphere with handles and holes, or a sphere with M�obius bands

(attahed to the sphere) and holes. These triangulations are not homeomorphi
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Figure 5.6.1. Attahing a handle and a M�obius band; utting a hole

for di�erent triples (ε, g, h), set to (0, g, h) for a sphere with g handles
and h holes, and to (1, g, h) for a sphere with g M�obius bands

and h holes.

A proof is skethed in 5.7. It gives an algorithm deteting homeomorphism

between a 2-hypergraph and the aforementioned lasses (ε, g, h) of

2-hypergraphs, as well as an algorithm deteting homeomorphism

between loally Eulidean 2-hypergraphs. Compare to Theorem 6.7.6.

A pieewise linear (PL) two-dimensional manifold is a homeomorphism

lass of loally Eulidean 2-hypergraphs. If there is no ambiguity with

the notion of 2-manifolds from �4.5, we say `2-manifold' as a shorthand
for `PL two-dimensional manifold'.

From now on, instead of the term `loally Eulidean 2-hypergraph'

we use a ommon term `triangulation of 2-manifold'. Earlier it would
not be onvenient for a beginner, sine in the study of 2-manifolds from
the pieewise linear viewpoint, the primary objet is a 2-hypergraph,

and not a 2-manifold.
A loally Eulidean 2-hypergraph is alled losed, if eah its edge

belongs to two faes (as opposed to one; that is, for eah vertex the

seond option from the de�nition of being loally Eulidean takes plae).

For instane, in Figure 2.1.1 only the four last `hypergraphs' are losed.
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By `sealing' (apping with a disk) eah boundary irle of a disk with

ribbons one obtains a losed loally Eulidean 2-hypergraph.

5.7. Orientable triangulations of 2-manifolds

An orientation of a two-dimensional triangle is an ordering of its

verties up to an even permutation. An orientation is onveniently

pitured by a losed urve with an arrow inside the triangle (or by

an ordered pair of non-ollinear vetors).

Figure 5.7.1. Agreeing orientations

An orientation of a triangulation of 2-manifold is a hoie of fae

orientations agreeing with one another on eah edge ontained in two

faes, in the sense that the orientations of adjaent faes indue the

opposite diretions on their ommon edge (Figure 5.7.1).

A triangulation of 2-manifold is alled orientable if there exists an

orientation of it

16

.

It is not di�ult to see that a smooth 2-manifold is orientable in

the sense of �4.10 if and only if it has an orientable triangulation.

5.7.1. (a) Homeomorphi triangulations of 2-manifold are simultaneously
orientable or non-orientable.

(b) The sphere, the torus, a sphere with handles are orientable.

() The M�obius band, the Klein bottle, the projetive plane

(Figure 2.1.1) are non-orientable.

(d) The torus is not homeomorphi to the Klein bottle.

5.7.2. (a) The orientability is preserved when utting a hole.

16

The notion of orientability is `impossible' to introdue for arbitrary 2-

hypergraphs (think why), but is ould be introdued for 2-hypergraphs eah of

whose edges is ontained in at most two faes.



5.7. Orientable triangulations of 2-manifolds 147

(b) A disk with ribbons (see �1.5) is orientable if and only if no

ribbon is twisted.

5.7.3. (a) A triangulation of 2-manifold is orientable if and only

if no homeomorphi triangulation ontains a triangulation of M�obius

band.

(b)* Does there exist a non-orientable triangulation of 2-manifold
that does not ontain a triangulation of M�obius band?

() A losed triangulation of 2-manifold is orientable if and only

if there exists a olletion of faes of its baryentri subdivision suh

that every edge of the subdivision is inident to exatly one fae of the

olletion.

The riterion from part (a) does not give an algorithm reognizing

orientability. Suh an algorithm is obtained from the following strengthening

of the riterion: one needs to replae the words `no homeomorphi

triangulation ontains' with the words `its seond baryentri subdivision

does not ontain'. However, the orresponding algorithm is slow (has

`exponential omplexity'). A polynomial algorithm is presented in �6.1

(or an be obtained from part ()).

Sketh of the proof of Surfae Classi�ation Theorem 5.6.2. The lak

of homeomorphism (i.e., the seond assertion of the theorem) is proved

using orientability, the number of onneted boundary omponents,

and the Euler harateristi; that is, the lak of homeomorphism

follows from Assertions 5.7.1 (a), 5.5.1 (b), 5.4.3 (a) and the results of

Problems 5.4.4 (e), 5.4.1 (g).

The proof of homeomorphism (i.e., the �rst assertion of the

theorem) is analogous to that of Theorem 5.3.3; that is, the proof

of homeomorphism follows from Assertions 2.7.9 (b), 2.8.11 (b), and

Assertions 5.7.2 (a, b).

In Theorem 5.6.2, the number g of handles is alled the orientable

genus of a triangulation of 2-manifold. It an be found from the

equation 2− 2g − h= χ. The number m of M�obius bands is alled the

non-orientable genus and an be found from the equation 2−m− h= χ.
See Problems 5.4.1 (g) and 5.4.4 (a).

By Theorem 5.6.2 (or by Assertion 6.7.3 (b)) the Euler harateristi

of a losed orientable triangulation of 2-manifold is even.
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5.8. Attahing a handle or a M�obius band is well-de�ned

The 2-hypergraphs obtained from a given loally Eulidean one by

attahing a handle or a M�obius band, are unique up to a homeomorphism.

The fat that the result of attahing a handle or a M�obius band does

not depend on the disks to whih the handle is attahed, also follows

from Homogeneity Lemma 5.6.1. However, the independene from the

attahing map is a priori not obvious (though it is usually not disussed

in textbooks). Indeed, the result of gluing two quadrilaterals ABCD
and A′B′C ′D′

to one another along the edges AB and A′B′
, CD

and C ′D′
, depends on the hoie of attahing map (i.e., on the hoie of

diretions along the edges used for gluing). Moreover, in the following

paragraph we de�ne a analogous operation of `attahing a andle', whih

is not well-de�ned up to a homeomorphism.

A andle is the union of a quadrilateral ABCD with segments

CC1, DD1, DD2. Given a surfae M and an ar XY in its boundary,

attahing a andle is taking the union of M and the andle, and

identifying the ars AB and XY . This an be done in two ways: identify
A with X, and B with Y , or vie versa. The two thus obtained shapes

are homeomorphi whenM is a disk, but any homeomorphism between

them reverses the orientation on the disk. The two thus obtained shapes

are not homeomorphi when M is a disk with andle.

For higher-dimensional manifolds, the result of the attahing an

analogue of a handle may depend on the hoie of gluing (a remark for

experts: CP 2#CP 2
and CP 2#(−CP 2) are not homeomorphi).

In order to have the independene of the way of gluing one needs

the objet being attahed to be `symmetri'. For attahing a handle,

the independene follows from Assertion 5.8.1 (b) (or 5.8.1 (, d)), while

for attahing a M�obius band this follows from Assertion 5.8.2 (b).

5.8.1. (a) The quadrilateral whose antipodal sides are endowed

with `agreeing' diretions is homeomorphi to the quadrilateral whose

antipodal sides are endowed with the opposite `agreeing' diretions.

Formally, there exists a re�nementK of the 2-hypergraph with verties 1,
2, 3, 4 and faes {1, 2, 3}, {1, 3, 4}, and an isomorphism K → K,

sending 1, 2, 3, 4 to 2, 1, 4, 3, respetively.
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(b) The annulus whose boundary irles are endowed with `agreeing'

diretions is homeomorphi to the annulus whose boundary irles are

endowed with the opposite `agreeing' diretions.

() The torus with a hole and with a hoie of diretion along the

boundary irle is homeomorphi to the torus with a hole and with the

opposite hoie of diretion along the boundary irle.

(d) The result of attahing a handle is homeomorphi to the result

of the operation in Figure 5.6.1, at the top, and is homeomorphi

to the result of utting out square ABCD and gluing direted edges

AB and DC, AD and BC.

In order to prove Assertion 5.8.1 (d), as well as the following laim,

you an exhibit a sequene of pitures, as in �2.7.

5.8.2. (a) The projetive plane (see Example 4.5.3) with a hole is

homeomorphi to the M�obius band.

(b) The M�obius band with a hole and with a hoie of diretion

along its boundary irle is homeomorphi to the M�obius band with

a hole and with the opposite hoie of diretion along the boundary

irle.

() The result of attahing a M�obius band is homeomorphi to

the result of utting a hole and identifying the antipodal points of its

boundary irle.

(d) The Klein bottle is homeomorphi to the sphere with two M�obius

bands attahed.

(e) The torus with a M�obius band attahed is homeomorphi to the

Klein bottle with a M�obius band attahed.

5.9. Regular neighborhoods and ellular subgraphs

The notion of a regular neighborhood is informally explained near

Fig. 1.6.3 (left). An example of a regular neighborhood of a subgraph

in a hypergraph one an take the union U of aps and ribbons

orresponding to the verties and the edges of the subgraph; that is, the

union of those faes of the seond baryentri subdivision that interset

the subgraph. Let us give the general de�nition.

A hypergraph L is obtained from a omplex K by an elementary

ollapse if K = L ∪ σ and L ∩ σ = ∂σ − Int τ for some faes σ, τ of K
suh that τ ⊂ ∂σ. A hypergraph K ollapses to L (notation: Kց L) if
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there exists a sequene of elementary ollapsesK =K0ցK1ց . . .ցKn = L.
A hypergraph K is ollapsible if it ollapses to a point.

A regular neighborhood of a subhypergraph A in a hypergraph

K is a subhypergraph of some subdivision of K whih ontains A and

ollapses to A.

5.9.1. (a) The one of any graph is ollapsible.

(b) Construt three hypergraphs none of whih ollapses to a

hypergraph homeomorphi to any other.

() The Euler harateristi is preserved under ollapses.

(d) The Euler harateristi of a subgraph and of its regular

neighborhood in a 2-hypergraph are equal.

(e) The union U is indeed a regular neighborhood.

The omplement G −H in a graph G to a vertex set H is formed

by the verties of the graph G that do not lie in H, and the edges of

the graph G without endpoints in H.

Let G be a subgraph of a hypergraph K (i.e., a subgraph of the

graph formed by the verties and the edges of the hypergraph K). The

omplement K −G is formed by the faes of the hypergraph K that do

not interset G.
The following de�nition formalize the onstrution of gluing a

hypergraph out of a square (Figure 2.1.1) or a polygon.

Denote by |K| the geometri realization of a graph K or a

hypergraph K.

A vertex set A in a graph K is alled (topologially) ellular if

eah onneted omponent of |K| − |A| is homeomorphi (topologially)
to the open interval. We will be using the following (equivalent)

ombinatorial de�nition. A vertex set H in a graph G is alled

ellular if eah onneted omponent of the omplement G′′ − H is

homeomorphi to a segment eah of whose endpoints belongs to an

edge of the graph G′′
inident to a vertex from H.

A subgraph A in a hypergraph K is alled (topologially) ellular if

eah onneted omponent of |K| − |A| is homeomorphi (topologially)
to the open disk. We will be using the following (equivalent) ombinatorial

de�nition. A subgraph G in a hypergraph K is alled ellular if eah

onneted omponent C of the omplement K ′′ −G′′
is homeomorphi
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to a disk

17

eah of whose boundary edges lies in a fae of the

hypergraph K ′′
interseting G. For example,

• a point in the sphere is ellular whereas a point in the torus is

not;

• the union of the edges of a hypergraph is ellular.

5.9.2. The Euler formula. If K is a 2-hypergraph, and G ⊂ K
is a onneted ellular subgraph with V verties and E edges, then

V − E + F = χ(K), where F is the number of onneted omponents

of the omplement K ′ −G′
.

Hint. The formula follows from the inlusion-exlusion priniple

(Problem 5.4.2), sine χ(D2) = 1.

5.9.3. (a) If a onneted graph an be embedded to the sphere

with g handles, then it is homeomorphi to a ellular subgraph of a

sphere with at most g handles.
(b) The same for spheres with M�obius bands attahed.

17

In many appliations of the notion `ellular', the ondition `homeomorphi to a

disk' ould be replaed by a weaker ondition χ(C) = 1, whih is easier to verify. If

the omponent C is loally Eulidean, then the ellularity ondition is equivalent to

this weaker ondition as well as to the following one: the omponent C is split by

any polygonal line with the endpoints on the boundary of C.
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And the leap is not � is not what I think

you sometimes see it as � as breaking, as

ating. It's something muh more like a quiet

transition after a lot of patiene and � tension

of thought, yes � but with that [enlightenment℄

as its disipline, its orientation, its truth. Not

onfusion and haos and immolation and pulling

the house down, not something experiened as a

great signi�ant moment.

I. Murdoh, The Message to the Planet.

6.1. Orientability riterion

The de�nitions of a pieewise linear (PL) 2-manifold and its

triangulation are presented in �5.6. The de�nitions of a smooth

2-manifold and its triangulation are presented in �4.5. Either of these

two approahes an be used for this setion. However, a areful

treatment is only presented in the PL language in some plaes.

The de�nition of orientability of a triangulation is given in �5.7.

There is a nie and simple riterion of orientability: `does not ontain

a M�obius band' (a preise formulation is given in Problem 5.7.3 (a)).

There is a simple algorithm reognizing orientability as follows. It

su�es to hek the orientability of eah onneted omponent. First,

orient a fae of the omponent arbitrarily. Then at eah step orient a

fae adjaent to any of the faes already oriented, until all faes are

oriented, or two adjaent faes with disagreeing orientations are found.

In this setion we will give an algebrai riterion of orientability,

whih, basially, is merely a reformulation of the de�nition of orientability

in algebrai language. However, this riterion is important not on its

own but rather as an illustration of obstrution theory. Moreover,

similar onsiderations lead to Assertion 6.1.2 (b), and are applied in

the lassi�ation of thikenings [Sk℄. Cf. �6.8, �4.11.

Theorem 6.1.1 (Orientability). A 2-manifold N is orientable if

and only if its �rst Stiefel�Whitney lass w1(N) ∈H1(N, ∂) is zero.
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The group H1(N, ∂) and the lass w1(N) are de�ned later. They

arise naturally and an be de�ned rigorously in the proess of inventing

the Orientability Theorem, whih we will start in a moment. The

omputation of the group H1(N) is given in �6.4.

In this setion the word `group' an be regarded synonymous with

the word `set' (with the exeption of Problems 6.2.5, 6.5.2, and �6.7).

The onstrutions will remain interesting.

6.1.2. (a) Draw a losed non-self-interseting urve on the disk with

three M�obius bands, so that the omplement to the urve is orientable.

(b) Any losed 2-manifold admits a losed non-self-interseting

urve whose omplement is orientable. (More formally: for any losed

triangulation of 2-manifold there is a subgraph of a homeomorphi

triangulation T , suh that the subgraph is homeomorphi to the irle,
and the omplement to the image of this subgraph in the seond

baryentri subdivision of T , see �5.9, is orientable.)

6.2. Cyles

The notion of a ellular deomposition of a hypergraph formalizes

the examples `glued of polygons' from Example 5.1.1.. A ellular

deomposition of a hypergraph K is a pair K0 ⊂ K1 ⊂ K of its

subhypergraphs in whih K1 is a ellular subgraph in K and K0 is a

ellular set of verties in K1 (see �5.9 for de�nitions). The graph K1 is

alled the one-dimensional skeleton of the ellular deomposition. Edges

and faes of a ellular deomposition K0 ⊂K1 ⊂K are the onneted

omponents of the omplement K ′′
1 −K0 and onneted omponents of

the omplement K ′′ −K ′′
1 , respetively.

Many onstrutions are done more onveniently for ellular deompositions

rather than for hypergraphs, sine many `interesting' hypergraphs

have `many' faes, but admit `eonomial' ellular deompositions. For

omputations, it is more onvenient to draw ellular deompositions

rather than more umbersome polygonal deompositions. Triangulations

are speial ases of ellular deompositions. Other examples are shown

in Figure 2.1.1. In the following onsiderations, exept the examples,

the reader may substitute ellular deompositions with triangulations.

In this setion T is a ellular deomposition of a 2-manifold N ,

while o is a hoie of orientations on the faes of T .
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Figure 6.2.1. Colletion o of orientations, and the obstrution yle ω(o)

Color an edge of a ellular deomposition T in red if the orientations

of the inident faes do not agree along this edge, i.e., indue the same

diretion on the edge. The olletion of the red edges is alled the

obstrution yle ω(o).
For instane, in Figure 6.2.1 the Klein bottle is represented as a

square with glued sides, i.e., it is deomposed into a single polygon. The

faes inident to the horizontal edge from the two sides, oinide. But

their (or rather its) orientations do not agree along the edge. Besides,

the orientation of the only fae agrees with itself along the vertial

edge. Hene, in Figure 6.2.1 the obstrution yle onsists of a single

horizontal edge (shown in bold).

So, if a deomposition is not a triangulation, then the orientation of

a fae inident to an edge from two sides does not have to agree with

itself along this edge. Moreover, a pair of faes (oiniding or not) might

have orientations that agree along one edge but disagree along another

edge.

6.2.1. (a) For eah edge of the single-fae ellular deomposition of

the M�obius band (i.e., of the representation of the M�obius band as a

square with glued sides, see the third olumn in Figure 2.1.1), �nd out

if the orientation of the only fae agrees with itself along this edge.

(b) The same question for the projetive plane (Figure 2.1.1).

6.2.2. (a) Draw the obstrution yle for the single-fae ellular

deomposition of the M�obius band.

(b) The same for the projetive plane.

Many of the following fats (for example, Problems 6.2.3 (a, b)) an

be �rst proved for triangulations and then for ellular deompositions.

6.2.3. (a) A olletion o of fae orientations determines an orientation
of a ellular deomposition if and only if ω(o) =∅.
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(b) If a 2-manifold is losed, then eah vertex has an even number

of inident edges of the obstrution yle (by onvention, a loop ounts

with multipliity two).

() The omplement to the obstrution yle ω(o) (formally, the
union of the faes of the seond baryentri subdivision that do not

interset ω(o)) is orientable.
(d) For any losed triangulation of 2-manifold, it is possible to orient

the (two-dimensional) faes of its baryentri subdivision so that the

orientations of any two adjaent faes do not agree.

A yle (homologial, one-dimensional, mod 2) in a graph (or in

a hypergraph) is an unordered olletion of its edges suh that any

vertex has an even number of inident edges from the olletion. The

words `homologial', `one-dimensional' and `mod 2' will be omitted.

Cyles in the sense of graph theory will be alled `losed urves'.

For instane, the graphs in Figure 1.2.1 have 2, 8, and 8 yles,

respetively. The union of edges in the single-fae ellular deomposition

of the Klein bottle (Figure 6.2.1) is the `�gure eight', so this graph has

four yles.

6.2.4. How many yles are there in a onneted graph with V
verties and E edges?

On the set of all yles in a given graph (or a hypergraph) onsider

the operation of the (mod 2) sum (i.e., the symmetri di�erene).

6.2.5. The homology group H1(G) of a graph G (one-dimensional,

with oe�ients mod 2) is the group of all yles in the graph G.
(a) The sum of yles is a yle.

(b) Homeomorphi graphs have isomorphi homology groups.

() For a onneted graph G with V verties and E edges, one has

H1(G)∼= ZE−V+1
2 .

(d) Non-self-interseting losed urves in a graph G generate H1(G).

6.3. Homologous yles

If ω(o) 6= ∅, then o does not determine an orientation of a ellular

deomposition T . All is not lost though: one an try to modify o in

order to make the obstrution yle empty. For this, let us �nd out how

ω(o) depends on o. The answer is formulated onveniently using the
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mod 2 sum (i.e., the symmetri di�erene) of edge sets in an arbitrary

graph.

The (homologial) boundary ∂a of a fae a in a hypergraph is the
set of edges of the geometri boundary of this fae.

a

∂a

Figure 6.3.1. Homologial (algebrai) boundary of a ompliated fae

For a fae of a ellular deomposition, the de�nition is more

involved. The (homologial) boundary ∂a of a fae a is the set of

all those edges of the geometri boundary of the fae that are adjaent

to the fae just from one side (Figure 6.3.1).

As for yles, the word `homologial' will be omitted. For the

single-fae ellular deomposition of the Klein bottle (Figure 6.2.1) the

boundary of the only fae is empty.

6.3.1. (a) What is the boundary of the only fae in the single-fae

ellular deomposition of the projetive plane (see Figure 2.1.1)?

(b) The boundary of a fae is a yle.

() When the orientation of single fae a is reverted, the yle ω(o)
hanges to the sum with the boundary of that fae: for the resulting

olletion o′ of orientations one has ω(o′)− ω(o) = ∂a.
(d) When the orientations of several faes a1, . . . , ak are reverted,

the yle ω(o) hanges to the sum with the boundaries of these faes:

for the resulting olletion o′ of orientations one has

ω(o′)− ω(o) = ∂a1 + . . .+ ∂ak.

Two yles are alled homologous (or ongruent modulo boundaries),

if their di�erene is the sum of the boundaries of several faes.
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6.3.2. (a) When the olletion o of orientations is hanged, the

obstrution yle ω(o) is replaed by a homologous yle.

(b) If ω(o) is a boundary, then it is possible to hange o to o′ so
that ω(o′) =∅.

Proposition 6.3.3. A losed triangulation of 2-manifold is orientable
if and only if some (or, equivalently, any) obstrution yle is homologous

to the empty yle.

Sketh of the proof. It is lear that this ondition is neessary

for orientability. Conversely, suppose that some obstrution yle is

homologous to the empty yle. Then there exists a olletion o of fae
orientations of whih ω(o) is the boundary. Then by Assertion 6.3.2 (b)
it is possible to hange o to o′ so that ω(o′) = 0. Therefore, the
triangulation is orientable.

6.3.4. (a) Any two yles in the single-fae ellular deomposition

of the sphere (see Figure 2.1.1) are homologous.

(b) The boundary irles on the torus with two holes are homologous

(for any ellular deomposition).

() The boundary irle of the M�obius band is homologous to the

empty yle (for any ellular deomposition).

6.3.5. For the single-fae ellular deomposition of the torus (Figure 2.1.1)

(a) the `meridian' yle is not homologous to the empty yle;

(b) di�erent yles are not homologous.

6.3.6. (a) In the single-fae ellular deomposition of the projetive

plane (Figure 2.1.1) di�erent yles are not homologous.

(b) In the omplete hypergraph on 9 verties any two yles are

homologous.

() Any two yles are homologous in the single-fae ellular

deomposition of the Zeeman dune hat.

(The Zeeman dune hat is obtained from a triangle ABC by gluing

all three its sides direted so that

#    –

AB =
#    –

AC =
#    –

BC.)

6.3.7. (a) Homology is an equivalene relation on the set of yles.

(b) Any yle in a onneted triangulation T of 2-manifold is

homologous to a losed non-self-interseting polygonal line in some

subdivision of T .
() Is the same true for an arbitrary onneted hypergraph T ?
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6.3.8. (a) The sum of the boundaries of all faes of a losed

triangulation of 2-manifold is empty.

(b) The sum of the boundaries of all faes of a triangulation of

2-manifold equals to the boundary.

() The sum of the boundaries of any proper subset of faes of a

onneted losed triangulation of 2-manifold is non-empty.

6.3.9. (a) Any yle in a hypergraph is homologous to some yle

in any ellular graph in this hypergraph.

(b) If two yles in a ellular deomposition of a hypergraph are

homologous in the hypergraph, then they are homologous in the ellular

deomposition as well.

6.4. Homology and the �rst Stiefel�Whitney lass

Reall the de�nitions, motivated and introdued in the previous

setions. A yle in a hypergraph is an unordered olletion of edges

suh that every vertex is inident to an even number of them. The

boundary ∂a of a fae a in a hypergraph is the olletion of all edges of
the geometri boundary of this fae. Two yles are alled homologous

if their di�erene is the sum of several boundaries.

The homology groupH1(K) (one-dimensional, with oe�ients mod 2)
of a hypergraph K is the group of yles up to homology.

The homology group appears in solutions of spei� problems

(e.g. in heking orientability, see �6.2-�6.3). It is important that the

homology group is de�ned in a short way regardless of the problems,

and for arbitrary hypergraphs.

6.4.1. (a) On the set H1(K) the sum operation is well-de�ned by

the formula [α] + [β] = [α+ β].
(b) The set H1(K) with this operation is a group.

() The homology groups of homeomorphi hypergraphs are isomorphi.

More preisely, if a hypergraph K is obtained from a hypergraph L by

edge subdivision, then the naturally de�ned homomorphismH1(L)→H1(K)
is an isomorphism.

The homology group H1(T ) (one-dimensional, with oe�ients mod 2)
of a ellular deomposition T of a hypergraph is de�ned analogously. By

de�nition, the boundary ∂a of a fae a of a ellular deomposition of
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a hypergraph is the olletion of those edges of the geometri boundary

of a that are adjaent to a from an odd number of sides (Figure 6.3.1).

6.4.2. (a) For the aforementioned single-fae ellular deompositions

of the sphere, the torus, the projetive plane, the Klein bottle (Figures 2.1.1

and 6.2.1) the number of elements in H1(T ) equals 1, 4, 2, 4,
respetively.

(b) For a ellular deomposition T of a hypergraph K the following

holds: H1(T )∼=H1(K).

The homology group H1(N) (one-dimensional, with oe�ients mod 2)
of a 2-manifold N is the group H1(T ) for any triangulation T of the

manifold (or even for any ellular deomposition T of a triangulation).

The homology group is well-de�ned by Assertion 6.4.1 () (and 6.4.2 (b)).

The �rst Stiefel�Whitney lass of a ellular deomposition T
of a losed triangulation of 2-manifold is the homology lass of an

obstrution yle:

w1(T ) := [ω(o)] ∈H1(T ).

This is well-de�ned by Assertion 6.3.2 (a).

The �rst Stiefel�Whitney lass of a losed 2-manifold N is the

�rst Stiefel�Whitney lass of any triangulation T of 2-manifold N (or

even of any ellular deomposition T of a triangulation): w1(N) := w1(T ).
This is well-de�ned in the following sense (see also Assertion 6.4.2 (b)).

6.4.3. The map from Assertion 6.4.1 () sends w1(L) to w1(K).

Orientability Theorem 6.1.1 is a reformulation of Assertion 6.3.3.

6.5. Computations and properties of homology groups

In the arguments involving homology lasses of yles, it is onvenient

�rst to work with representing yles, and then prove that the atual

hoie of the representatives does not play a role.

6.5.1. Find the homology group and draw the urves forming its

basis for your preferred ellular deomposition of

(a) the sphere with g handles;
(b) the sphere with g handles and h holes;

() the sphere with m M�obius bands;

(d) the sphere with m M�obius bands and h holes.
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6.5.2. If T is a ellular deomposition of a onneted losed

2-manifold, then H1(T )∼= Z2−χ(T )
2 .

6.5.3. (a) If M and N are losed 2-manifolds, then H1(M#N) ∼=
∼= H1(M) ⊕ H1(N) (the operation # of onneted sum is de�ned

analogously to Figure 5.6.1).

(b) Does that formula hold for non-losed 2-manifolds M and N?

6.5.4. (a) For any hypergraphs K and L sharing at most one point,

H1(K ∪ L)∼=H1(K)⊕H1(L).
(b) Does that formula hold if there are two ommon points?

6.5.5. (a) For any onneted graph K one has

H1(K × I)∼=H1(K) and H1(K × S1)∼=H1(K)⊕ Z2.

(Come up with your own de�nitions of the produt of a graph with the

interval/the irle, or �nd the de�nitions in [Sk, Setion 5.9.2 �Linear

realizability of produts�℄.)

(b) For a regular neighborhood U of a subgraph K in a hypergraph,

one has H1(U)∼=H1(K).

Let T be a ellular deomposition of a triangulation of 2-manifold N
(perhaps, with a non-empty boundary). A yle relative to the boundary

(or a relative yle, for brevity) in T is a olletion of edges of T
suh that every non-boundary vertex is inident to an even number

of the edges from the olletion. Two relative yles are said to be

homologous relative to the boundary, if their di�erene is a sum of the

boundaries of several faes and of some boundary edges. The homology

groups H1(T, ∂), H1(N, ∂) relative to the boundary, and the lasses

w1(T ) ∈H1(T, ∂), w1(N) ∈H1(N, ∂) are de�ned analogously to above.

6.5.6. (a, b) Formulate and solve the analogues of Problems 6.5.1 (b, d)

for the homology groups relative to the boundary.

6.6. Intersetion form: motivation

The intersetion form is among the most important tools and

researh objets in topology and its appliations. See [DZ93℄. The

intersetion form arises naturally, for instane, when proving Assertions 6.6.1 (b)

and 6.6.2. See also the Mohar formulas 2.7.8 () and 2.8.8 ().
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6.6.1. (a) Regular neighborhoods (see Figure 1.6.3, on the left,

and �5.9) of isomorphi graphs in the same surfae are not neessarily

homeomorphi.

(b) Regular neighborhoods of the images of homotopi embeddings

of a given graph into a 2-manifold are homeomorphi. (The de�nitions
of homotopy are analogous to the ones given in �3.2, 3.4, 3.7.)

Two embeddings f0, f1 : G→N are alled isotopi if there exists a

family Ut : N →N of homeomorphisms depending ontinuously on the

parameter t ∈ [0, 1], suh that U0 = id and U1 ◦ f0 = f1. It is lear that
regular neighborhoods of the images of homotopi embeddings of a given

graph into a surfae are homeomorphi. In ontrast, Assertion 6.6.1 (b)

is not obvious.

6.6.2. On Topologist's planet, shaped as a solid torus, there are

rivers Meridian and Parallel. The Little Prine and Topologist traveled

around the planet along two di�erent losed routes. The prine rossed

the Meridian 9 times and the Parallel 6 times, while Topologist rossed
the rivers 8 and 7 times, respetively. Then their routes had to interset.
(When rossing a river a harater ends up on the other bank of the

river. More rigorously, the intersetion of the river and harater's path

are transverse, see the de�nition below.)

An heuristi argument, leading to the notion of the intersetion

number. Let N be a 2-manifold and let a, b be losed urves on N .

Let us assume that a and b
• are subgraphs of a ertain hypergraph representing N ;

• are in general position; that is, they interset transversely (Figure 6.6.1)
in �nitely many points, none of whih is a self-intersetion point of

either a or b.

x

A2 B1

B2A1

x

B1 A2

B2A1

Figure 6.6.1. A transverse intersetion and a non-transverse intersetion

An intersetion point x of two urves on a 2-manifold is alled

transverse if the urves are non-self-interseting in a neighborhood of
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the point, and every su�iently small losed urve Sx winding around x
intersets the two urves in two pairs of points that alternate along Sx
(that is, if A1, B1 are the intersetion points of the �rst urve with Sx,
and A2, B2 are the intersetion points of the seond urve with Sx, then
these points are situated along Sx in the order A1A2B1B2). In other

words, in order for the point x to be transverse, two short `segments' of
the �rst urve that are inident to x need to be on the di�erent sides

of the seond urve in a small neighborhood of x, see Figure 6.6.1.
In this situation |a ∩ b| mod 2 does not hange if a and b are

replaed by homologous urves satisfying the same ondition (the

subgraphs, orresponding the urves, are homologous yles; this is

what is meant by `homologous' urves).

6.7. Intersetion form: de�nition and properties

The argument presented in the preeding setion an be reworked

in order to give a de�nition of the intersetion form, based on

transversality. We will present a di�erent de�nition. Instead of transversality

it will use the following more onvenient notion of the dual ellular

deomposition. For the de�nition of a ellular deomposition and its

advantage over polygonal deompositions, see the beginning of �6.2.

The de�nition of the dual ellular deomposition of a ellular

deomposition U of a losed 2-manifold N . The de�nition is obtained

from the de�nition of the dual deomposition into polygons (see �4.8)

by requiring an additional ondition: the edge a∗ intersets the union
of edges U1 of a ellular subgraph U in a single point that belongs to

the edge a. The edge a∗ is alled dual to a. The resulting graph U∗
1 is

ellular for a ertain triangulation of 2-manifold N . (This triangulation

might be di�erent from the one that partiipates in the de�nition of

the ellular deomposition U . In the graph U∗
1 there might be loops

and multiple edges, even if in U1 there are suh edges.) The resulting

ellular deomposition U∗
is alled dual to U .

The de�nition of the intersetion of edge olletions. Take a ellular

deomposition U of a 2-manifold N (to be preise, of a representing

hypergraph). Take the dual ellular deomposition U∗
. For edge

olletions X in U , Y in U∗
, set X ∩ Y to be the number of their

intersetion points mod 2.



6.7. Intersetion form: de�nition and properties 163

6.7.1. (a) The intersetion of edge olletions is bilinear:

α ∩ (γ + δ) = α ∩ γ + α ∩ δ and (α+ β) ∩ γ = α ∩ γ + β ∩ γ.
(b) The intersetion of a yle and a boundary equals zero.

() The bilinear multipliation ∩ : H1(U) × H1(U
∗)→ Z2 is well-

de�ned via the formula [X] ∩ [Y ] := X ∩ Y , for a yle X in a

deomposition U and a yle Y in the deomposition U∗
.

(d) Let T, T be losed triangulations of 2-manifold N , where T is

obtained from T by a single edge subdivision. De�ne `natural' maps

f : H1(T )→H1(T ) and f
∗ : H1(T

∗)→H1(T
∗
) (f. Assertion 6.4.1 ()).

Prove that α ∩ β = f(α) ∩ f∗(β).
In view of Problems 6.7.1 (a, , d) one obtains the symmetri bilinear

intersetion form

∩ : H1(N)×H1(N)→ Z2.

6.7.2. (a) Find the intersetion form of the sphere with g handles
(that is, �nd the matrix of this form in some basis of the homology

group).

(b) Find the intersetion form of the sphere with m M�obius bands.

() The rank of the intersetion form of a disk with ribbons is equal

to the rank de�ned in the Mohar formula 2.8.8 ().

(d) The intersetion form is symmetri: α ∩ β = β ∩ α.
6.7.3. Let N be a losed 2-manifold. The de�nition of the �rst

Stiefel�Whitney lass w1(N) ∈H1(N) is presented in �6.4.

(a) For any a ∈H1(N), one has w1(N) ∩ a= a ∩ a.
(b) w1(N) ∩ w1(N) = ρ2χ(N).

6.7.4. Poinar�e duality. The intersetion form of any losed 2-manifoldN
is non-degenerate; that is, for any α ∈ H1(N) − {0} there exists

β ∈H1(N) suh that α ∩ β = 1.

6.7.5. (a�d) De�ne the intersetion form H1(N) × H1(N)→ Z2

for a 2-manifold N with non-empty boundary. Formulate and prove the

analogues of Assertions 6.7.1.

(e) The intersetion form an be degenerate.

(f) Find the intersetion form and its rank for the sphere with g
handles and h holes.

(g) Find the intersetion form and its rank for the sphere with m
M�obius bands and h holes.
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On the path of this book to a reader

Here we give details to `publishing rights' in p. 2 of this �le. As of

May, 2022, no publi reply from the Editorial Board or from Springer

are available. Updates (e.g. a publi reply, if available) will be presented

here.

A. Skopenkov's letter to the Editorial board of Springer book series

`Mosow Leture Notes' (C M. Peters). De 6, 2021.

Dear olleagues,

Hope you are �ne and healthy.

Thank you for aepting for publiation in `Mosow Leture Notes' series

of Springer the book Algebrai Topology From a Geometri Standpoint,

https://www.mme.ru/irles/oim/obstruteng.pdf

I'm afraid Springer is disregarding this aeptane deision of the Editorial

Board. The Publishing Agreement proposed by Springer in April does not

make the Publisher ommitted to publishing the book. Martin Peters and

I found a ompromise in May. But our ompromise is not realized, and

the problem is still unresolved - in spite of my monthly reminders. Natalia

Tsilevih did exellent urgent translation work in July, but neither is paid by

Springer, nor has a legal doument ensuring later payment.

Does Editorial Board have any means to ensure that its aeptane

deision is ful�lled by Springer? This information is vital for authors

submitting to `Mosow Leture Notes' series.

Best wishes, Arkadiy.

PS The translation went fast and was already ompleted as early as in

July (only the introdution and setions 3,4 remained). The translation was

stopped for reasons desribed above.

A. Skopenkov's letter to A. Gorodentsev and V. Bogahev, Editors of

Springer book series `Mosow Leture Notes' (C M. Peters). De 15, 2021.

Dear Alexey and Vladimir Igorevih,

Upon request of Vladimir Igorevih I desribe how Springer is disregarding

the aeptane deision of the Editorial Board of `Mosow Leture Notes'

series. On ompromises, see my letter of 6 De.

Could the Editorial Board make minimal e�orts supporting its aeptane

deision? A possible way is to publily support the authors' amends to the

Agreement proposed by Springer (I am willing to send you the list of amends).

The information on whether the aeptane deision of the Editorial Board

is �nal, is vital for authors submitting to the `Mosow Leture Notes' series.

So the result of your e�orts (if you hoose to do some) should be widespread

throughout the sienti� ommunity.
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(1) The Agreement proposed by Springer ontains the following lause

allowing the Publisher to terminate the Agreement without any losses. This

makes the publisher not ommitted to publishing the book, and so makes the

aeptane deision of the Editorial Board void.

************

11.2. If the Publisher, ating reasonably, deides that the Work is not

suitable for publiation in the intended market plae and/or ommunity or that

there is no substantial market for the Work, or the eonomi irumstanes

of publiation have substantially hanged (in eah ase other than due to the

Work not being of a suitable quality to justify publiation) then the Publisher

may at any time terminate this Agreement by giving one month's notie to

the Author in writing.

**********

(2) The Agreement proposed by Springer does not ontain a deadline for

publiation of the book (in terms of months after reeipt of the translation).

This makes the publisher not ommitted to publishing the book, and so makes

the aeptane deision of the Editorial Board void.

(3) The Agreement proposed by Springer ontains the following lause

whih makes the aeptane deision of the Editorial Board void.

*******

13.1. This Agreement, and the douments referred to within it, onstitute

the entire agreement between the Parties with respet to the subjet matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Eah Party aknowledges that it is not

relying on, and shall have no remedies in respet of, any undertakings,

representations, warranties, promises or assuranes that are not set forth in

this Agreement.

*******

(4) The Agreement proposed by Springer does not speify the amount

of, and the deadline for, Publisher's payment for translation. For this, the

Agreement refers to the Translation Agreement, but gives no guarantee that

the terms of that Translation Agreement will be aeptable to the author and

other translator. Sine the author should not sign suh an Agreement, this

makes the aeptane deision of the Editorial Board void.

Best Regards, Arkadiy.

A. Skopenkov's letter to V. Bogahev, Editor of Springer book series

`Mosow Leture Notes' (C A. Gorodentsev and M. Peters). De 23, 2021.

Dear Vladimir Igorevih,

Thank you for your reply.



350 Ëèòåðàòóðà

Why do you write that my suggestions have been taken into aount in

a modi�ed ontrat? This is wrong as I explained in my letter of De 15: my

suggestions on items (1)-(4) are not taken into aount. I forwarded you the

last list of my suggestions sent to M. Peters on Nov 17 (analogous suggestions

to previous versions of the Publishing Agreement were sent earlier). I reeived

no reply either aepting these suggestions, or stating that Springer would not

hange the ontrat, or proposing ompromises.

Reall that

(*) Springer is disregarding the aeptane deision of the

Editorial Board beause the Publishing Agreement proposed by

Springer does not make the Publisher ommitted to publishing the

book.

This is justi�ed in my letter of De 15 by items (1)-(4). You do not onsider

those items, so you ould not refute the statement (*). You write that the

Publishing Agreement proposed by Springer is standard, but again this does

not refute the statement (*). If something bad is a standard pratie, this

does not make it good.

My real experiene with Springer is poor. I spent an enormous amount of

time orreting errors that appeared during typesetting of my paper in Arnold

J. Math. In May M. Peters agreed to take my suggestions into aount. As

of Deember, neither this is done, nor he informed me that this would not

be done. So publiation of the book is unduly postponed for an unontrolled

amount of time. All positive parts of our ollaboration with M. Peters are

expliitly made void by lause 13.1 of the Agreement:

*******

13.1. This Agreement, and the douments referred to within it, onstitute

the entire agreement between the Parties with respet to the subjet matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Eah Party aknowledges that it is not

relying on, and shall have no remedies in respet of, any undertakings,

representations, warranties, promises or assuranes that are not set forth in

this Agreement.

*******

For the moment, I will not omment on the other part of your letter for the

following reason. The above (and the rest of your letter) makes me suppose

that you onfused a responsible business disussion with an irresponsible tea-

time talk. If I am wrong, then I am sorry, and I have the following suggestion.

We strongly need this disussion to be responsible. We do not have enough

time to disuss premature ideas, whose invalidity beomes lear when their

publiation (or a mental experiment of publiation) is suggested. So I inform

you that our orrespondene with the Editorial Board on this subjet is publi.
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I will publish all my letters at https://www.mme.ru/irles/oim/obstruteng.pdf

. If you would not send me a publi reply to my De 15 letter, then the best

way is to treat the private reply as non-existent, and inform the ommunity

that there is no publi reply. If you send me a publi reply to my De 15

letter (please feel free to edit your private reply), then I will publish it. My

reply, your further reply, et will also be published; presumably the disussion

will soon onverge by revealing important questions (like Q1, Q2, Q3 below)

and the Editors answering them. If I reeive a letter not stated to be publi,

then I will delete it unread (to avoid onfusion). If a part of suh a publi

disussion would beome obsolete, we ould delete that part (only) by our

mutual onsent.

Suh a publi disussion would be very useful for potential authors of this

book series. In partiular, they would be grateful if the Editors ould publily

answer the following questions:

(Q1) Is Agreement with the properties (1)-(4) from my De 15

letter absolutely standard for this book series?

(Q2) Is Springer not obliged to aept all reommendations of

the Editorial Board for this book series?

(Q3) Do Editors advise the authors to sign the Agreement

without reading it?

If there is no publi answer, a potential author ould only assume that

the answer is `yes'.

Suh a publi disussion would require muh e�ort. So let us �nd a way

to avoid it. E.g., disussion by skype / zoom / phone makes it easier to

understand eah other and to �nd ompromises.

Best wishes, Arkadiy.

A. Skopenkov's letter to M. Peters, A. Gorodentsev, V. Bogahev, and Yu.

S. Ilyashenko. Jan 30, 2022.

Dear Martin, Alexey, Vladimir Igorevih, and Yuliy Sergeevih,

Hope you are �ne and healthy.

I am grateful to the Editorial Board of `Mosow Leture Notes' of Springer

for aepting in January, 2021 for publiation the book `Algebrai Topology

From Geometri Standpoint'. (Please see the eletroni version of a part at

https://www.mme.ru/irles/oim/obstruteng.pdf.)

The translation was essentially rejeted by Springer by sending an

unaeptable publishing agreement, promising to make amends suggested by

the author in May, 2021, and neither making amends nor informing the author

that the amends are not aepted, by January, 2022.

So, however relutantly, I inform you that this book is no longer submitted

to Springer.
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We do not have enough time to disuss premature ideas, whose invalidity

beomes lear when their publiation (or a mental experiment of publiation)

is suggested. So I inform you that our orrespondene on this subjet is publi.

My letters are published at https://www.mme.ru/irles/oim/obstruteng.pdf.

If I reeive a letter not stated to be publi, then I will delete it unread (to

avoid onfusion).

I am also open to private disussions by skype / zoom / phone.

Best wishes, Arkadiy.


