на главную страницу ЛШСМ-2017 к списку курсов ЛШСМ-2017

Иван Александрович Панин

Об одной гипотезе Гротендика–Серра

И. А. Панин планирует провести 4 занятия.

Гипотеза Гротендика–Серра содержит в качестве частных случаев совершенно разные на вид задачи. На нескольких примерах будет показано то, как они формулируются, и то, как они решаются. Для колец, содержащих бесконечное поле гипотеза была доказана в [FP] здесь в Дубне в 2012 году! Для колец, содержащих конечное поле, гипотеза была доказана в [P] в 2014 году. Сформулирована гипотеза была Серром в 1959 году и Гротендиком в полной общности в 1969 году. Около 90% доказательства основано на интереснейших геометрических свойствах гладких аффинных алгебраических многообразий.

Пример задачи. Пусть $К=\mathbb С(t_1,t_2,...,t_n)$ — поле рациональных функций от $n$ переменных и пусть $R$ — подкольцо в $К$, состоящее из дробей вида $f/g$ таких, что $g(0,...,0)$ не равно нулю. Т.е. $R$ — кольцо рациональных функций, корректно определенных в окрестности начала координат. Пусть $a_i$, $b_i$ — обратимые элементы в $R$. Пусть $A=\sum_{i=1}^r a_i T^2_i$ и $B=\sum_{i=1}^r b_i T^2_i$ квадратичные формы. Предположим, что $В$ получается из $А$ линейной подстановкой с коэффициентами из $К$. Теорема Оянгурена гласит, что тогда $В$ получается из $А$ линейной подстановкой с коэффициентами из $R$.

Пререквизиты

Курс расчитан на студентов. Требуется знание комплексных чисел, небольшое знание топологических пространств, непрерывных отображений и знакомство с понятием гомотопности непрерывных отображений. Впрочем последнее понятие будет объяснено.

Литература