What is a Discrete Painlevé Equation?

Anton Dzhamay

School of Mathematical Sciences, University of Northern Colorado, Greeley, CO

Based on joint work with
Tomoyuki Takenawa, Tokyo University of Marine Science and Technology, Japan
Adrian Stefan Carstea, NIPNE, Bucharest, Romania
Galina Filipuk, University of Warsaw, Poland
Alexander Stokes, University College, London, UK

Contemporary Mathematics Summer School
Dubna, Russia
July 29, 2021

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.
- By a discrete dynamical system we mean a mapping of some configuration space $\varphi: \mathcal{X} \rightarrow \mathcal{X}$:

\mathcal{X}

\mathcal{X}

We usually impose the condition that the mapping is reversible.

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.
- By a discrete dynamical system we mean a mapping of some configuration space $\varphi: \mathcal{X} \rightarrow \mathcal{X}$:

We usually impose the condition that the mapping is reversible.

- In this way we get a trajectory $\left\{x_{n}\right\}_{n=0}^{\infty}, x_{n}=\varphi^{\circ n}\left(x_{0}\right), n \in \mathbb{Z}$ is time.

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.
- By a discrete dynamical system we mean a mapping of some configuration space $\varphi: \mathcal{X} \rightarrow \mathcal{X}$:

We usually impose the condition that the mapping is reversible.

- In this way we get a trajectory $\left\{x_{n}\right\}_{n=0}^{\infty}, x_{n}=\varphi^{\circ n}\left(x_{0}\right), n \in \mathbb{Z}$ is time.
- We want such system be interesting (i.e., nonlinear), but at the same time, we want it to be integrable (no chaos, conserved quantities, additional structures, explicit solutions).

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.
- By a discrete dynamical system we mean a mapping of some configuration space $\varphi: \mathcal{X} \rightarrow \mathcal{X}$:

We usually impose the condition that the mapping is reversible.

- In this way we get a trajectory $\left\{x_{n}\right\}_{n=0}^{\infty}, x_{n}=\varphi^{\circ n}\left(x_{0}\right), n \in \mathbb{Z}$ is time.
- We want such system be interesting (i.e., nonlinear), but at the same time, we want it to be integrable (no chaos, conserved quantities, additional structures, explicit solutions).
- In this talk we consider two second-order examples of such systems - autonomous (QRT maps) and non-autonomous (discrete Painlevé equations). We obtain (examples of) discrete Painlevé equations from (some) QRT maps using a geometric deautonomization procedure.

Introduction

- The goal of my talk is to give an introduction into some geometric methods and ideas for studying discrete integrable systems.
- By a discrete dynamical system we mean a mapping of some configuration space $\varphi: \mathcal{X} \rightarrow \mathcal{X}$:

We usually impose the condition that the mapping is reversible.

- In this way we get a trajectory $\left\{x_{n}\right\}_{n=0}^{\infty}, x_{n}=\varphi^{\circ n}\left(x_{0}\right), n \in \mathbb{Z}$ is time.
- We want such system be interesting (i.e., nonlinear), but at the same time, we want it to be integrable (no chaos, conserved quantities, additional structures, explicit solutions).
- In this talk we consider two second-order examples of such systems - autonomous (QRT maps) and non-autonomous (discrete Painlevé equations). We obtain (examples of) discrete Painlevé equations from (some) QRT maps using a geometric deautonomization procedure.
- The main tools that we use are the regularization of the mapping using the blowup procedure, linearization of the mapping via the induced map on the Picard lattice of the resulting algebraic surface, and, in the discrete Painlevé case, birational representations of the (extended) affine Weyl symmetry group of the equation.

What is a Painlevé Equation?

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

Not a Painlevé(-type) equations: $\quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0$

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

Not a Painlevé(-type) equations: $\quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0$

Singularity Structure of Solutions

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

Not a Painlevé(-type) equations: $\quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

Not a Painlevé(-type) equations: $\quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point
- $\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0 \quad \Longrightarrow \quad y=\log \left(t-c_{1}\right)+c_{2}$ - movable essential singularity point

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

Not a Painlevé(-type) equations: $\quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point
- $\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0 \quad \Longrightarrow \quad y=\log \left(t-c_{1}\right)+c_{2}$ - movable essential singularity point
- $\frac{d y}{d t}=y^{2} \quad \Longrightarrow \quad y=-\left(t-c_{1}\right)^{-1}$ - movable pole

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

$$
\text { Not a Painlevé(-type) equations: } \quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0
$$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point
- $\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0 \quad \Longrightarrow \quad y=\log \left(t-c_{1}\right)+c_{2}$ - movable essential singularity point
- $\frac{d y}{d t}=y^{2} \Longrightarrow y=-\left(t-c_{1}\right)^{-1}$ - movable pole

Differential Painlevé Equations

Painlevé equations are second-order algebraic differential equations satisfying the Painlevé Property: the general solution of the equation is free of movable (i.e., dependent on the constants of integration) critical points where it loses local single-valuedness (e.g., branch points like $\sqrt{x-c})$ - i.e., uniformizability of a general solution.

What is a Painlevé Equation?

$$
\begin{equation*}
\text { Painlevé equation: } \quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C} \tag{P-I}
\end{equation*}
$$

$$
\text { Not a Painlevé(-type) equations: } \quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0
$$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point
- $\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0 \quad \Longrightarrow \quad y=\log \left(t-c_{1}\right)+c_{2}$ - movable essential singularity point
- $\frac{d y}{d t}=y^{2} \Longrightarrow y=-\left(t-c_{1}\right)^{-1}$ - movable pole

Differential Painlevé Equations

Painlevé equations are second-order algebraic differential equations satisfying the Painlevé Property: the general solution of the equation is free of movable (i.e., dependent on the constants of integration) critical points where it loses local single-valuedness (e.g., branch points like $\sqrt{x-c})$ - i.e., uniformizability of a general solution.

- P. Painlevé, B. Gambier $(1902-10)-P_{l}, \ldots, P_{V I}$.

What is a Painlevé Equation?

Painlevé equation: $\quad \frac{d^{2} y}{d t^{2}}=6 y^{2}+t, \quad t \in \mathbb{C}$

$$
\text { Not a Painlevé(-type) equations: } \quad 3 \frac{d y}{d t} y^{2}=1, \quad \frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0
$$

Singularity Structure of Solutions

- $3 \frac{d y}{d t} y^{2}=1 \quad \Longrightarrow \quad y=\sqrt[3]{t-c_{1}}$ - movable branch point
- $\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}=0 \quad \Longrightarrow \quad y=\log \left(t-c_{1}\right)+c_{2}$ - movable essential singularity point
- $\frac{d y}{d t}=y^{2} \Longrightarrow y=-\left(t-c_{1}\right)^{-1}$ - movable pole

Differential Painlevé Equations

Painlevé equations are second-order algebraic differential equations satisfying the Painlevé Property: the general solution of the equation is free of movable (i.e., dependent on the constants of integration) critical points where it loses local single-valuedness (e.g., branch points like $\sqrt{x-c})$ - i.e., uniformizability of a general solution.

- P. Painlevé, B. Gambier (1902-10) - $P_{l}, \ldots, P_{V I}$.
- R. Fuchs, L. Schlesinger, and R. Garnier (1907-12) - relationship to Isomonodromic Deformations of Fuchsian systems.

Why Painlevé Equations?

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.

Why Painlevé Equations?

The original motivation behind the work of P . Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

Why Painlevé Equations?

The original motivation behind the work of P . Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.

Why Painlevé Equations?

The original motivation behind the work of P . Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.
All of the above examples are characterized by linear ODEs. Important features of the linear case:

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.
All of the above examples are characterized by linear ODEs. Important features of the linear case:

- The superposition principle.

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.
All of the above examples are characterized by linear ODEs. Important features of the linear case:

- The superposition principle.
- The singularity structure of solutions is determined by the singularity structure of the (coefficients of) the equation.

Why Painlevé Equations?

The original motivation behind the work of P . Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.
All of the above examples are characterized by linear ODEs. Important features of the linear case:

- The superposition principle.
- The singularity structure of solutions is determined by the singularity structure of the (coefficients of) the equation.
In particular, in the nonlinear case, singularities of solutions can depend on the IVP - movable singularities.

Why Painlevé Equations?

The original motivation behind the work of P. Painlevé and his students and colleagues was the search for new nonlinear special functions.
Many important functions can be characterized as solutions of ordinary differential equations. For example:

- Solution of $y^{\prime}=y$ is the exponential function $y(t)=y(0) e^{t}$.
- Solution of $y^{\prime \prime}=-y$ can be given as a linear combination of the basic trigonometric functions, $y(t)=y(0) \cos (t)+y^{\prime}(0) \sin (t)$.

Above equations are equations with constant coefficients. When coefficients of an ODE are polynomial (or, more generally, analytic) functions in the independent variable t we get such important special functions of mathematical physics as the Gauss Hypergeometric functions, Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy functions, and many others.
All of the above examples are characterized by linear ODEs. Important features of the linear case:

- The superposition principle.
- The singularity structure of solutions is determined by the singularity structure of the (coefficients of) the equation.
In particular, in the nonlinear case, singularities of solutions can depend on the IVP - movable singularities.
In certain sense, the Painlevé property is an attempt to single out the equations that have a meaningful notion of a general solution and the associated Riemann surface - integrability.

Classification Scheme for Painlevé Equations

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\delta\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t)$, (Riccati equation)

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\wp\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t), \quad$ (Riccati equation)
$n=2:$ P. Painlevé, B. Gambier - Painlevé equations and Painlevé transcendents:
(P-I) $\frac{d^{2} y}{d t^{2}}=6 y^{2}+t$;
(P-II) $\frac{d^{2} y}{d t^{2}}=2 y^{3}+t y+\alpha$;
(P-III) $\frac{d^{2} y}{d t^{2}}=\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$;
(P-IV) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2 y}\left(\frac{d y}{d t}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}$;
(P-V) $\frac{d^{2} y}{d t^{2}}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}$;
(P-VI) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t}+$

$$
\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
$$

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\wp\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t), \quad$ (Riccati equation)
$n=2:$ P. Painlevé, B. Gambier - Painlevé equations and Painlevé transcendents:
(P-I) $\frac{d^{2} y}{d t^{2}}=6 y^{2}+t ;$ Painlevé equations have parameters!
(P-II) $\frac{d^{2} y}{d t^{2}}=2 y^{3}+t y+\alpha$;
(P-III) $\frac{d^{2} y}{d t^{2}}=\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$;
(P-IV) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2 y}\left(\frac{d y}{d t}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}$;
(P-V) $\frac{d^{2} y}{d t^{2}}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}$;
(P-VI) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t}+$

$$
\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
$$

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\wp\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t), \quad$ (Riccati equation)
$n=2:$ P. Painlevé, B. Gambier - Painlevé equations and Painlevé transcendents:
(P-I) $\frac{d^{2} y}{d t^{2}}=6 y^{2}+t ;$ Painlevé equations have parameters!
(P-II) $\frac{d^{2} y}{d t^{2}}=2 y^{3}+t y+\alpha$;

(P-III) $\frac{d^{2} y}{d t^{2}}=\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$;
(P-IV) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2 y}\left(\frac{d y}{d t}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}$;
(P-V) $\frac{d^{2} y}{d t^{2}}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}$;
(P-VI) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t}+$

$$
\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
$$

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\wp\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t), \quad$ (Riccati equation)
$n=2:$ P. Painlevé, B. Gambier - Painlevé equations and Painlevé transcendents:
(P-I) $\frac{d^{2} y}{d t^{2}}=6 y^{2}+t$; Painlevé equations have parameters!
(P-II) $\frac{d^{2} y}{d t^{2}}=2 y^{3}+t y+\alpha$;

(P-III) $\frac{d^{2} y}{d t^{2}}=\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$;

$$
\text { (P-IV) } \frac{d^{2} y}{d t^{2}}=\frac{1}{2 y}\left(\frac{d y}{d t}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}
$$

$(\mathrm{P}-\mathrm{V}) \frac{d^{2} y}{d t^{2}}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}$;
(P-VI) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t}+$

$$
\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
$$

Classification Scheme for Painlevé Equations

$n=1$: L. Fuchs, H. Poincaré

- $\left(\frac{d y}{d t}\right)^{2}=4 y^{3}-g_{2} y-g_{3}, \quad g_{2}, g_{3} \in \mathbb{C} \quad$ Weierstrass $\wp\left(t \mid g_{2}, g_{3}\right)$
- $\frac{d y}{d t}=a(t) y^{2}+b(t) y+c(t), \quad$ (Riccati equation)
$n=2:$ P. Painlevé, B. Gambier - Painlevé equations and Painlevé transcendents:
(P-I) $\frac{d^{2} y}{d t^{2}}=6 y^{2}+t$; Painlevé equations have parameters!
(P-II) $\frac{d^{2} y}{d t^{2}}=2 y^{3}+t y+\alpha$;

(P-III) $\frac{d^{2} y}{d t^{2}}=\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$;

$$
\text { (P-IV) } \frac{d^{2} y}{d t^{2}}=\frac{1}{2 y}\left(\frac{d y}{d t}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}
$$

(P-V) $\frac{d^{2} y}{d t^{2}}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(\frac{d y}{d t}\right)^{2}-\frac{1}{t} \frac{d y}{d t}+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\gamma \frac{y}{t}+\delta \frac{y(y+1)}{y-1}$;
(P-VI) $\frac{d^{2} y}{d t^{2}}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t}+$

$$
\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
$$

$n \geq 3$: Still open.

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations.

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat, Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai, Sakai, many others):

- $d-P_{1}: x_{n+1}+x_{n}+x_{n-1}=\frac{a n+b}{x_{n}}+1$;

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat, Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai, Sakai, many others):

- $d-P_{1}: x_{n+1}+x_{n}+x_{n-1}=\frac{a n+b}{x_{n}}+1$;
- d- $P_{\text {II }}: x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}+a}{1-x_{n}^{2}}$;

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat, Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai, Sakai, many others):

- d- $P_{1}: x_{n+1}+x_{n}+x_{n-1}=\frac{a n+b}{x_{n}}+1$;
- d- $P_{\mathrm{II}}: x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}+a}{1-x_{n}^{2}}$;
- d- $P_{\mathrm{V}}:\left\{\begin{array}{rl}f+\bar{f} & =a_{3}+\frac{a_{1}}{g+1}+\frac{a_{0}}{s g+1} \\ g \bar{g} & =\frac{\left(\bar{f}+a_{2}-\delta\right)\left(\bar{f}+a_{2}-\delta+a_{4}\right)}{s \bar{f}\left(\bar{f}-a_{3}\right)}\end{array}, \quad \delta=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}\right.$

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat, Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai, Sakai, many others):

- $d-P_{1}: x_{n+1}+x_{n}+x_{n-1}=\frac{a n+b}{x_{n}}+1$;
- d- $P_{\mathrm{II}}: x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}+a}{1-x_{n}^{2}}$;
- d- $P_{\mathrm{V}}:\left\{\begin{array}{rl}f+\bar{f} & =a_{3}+\frac{a_{1}}{g+1}+\frac{a_{0}}{s g+1} \\ g \bar{g} & =\frac{\left(\bar{f}+a_{2}-\delta\right)\left(\bar{f}+a_{2}-\delta+a_{4}\right)}{s \bar{f}\left(\bar{f}-a_{3}\right)}\end{array}, \quad \delta=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}\right.$
- q-P $\mathrm{VVI}:\left\{\begin{array}{l}\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\ \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}\end{array}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)\right.$

What are Discrete Painlevé Equations

Discrete Painlevé Equations are some certain second-order (or two-dimensional) non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat, Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai, Sakai, many others):

- d- $P_{1}: x_{n+1}+x_{n}+x_{n-1}=\frac{a n+b}{x_{n}}+1$;
- d- $P_{\text {II }}: x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}+a}{1-x_{n}^{2}}$;
- d- $P_{\mathrm{V}}:\left\{\begin{array}{rl}f+\bar{f} & =a_{3}+\frac{a_{1}}{g+1}+\frac{a_{0}}{s g+1} \\ g \bar{g} & =\frac{\left(\bar{f}+a_{2}-\delta\right)\left(\bar{f}+a_{2}-\delta+a_{4}\right)}{s \bar{f}\left(\bar{f}-a_{3}\right)}\end{array}, \quad \delta=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}\right.$
- q-P $P_{\mathrm{VI}}:\left\{\begin{array}{l}\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\ \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}\end{array}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)\right.$

As with the differential Painlevé equations, it is not obvious that a given recurrence relation is in the discrete Painlevé class. The naming convention, based on the continuous limit, is also not a very good one - ambiguous and does not cover all the cases. Correct approach is through the algebro-geometric theory due to H. Sakai.
Analogue of the Painlevé property - singularity confinement.

Sakai's Classification Scheme for Discrete Painlevé Equations.

- K. Okamoto initiated a geometric approach to differential Painlevé equations. Write them as non-automonous Hamiltonian Systems: $q^{\prime}=\frac{\partial \mathcal{H}}{\partial p}, p^{\prime}=-\frac{\partial \mathcal{H}}{\partial q}$. Space of initial conditions: $\left(q\left(t_{0}\right), p\left(t_{0}\right)\right) \in \mathbb{C}^{2}$? Not quite - to allow meromorphic solutions, need to compactify \mathbb{C}^{2} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then blowup to separate solutions going through the same initial point, and remove some singular leaves. This constructs a space of initial conditions for the equation.

Sakai's Classification Scheme for Discrete Painlevé Equations.

- K. Okamoto initiated a geometric approach to differential Painlevé equations. Write them as non-automonous Hamiltonian Systems: $q^{\prime}=\frac{\partial \mathcal{H}}{\partial p}, p^{\prime}=-\frac{\partial \mathcal{H}}{\partial q}$. Space of initial conditions: $\left(q\left(t_{0}\right), p\left(t_{0}\right)\right) \in \mathbb{C}^{2}$? Not quite - to allow meromorphic solutions, need to compactify \mathbb{C}^{2} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then blowup to separate solutions going through the same initial point, and remove some singular leaves. This constructs a space of initial conditions for the equation.
- In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a classification scheme for Painlevé equations based on algebraic geometry. This scheme includes both discrete and differential (as a limit in a particular lattice direction) equations and explains the appearance of discrete Painlevé equations as Bäcklund transformations of the differential equations (commuting flows).

Sakai's Classification Scheme for Discrete Painlevé Equations.

- K. Okamoto initiated a geometric approach to differential Painlevé equations. Write them as non-automonous Hamiltonian Systems: $q^{\prime}=\frac{\partial \mathcal{H}}{\partial p}, p^{\prime}=-\frac{\partial \mathcal{H}}{\partial q}$. Space of initial conditions: $\left(q\left(t_{0}\right), p\left(t_{0}\right)\right) \in \mathbb{C}^{2}$? Not quite - to allow meromorphic solutions, need to compactify \mathbb{C}^{2} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then blowup to separate solutions going through the same initial point, and remove some singular leaves. This constructs a space of initial conditions for the equation.
- In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a classification scheme for Painlevé equations based on algebraic geometry. This scheme includes both discrete and differential (as a limit in a particular lattice direction) equations and explains the appearance of discrete Painlevé equations as Bäcklund transformations of the differential equations (commuting flows).
- To each equation corresponds a pair of orthogonal sub-lattices $\left(\Pi(R), \Pi\left(R^{\perp}\right)\right)$ - the surface and the symmetry sub-lattice in the $E_{8}^{(1)}$ lattice (this defines the type of the equation), and a translation element in $\tilde{W}\left(R^{\perp}\right)$ (this defines the equation itself).

Sakai's Classification Scheme for Discrete Painlevé Equations.

- K. Okamoto initiated a geometric approach to differential Painlevé equations. Write them as non-automonous Hamiltonian Systems: $q^{\prime}=\frac{\partial \mathcal{H}}{\partial p}, p^{\prime}=-\frac{\partial \mathcal{H}}{\partial q}$. Space of initial conditions: $\left(q\left(t_{0}\right), p\left(t_{0}\right)\right) \in \mathbb{C}^{2}$? Not quite - to allow meromorphic solutions, need to compactify \mathbb{C}^{2} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then blowup to separate solutions going through the same initial point, and remove some singular leaves. This constructs a space of initial conditions for the equation.
- In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a classification scheme for Painlevé equations based on algebraic geometry. This scheme includes both discrete and differential (as a limit in a particular lattice direction) equations and explains the appearance of discrete Painlevé equations as Bäcklund transformations of the differential equations (commuting flows).
- To each equation corresponds a pair of orthogonal sub-lattices $\left(\Pi(R), \Pi\left(R^{\perp}\right)\right)$ - the surface and the symmetry sub-lattice in the $E_{8}^{(1)}$ lattice (this defines the type of the equation), and a translation element in $\tilde{W}\left(R^{\perp}\right)$ (this defines the equation itself).
- The surface sub-lattice describes a particular configuration of points on $\mathbb{P}^{2}\left(\right.$ or $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. Blowing them up creates a family of rational algebraic surfaces (generalized Halphen surfaces) parameterized by the coordinates of the points of blowup.

Sakai's Classification Scheme for Discrete Painlevé Equations.

- K. Okamoto initiated a geometric approach to differential Painlevé equations. Write them as non-automonous Hamiltonian Systems: $q^{\prime}=\frac{\partial \mathcal{H}}{\partial p}, p^{\prime}=-\frac{\partial \mathcal{H}}{\partial q}$. Space of initial conditions: $\left(q\left(t_{0}\right), p\left(t_{0}\right)\right) \in \mathbb{C}^{2}$? Not quite - to allow meromorphic solutions, need to compactify \mathbb{C}^{2} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then blowup to separate solutions going through the same initial point, and remove some singular leaves. This constructs a space of initial conditions for the equation.
- In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a classification scheme for Painlevé equations based on algebraic geometry. This scheme includes both discrete and differential (as a limit in a particular lattice direction) equations and explains the appearance of discrete Painlevé equations as Bäcklund transformations of the differential equations (commuting flows).
- To each equation corresponds a pair of orthogonal sub-lattices $\left(\Pi(R), \Pi\left(R^{\perp}\right)\right)$ - the surface and the symmetry sub-lattice in the $E_{8}^{(1)}$ lattice (this defines the type of the equation), and a translation element in $\tilde{W}\left(R^{\perp}\right)$ (this defines the equation itself).
- The surface sub-lattice describes a particular configuration of points on $\mathbb{P}^{2}\left(\right.$ or $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. Blowing them up creates a family of rational algebraic surfaces (generalized Halphen surfaces) parameterized by the coordinates of the points of blowup.
- Root vectors in the symmetry sub-lattice describe elementary (non-autonomous) symmetries of this family (Cremona isometries) acting as reflections on the Picard lattice of the surface (hence the affine Weyl group structure). Elements of infinite order correspond to dynamical systems on this family. Translations on the lattice are called discrete Painlevé equations, elements whose power is a translation are called projective reductions.

Symmetry (above) and surface (below) -type classification schemes for Painlevé equations

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations.

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.
Some examples of discrete Painlevé equations can then be obtained from this mapping using the deautonomization procedure.

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.
Some examples of discrete Painlevé equations can then be obtained from this mapping using the deautonomization procedure.
We begin by briefly describing geometrically the QRT mapping (following T. Tsuda, [Tsu04]).

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.
Some examples of discrete Painlevé equations can then be obtained from this mapping using the deautonomization procedure.
We begin by briefly describing geometrically the QRT mapping (following T. Tsuda, [Tsu04]).

- Consider a bi-quadractic curve Γ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. In an affine \mathbb{C}^{2}-chart Γ is given by a bi-degree $(2,2)$ polynomial equation

$$
a_{00} x^{2} y^{2}+a_{01} x^{2} y+a_{02} x^{2}+a_{10} x y^{2}+a_{11} x y+a_{12} x+a_{20} y^{2}+a_{21} y+a_{22}=0
$$

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.
Some examples of discrete Painlevé equations can then be obtained from this mapping using the deautonomization procedure.
We begin by briefly describing geometrically the QRT mapping (following T. Tsuda, [Tsu04]).

- Consider a bi-quadractic curve Γ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. In an affine \mathbb{C}^{2}-chart Γ is given by a bi-degree $(2,2)$ polynomial equation

$$
a_{00} x^{2} y^{2}+a_{01} x^{2} y+a_{02} x^{2}+a_{10} x y^{2}+a_{11} x y+a_{12} x+a_{20} y^{2}+a_{21} y+a_{22}=0
$$

- This equation can be written as

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{y}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
y^{2} \\
y \\
1
\end{array}\right]=\sum_{i, j=0}^{2} a_{i j} x^{2-i} y^{2-j}=0
$$

where

$$
\mathbf{x}=\left\langle x^{2}, x, 1\right\rangle, \quad \mathbf{y}=\left\langle y^{2}, y, 1\right\rangle, \quad \mathbf{A} \in \operatorname{Mat}_{3 \times 3}(\mathbb{C}) .
$$

Autonomous Example: the QRT Map

Our final goal is to understand the geometry behind discrete (non-autonomous) Painlevé equations. However, it is convenient to start with a discrete autonomous mappings, e.g., a mapping in the QRT (or Quispel-Roberts-Thompson) family. Many important geometric objects can be first introduced and understood in this simpler context.
Some examples of discrete Painlevé equations can then be obtained from this mapping using the deautonomization procedure.
We begin by briefly describing geometrically the QRT mapping (following T. Tsuda, [Tsu04]).

- Consider a bi-quadractic curve Γ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. In an affine \mathbb{C}^{2}-chart Γ is given by a bi-degree $(2,2)$ polynomial equation

$$
a_{00} x^{2} y^{2}+a_{01} x^{2} y+a_{02} x^{2}+a_{10} x y^{2}+a_{11} x y+a_{12} x+a_{20} y^{2}+a_{21} y+a_{22}=0
$$

- This equation can be written as

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{y}=\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
y^{2} \\
y \\
1
\end{array}\right]=\sum_{i, j=0}^{2} a_{i j} x^{2-i} y^{2-j}=0,
$$

where

$$
\mathbf{x}=\left\langle x^{2}, x, 1\right\rangle, \quad \mathbf{y}=\left\langle y^{2}, y, 1\right\rangle, \quad \mathbf{A} \in \operatorname{Mat}_{3 \times 3}(\mathbb{C}) .
$$

- In general, Γ is an elliptic curve that can be rewritten in a Weierstrass normal form $y^{2}=4 x^{3}-g_{2} x-g_{3}$.

Bi-quadratic Curves and Involutions

Since Γ has bi-degree $(2,2)$, we can define two involutions,

$$
r_{x}:(x, y) \rightarrow\left(x^{\prime}, y\right) \text { and } r_{y}:(x, y) \rightarrow\left(x, y^{\prime}\right)
$$

Bi-quadratic Curves and Involutions

Since Γ has bi-degree $(2,2)$, we can define two involutions,

$$
r_{x}:(x, y) \rightarrow\left(x^{\prime}, y\right) \text { and } r_{y}:(x, y) \rightarrow\left(x, y^{\prime}\right)
$$

as well as their composition $r_{x} \circ r_{y}:(x, y) \rightarrow(\bar{x}, \bar{y})$. This composition defines a discrete dynamical system on the curve Γ (which is essentially a shift w.r.t. its Abelian group structure) and the main idea of the QRT map is to extend $r_{x} \circ r_{y}$ to all of the $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

The QRT Mapping

For that, take two matrices $\mathbf{A}, \mathbf{B} \in \operatorname{Mat}_{3 \times 3}(\mathbb{C})$ and consider a pencil (i.e., a one-dimensional family) of such curves

$$
\Gamma_{[\alpha: \beta]}: \quad \alpha \mathbf{x}^{\top} \mathbf{A} \mathbf{y}+\beta \mathbf{x}^{\top} \mathbf{B} \mathbf{y}=0, \quad[\alpha: \beta] \in \mathbb{P}^{1}
$$

The QRT Mapping

For that, take two matrices $\mathbf{A}, \mathbf{B} \in \operatorname{Mat}_{3 \times 3}(\mathbb{C})$ and consider a pencil (i.e., a one-dimensional family) of such curves

$$
\Gamma_{[\alpha: \beta]}: \quad \alpha \mathbf{x}^{T} \mathbf{A} \mathbf{y}+\beta \mathbf{x}^{T} \mathbf{B} \mathbf{y}=0, \quad[\alpha: \beta] \in \mathbb{P}^{1}
$$

Then, given a point $\left(x_{*}, y_{*}\right)$, there is only one curve from a family with the parameter $[\alpha: \beta]=\left[-\mathbf{x}_{*}^{T} \mathbf{B} \mathbf{y}_{*}, \mathbf{x}_{*}^{T} \mathbf{A} \mathbf{y}_{*}\right]$, except for the eight base points $\mathbf{x}_{*}^{T} \mathbf{A} \mathbf{y}_{*}=\mathbf{x}_{*}^{T} \mathbf{B} \mathbf{y}_{*}=0$. Resolving these points using the blowup, we get a rational elliptic surface \mathcal{X} with the $Q R T$ automorphism $r_{x} \circ r_{y}$ preserving the elliptic fibration $\pi: \mathcal{X} \rightarrow \mathbb{P}^{1}$, and $\pi^{-1}([\alpha: \beta])$ is an elliptic curve except for 12 points corresponding to singular fibers (classified by K. Kodaira into 22 types).

The Half (or Root) of the QRT Mapping

It is possible to represent the QRT mapping as

$$
r_{x} \circ r_{y}=\varphi \circ \varphi=\varphi^{2}, \quad \varphi=\sigma_{x, y} \circ r_{y}
$$

where $\sigma_{x, y}$ is an involution

$$
\sigma_{x, y}:(x, y ; \mathbf{A}, \mathbf{B}) \mapsto\left(y, x ; \mathbf{A}^{T}, \mathbf{B}^{T}\right) .
$$

The Half (or Root) of the QRT Mapping

It is possible to represent the QRT mapping as

$$
r_{x} \circ r_{y}=\varphi \circ \varphi=\varphi^{2}, \quad \varphi=\sigma_{x, y} \circ r_{y}
$$

where $\sigma_{x, y}$ is an involution

$$
\sigma_{x, y}:(x, y ; \mathbf{A}, \mathbf{B}) \mapsto\left(y, x ; \mathbf{A}^{T}, \mathbf{B}^{T}\right) .
$$

Eliminating $-\beta / \alpha$ from the equations

$$
\alpha \mathbf{x}^{T} \mathbf{A} \mathbf{y}+\beta \mathbf{x}^{T} \mathbf{B} \mathbf{y}=0, \quad \alpha \mathbf{x}^{T} \mathbf{A} \overline{\mathbf{y}}+\beta \mathbf{x}^{T} \mathbf{B} \overline{\mathbf{y}}=0,
$$

solving for \bar{y}, and applying $\sigma_{x, y}$, we get the following simple expression for φ :

$$
\left\{\begin{array}{l}
\bar{x}=\frac{f_{1}(x)-f_{2}(x) y}{f_{2}(x)-f_{3}(x) y}, \quad \text { where }\left\langle f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle=\left(\mathbf{x}^{T} \mathbf{A}\right) \times\left(\mathbf{x}^{T} \mathbf{B}\right) . \\
\bar{y}=x
\end{array}\right.
$$

The Half (or Root) of the QRT Mapping

It is possible to represent the QRT mapping as

$$
r_{x} \circ r_{y}=\varphi \circ \varphi=\varphi^{2}, \quad \varphi=\sigma_{x, y} \circ r_{y}
$$

where $\sigma_{x, y}$ is an involution

$$
\sigma_{x, y}:(x, y ; \mathbf{A}, \mathbf{B}) \mapsto\left(y, x ; \mathbf{A}^{T}, \mathbf{B}^{T}\right) .
$$

Eliminating $-\beta / \alpha$ from the equations

$$
\alpha \mathbf{x}^{T} \mathbf{A} \mathbf{y}+\beta \mathbf{x}^{\top} \mathbf{B} \mathbf{y}=0, \quad \alpha \mathbf{x}^{\top} \mathbf{A} \overline{\mathbf{y}}+\beta \mathbf{x}^{T} \mathbf{B} \overline{\mathbf{y}}=0
$$

solving for \bar{y}, and applying $\sigma_{x, y}$, we get the following simple expression for φ :

$$
\left\{\begin{array}{l}
\bar{x}=\frac{f_{1}(x)-f_{2}(x) y}{f_{2}(x)-f_{3}(x) y}, \quad \text { where }\left\langle f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle=\left(\mathbf{x}^{\top} \mathbf{A}\right) \times\left(\mathbf{x}^{\top} \mathbf{B}\right) . \\
\bar{y}=x
\end{array}\right.
$$

Note that, by construction, the mapping φ has a conserved quantity: it is the parameter $[\alpha: \beta] \in \mathbb{P}^{1}$ of the pencil.

The Half (or Root) of the QRT Mapping

It is possible to represent the QRT mapping as

$$
r_{x} \circ r_{y}=\varphi \circ \varphi=\varphi^{2}, \quad \varphi=\sigma_{x, y} \circ r_{y}
$$

where $\sigma_{x, y}$ is an involution

$$
\sigma_{x, y}:(x, y ; \mathbf{A}, \mathbf{B}) \mapsto\left(y, x ; \mathbf{A}^{T}, \mathbf{B}^{T}\right) .
$$

Eliminating $-\beta / \alpha$ from the equations

$$
\alpha \mathbf{x}^{T} \mathbf{A} \mathbf{y}+\beta \mathbf{x}^{\top} \mathbf{B} \mathbf{y}=0, \quad \alpha \mathbf{x}^{\top} \mathbf{A} \overline{\mathbf{y}}+\beta \mathbf{x}^{T} \mathbf{B} \overline{\mathbf{y}}=0
$$

solving for \bar{y}, and applying $\sigma_{x, y}$, we get the following simple expression for φ :

$$
\left\{\begin{array}{l}
\bar{x}=\frac{f_{1}(x)-f_{2}(x) y}{f_{2}(x)-f_{3}(x) y}, \quad \text { where }\left\langle f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle=\left(\mathbf{x}^{T} \mathbf{A}\right) \times\left(\mathbf{x}^{T} \mathbf{B}\right) . \\
\bar{y}=x
\end{array}\right.
$$

Note that, by construction, the mapping φ has a conserved quantity: it is the parameter $[\alpha: \beta] \in \mathbb{P}^{1}$ of the pencil.
This mapping φ is the one that we study and deautonomize for a particular choice of the matrices A and B.

A Particular Choice of a QRT Map

We consider the symmetric case and take the matrices \mathbf{A}, \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & a+a^{-1} & 1 \\
a+a^{-1} & 0 & -a-a^{-1} \\
1 & -a-a^{-1} & 1
\end{array}\right],
$$

where $a \neq 0, \pm 1$.

A Particular Choice of a QRT Map

We consider the symmetric case and take the matrices \mathbf{A}, \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & a+a^{-1} & 1 \\
a+a^{-1} & 0 & -a-a^{-1} \\
1 & -a-a^{-1} & 1
\end{array}\right],
$$

where $a \neq 0, \pm 1$.
Then the "half" of QRT mapping $\varphi=\sigma_{x y} \circ r_{y}$ becomes

$$
\varphi:(x, y) \mapsto\left(\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}, x\right)
$$

A Particular Choice of a QRT Map

We consider the symmetric case and take the matrices \mathbf{A}, \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & a+a^{-1} & 1 \\
a+a^{-1} & 0 & -a-a^{-1} \\
1 & -a-a^{-1} & 1
\end{array}\right],
$$

where $a \neq 0, \pm 1$.
Then the "half" of QRT mapping $\varphi=\sigma_{x y} \circ r_{y}$ becomes

$$
\varphi:(x, y) \mapsto\left(\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}, x\right)
$$

which preserves $k=\alpha / \beta$ of the elliptic fibration

$$
\Gamma_{k}: k x y+\left(x y+a^{-1}(x+y)-1\right)(x y+a(x+y)-1)=0 .
$$

A Particular Choice of a QRT Map

We consider the symmetric case and take the matrices \mathbf{A}, \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & a+a^{-1} & 1 \\
a+a^{-1} & 0 & -a-a^{-1} \\
1 & -a-a^{-1} & 1
\end{array}\right],
$$

where $a \neq 0, \pm 1$.
Then the "half" of QRT mapping $\varphi=\sigma_{x y} \circ r_{y}$ becomes

$$
\varphi:(x, y) \mapsto\left(\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}, x\right)
$$

which preserves $k=\alpha / \beta$ of the elliptic fibration

$$
\Gamma_{k}: k x y+\left(x y+a^{-1}(x+y)-1\right)(x y+a(x+y)-1)=0 .
$$

The base points are relatively easy to see. E.g., if $y=0, x=a$ or $x=a^{-1}$, etc.:

$$
(0, a),\left(0, a^{-1}\right),(a, 0),\left(a^{-1}, 0\right),(\infty,-a),\left(\infty,-a^{-1}\right),(-a, \infty),\left(-a^{-1}, \infty\right)
$$

A Particular Choice of a QRT Map

We consider the symmetric case and take the matrices \mathbf{A}, \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & a+a^{-1} & 1 \\
a+a^{-1} & 0 & -a-a^{-1} \\
1 & -a-a^{-1} & 1
\end{array}\right],
$$

where $a \neq 0, \pm 1$.
Then the "half" of QRT mapping $\varphi=\sigma_{x y} \circ r_{y}$ becomes

$$
\varphi:(x, y) \mapsto\left(\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}, x\right)
$$

which preserves $k=\alpha / \beta$ of the elliptic fibration

$$
\Gamma_{k}: k x y+\left(x y+a^{-1}(x+y)-1\right)(x y+a(x+y)-1)=0 .
$$

The base points are relatively easy to see. E.g., if $y=0, x=a$ or $x=a^{-1}$, etc.:

$$
(0, a),\left(0, a^{-1}\right),(a, 0),\left(a^{-1}, 0\right),(\infty,-a),\left(\infty,-a^{-1}\right),(-a, \infty),\left(-a^{-1}, \infty\right)
$$

We then blowup the base points to obtain the QRT surface, or the algebraic surface \mathcal{X} on which the dynamic is regularized. This dynamic is further linearized on the Picard lattice $\operatorname{Pic}(\mathcal{X})$.

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.
First we see how to blowup the origin at \mathbb{C}^{2} (pictured as \mathbb{R}^{2}). Let (a, b) be a point away from the origin. We can then describe it by cartesian coordinates, or by one coordinate and the slope of the line through the origin:

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.
First we see how to blowup the origin at \mathbb{C}^{2} (pictured as \mathbb{R}^{2}). Let (a, b) be a point away from the origin. We can then describe it by cartesian coordinates, or by one coordinate and the slope of the line through the origin:

This observation allows us to separate the lines through the origin as follows.

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.
First we see how to blowup the origin at \mathbb{C}^{2} (pictured as \mathbb{R}^{2}). Let (a, b) be a point away from the origin. We can then describe it by cartesian coordinates, or by one coordinate and the slope of the line through the origin:

This observation allows us to separate the lines through the origin as follows.

- First, note that lines through the origin are parameterized by the projective line \mathbb{P}^{1} with a homogeneous coordinate $\xi=\left[\xi_{0}: \xi_{1}\right]$, where we let $k=\xi_{0} / \xi_{1}$ and $[1: 0]$ corresponds to the vertical line.

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.
First we see how to blowup the origin at \mathbb{C}^{2} (pictured as \mathbb{R}^{2}). Let (a, b) be a point away from the origin. We can then describe it by cartesian coordinates, or by one coordinate and the slope of the line through the origin:

This observation allows us to separate the lines through the origin as follows.

- First, note that lines through the origin are parameterized by the projective line \mathbb{P}^{1} with a homogeneous coordinate $\xi=\left[\xi_{0}: \xi_{1}\right]$, where we let $k=\xi_{0} / \xi_{1}$ and $[1: 0]$ corresponds to the vertical line.
- Then consider, in the space $\mathbb{C}^{2} \times \mathbb{P}^{1}$ with coordinates $\left(x, y ;\left[\xi_{0}: \xi_{1}\right]\right)$, the set \mathcal{S} cut out by the equation $x \xi_{0}=y \xi_{1}$.

Technical Tool: The Blowup Procedure

Let us briefly recall the blowup procedure from the algebraic geometry.
First we see how to blowup the origin at \mathbb{C}^{2} (pictured as \mathbb{R}^{2}). Let (a, b) be a point away from the origin. We can then describe it by cartesian coordinates, or by one coordinate and the slope of the line through the origin:

This observation allows us to separate the lines through the origin as follows.

- First, note that lines through the origin are parameterized by the projective line \mathbb{P}^{1} with a homogeneous coordinate $\xi=\left[\xi_{0}: \xi_{1}\right]$, where we let $k=\xi_{0} / \xi_{1}$ and $[1: 0]$ corresponds to the vertical line.
- Then consider, in the space $\mathbb{C}^{2} \times \mathbb{P}^{1}$ with coordinates $\left(x, y ;\left[\xi_{0}: \xi_{1}\right]\right)$, the set \mathcal{S} cut out by the equation $x \xi_{0}=y \xi_{1}$.
- In view of the above, for $(x, y) \neq(0,0)$, the restriction of the projection $\pi: \mathbb{C}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{C}^{2}$ on \mathcal{S} is an isomorphism, but $\pi^{-1}(0,0) \simeq \mathbb{P}^{1}$. It is called the exceptional divisor and is denoted by E.

Technical Tool: The Blowup Procedure

Technical Tool: The Blowup Procedure

Geometrically the blowup procedure "separates" lines through the center of the blowup by "lifting" them according to their slope, algebraically it resolves $0 / 0$ indeterminacies of rational functions.

Technical Tool: The Blowup Procedure

Geometrically the blowup procedure "separates" lines through the center of the blowup by "lifting" them according to their slope, algebraically it resolves $0 / 0$ indeterminacies of rational functions. The set $S=V\left(x \xi_{0}-y \xi_{1}\right)$ is covered by two charts (u, v) and (U, V). For a blowup with the center at $\left(x_{0}, y_{0}\right)$ these charts are $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(u+x_{0}, u v+y_{0},[u: 1]\right)$ and $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(U V+x_{0}, V+y_{0},[1: V]\right)$.

Technical Tool: The Blowup Procedure

Geometrically the blowup procedure "separates" lines through the center of the blowup by "lifting" them according to their slope, algebraically it resolves $0 / 0$ indeterminacies of rational functions. The set $S=V\left(x \xi_{0}-y \xi_{1}\right)$ is covered by two charts (u, v) and (U, V). For a blowup with the center at $\left(x_{0}, y_{0}\right)$ these charts are $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(u+x_{0}, u v+y_{0},[u: 1]\right)$ and $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(U V+x_{0}, V+y_{0},[1: V]\right)$.
Algebraically blowup is a coordinate substitution $x=u+x_{0}=U V+x_{0}$ and $y=u v+y_{0}=V+y_{0}$.

Technical Tool: The Blowup Procedure

Geometrically the blowup procedure "separates" lines through the center of the blowup by "lifting" them according to their slope, algebraically it resolves $0 / 0$ indeterminacies of rational functions. The set $S=V\left(x \xi_{0}-y \xi_{1}\right)$ is covered by two charts (u, v) and (U, V). For a blowup with the center at $\left(x_{0}, y_{0}\right)$ these charts are $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(u+x_{0}, u v+y_{0},[u: 1]\right)$ and $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(U V+x_{0}, V+y_{0},[1: V]\right)$.
Algebraically blowup is a coordinate substitution $x=u+x_{0}=U V+x_{0}$ and $y=u v+y_{0}=V+y_{0}$.

$$
\begin{aligned}
L \bullet M & =1 \\
(L-E) \bullet(M-E) & =0 \\
E \bullet E & =-1 \\
\text { If } L^{2}=L \bullet L & =m \text { then } \\
(L-E)^{2} & =m-1
\end{aligned}
$$

Technical Tool: The Blowup Procedure

Geometrically the blowup procedure "separates" lines through the center of the blowup by "lifting" them according to their slope, algebraically it resolves $0 / 0$ indeterminacies of rational functions. The set $S=V\left(x \xi_{0}-y \xi_{1}\right)$ is covered by two charts (u, v) and (U, V). For a blowup with the center at $\left(x_{0}, y_{0}\right)$ these charts are $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(u+x_{0}, u v+y_{0},[u: 1]\right)$ and $\left(x, y,\left[\xi_{0}: \xi_{1}\right]\right)=\left(U V+x_{0}, V+y_{0},[1: V]\right)$.
Algebraically blowup is a coordinate substitution $x=u+x_{0}=U V+x_{0}$ and $y=u v+y_{0}=V+y_{0}$.

$$
\begin{aligned}
L \bullet M & =1 \\
(L-E) \bullet(M-E) & =0 \\
E \bullet E & =-1 \\
\text { If } L^{2}=L \bullet L & =m \text { then } \\
(L-E)^{2} & =m-1
\end{aligned}
$$

Note that we need to distinguish the total transform $\pi^{-1}(L)$ and the proper transform $\overline{\pi^{-1}(L-(0,0))}$ that we denote by $L-E$. Exceptional divisor has the self-intersection $E^{2}=-1$. Such curves are called -1-curves.

Technical Tool: The Blowup Procedure

Schematically, we visualize the blowup as follows:

Technical Tool: The Blowup Procedure

Schematically, we visualize the blowup as follows:

Technical Tool: The Blowup Procedure

Schematically, we visualize the blowup as follows:

Note the proper transform notation and coordinates on E :

- E and $H_{x}-E$ intersect at $(U=0, V=0)$;
- E and $H_{y}-E$ intersect at ($u=0, v=0$);
- if the line L had a slope $1 / 3, E$ and $L-E$ intersect at $(u=0, v=1 / 3)$ or $(U=3, V=0)$.

The QRT Surface

Let us now return to our example. We construct the surface $\mathcal{X}=\mathcal{X}_{\mathbf{b}}$ by successively 8 blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points:

$$
p_{1}(0, a), p_{2}\left(0, a^{-1}\right), p_{3}(a, 0), p_{4}\left(a^{-1}, 0\right), p_{5}(\infty,-a), p_{6}\left(\infty,-a^{-1}\right), p_{7}(-a, \infty), p_{8}\left(-a^{-1}, \infty\right) .
$$

The QRT Surface

Let us now return to our example. We construct the surface $\mathcal{X}=\mathcal{X}_{\mathbf{b}}$ by successively 8 blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points:

$$
p_{1}(0, a), p_{2}\left(0, a^{-1}\right), p_{3}(a, 0), p_{4}\left(a^{-1}, 0\right), p_{5}(\infty,-a), p_{6}\left(\infty,-a^{-1}\right), p_{7}(-a, \infty), p_{8}\left(-a^{-1}, \infty\right)
$$

Then φ is lifted to an automorphism on \mathcal{X}.

The QRT Surface

Let us now return to our example. We construct the surface $\mathcal{X}=\mathcal{X}_{\mathbf{b}}$ by successively 8 blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points:

$$
p_{1}(0, a), p_{2}\left(0, a^{-1}\right), p_{3}(a, 0), p_{4}\left(a^{-1}, 0\right), p_{5}(\infty,-a), p_{6}\left(\infty,-a^{-1}\right), p_{7}(-a, \infty), p_{8}\left(-a^{-1}, \infty\right)
$$

Then φ is lifted to an automorphism on \mathcal{X}.

Note that as a result we have successfully separated all curves passing through the base points (in other examples, some base points can collide and the procedure is more difficult).

The QRT Surface

Let us now return to our example. We construct the surface $\mathcal{X}=\mathcal{X}_{\mathbf{b}}$ by successively 8 blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points:

$$
p_{1}(0, a), p_{2}\left(0, a^{-1}\right), p_{3}(a, 0), p_{4}\left(a^{-1}, 0\right), p_{5}(\infty,-a), p_{6}\left(\infty,-a^{-1}\right), p_{7}(-a, \infty), p_{8}\left(-a^{-1}, \infty\right)
$$

Then φ is lifted to an automorphism on \mathcal{X}.

Note that as a result we have successfully separated all curves passing through the base points (in other examples, some base points can collide and the procedure is more difficult). The resulting surface is called a rational elliptic surface: it is birational to \mathbb{P}^{2}, through each point of the surface passes a unique curve (the proper transform of the (2,2)-curve in the pencil) that is generically elliptic.

The QRT Surface

Let us now return to our example. We construct the surface $\mathcal{X}=\mathcal{X}_{\mathbf{b}}$ by successively 8 blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points:

$$
p_{1}(0, a), p_{2}\left(0, a^{-1}\right), p_{3}(a, 0), p_{4}\left(a^{-1}, 0\right), p_{5}(\infty,-a), p_{6}\left(\infty,-a^{-1}\right), p_{7}(-a, \infty), p_{8}\left(-a^{-1}, \infty\right)
$$

Then φ is lifted to an automorphism on \mathcal{X}.

Note that as a result we have successfully separated all curves passing through the base points (in other examples, some base points can collide and the procedure is more difficult).
The resulting surface is called a rational elliptic surface: it is birational to \mathbb{P}^{2}, through each point of the surface passes a unique curve (the proper transform of the (2,2)-curve in the pencil) that is generically elliptic.
The QRT dynamics is integrable since it preserves the fibration. It is autonomous since the points of the blowup (whose coordinates appear as coefficients of the equation) do not evolve.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.
- The Picard Lattice is equipped with an inner product known as the intersection product; for $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, we have $\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0$ and $\mathcal{H}_{x} \bullet \mathcal{H}_{y}=1$.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.
- The Picard Lattice is equipped with an inner product known as the intersection product; for $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, we have $\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0$ and $\mathcal{H}_{x} \bullet \mathcal{H}_{y}=1$.
- Note also that for a bi-quadratic curve $\Gamma,[\Gamma]=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}$.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.
- The Picard Lattice is equipped with an inner product known as the intersection product; for $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, we have $\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0$ and $\mathcal{H}_{x} \bullet \mathcal{H}_{y}=1$.
- Note also that for a bi-quadratic curve $\Gamma,[\Gamma]=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}$.
- For us, of particular importance is a special element of $\operatorname{Pic}(\mathcal{X})$ known as the anti-canonical divisor class $-\mathcal{K}_{\mathcal{X}}$. It is dual to the class $\mathcal{K}_{\mathcal{X}}=[(\omega)]$ of the top differential form ω.

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.
- The Picard Lattice is equipped with an inner product known as the intersection product; for $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, we have $\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0$ and $\mathcal{H}_{x} \bullet \mathcal{H}_{y}=1$.
- Note also that for a bi-quadratic curve $\Gamma,[\Gamma]=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}$.
- For us, of particular importance is a special element of $\operatorname{Pic}(\mathcal{X})$ known as the anti-canonical divisor class $-\mathcal{K}_{\mathcal{X}}$. It is dual to the class $\mathcal{K}_{\mathcal{X}}=[(\omega)]$ of the top differential form ω.
- It is easy to see that $\mathcal{K}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}=-2 \mathcal{H}_{x}-2 \mathcal{H}_{y}$:

$$
\begin{aligned}
\omega & =d x \wedge d y \\
& =-\frac{d X \wedge d y}{X^{2}} \\
& =-\frac{d x \wedge d Y}{Y^{2}} \\
& =\frac{d X \wedge d Y}{X^{2} Y^{2}} \sim \frac{d x \wedge d y}{x y} .
\end{aligned}
$$

The Picard Lattice and the Anti-Canonical Divisor Class

- The Picard lattice of an algebraic surface is, in the regular case, $\operatorname{Pic}(\mathcal{X})=\operatorname{Div}(\mathcal{X}) / P(\mathcal{X})$.
- It is easy to see that $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is generated by the classes of the coordinate lines, $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\}$. Here $\mathcal{H}_{x}=\left[H_{x=a}\right]$. Note that $H_{x=a} \sim H_{x=b}$ since $H_{x=a}-H_{x=b}=\left(\frac{x-a}{x-b}\right)$ is a principal divisor, or a divisor of a rational function.
- The Picard Lattice is equipped with an inner product known as the intersection product; for $\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, we have $\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0$ and $\mathcal{H}_{x} \bullet \mathcal{H}_{y}=1$.
- Note also that for a bi-quadratic curve $\Gamma,[\Gamma]=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}$.
- For us, of particular importance is a special element of $\operatorname{Pic}(\mathcal{X})$ known as the anti-canonical divisor class $-\mathcal{K}_{\mathcal{X}}$. It is dual to the class $\mathcal{K}_{\mathcal{X}}=[(\omega)]$ of the top differential form ω.
- It is easy to see that $\mathcal{K}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}=-2 \mathcal{H}_{x}-2 \mathcal{H}_{y}$:

$$
\begin{aligned}
\omega & =d x \wedge d y \\
& =-\frac{d X \wedge d y}{X^{2}} \\
& =-\frac{d x \wedge d Y}{Y^{2}} \\
& =\frac{d X \wedge d Y}{X^{2} Y^{2}} \sim \frac{d x \wedge d y}{x y} .
\end{aligned}
$$

- Thus, we see that all (2,2)-curves in our pencil belong to the anti-canonical divisor class, $\Gamma_{k} \in\left(-\mathcal{K}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)$. Further, $\left(-\mathcal{K}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)^{2}=8$ gives us the number of base points.

The Picard Lattice and the Anti-Canonical Divisor Class

- Each blowup creates an additional element in the Picard lattice given by the class of the exceptional fiber. Thus,

$$
\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\} .
$$

The Picard Lattice and the Anti-Canonical Divisor Class

- Each blowup creates an additional element in the Picard lattice given by the class of the exceptional fiber. Thus,

$$
\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\} .
$$

- The intersection product for this additional classes is given by

$$
\mathcal{E}_{i} \bullet \mathcal{E}_{j}=-\delta_{i j}, \quad \mathcal{E}_{i} \bullet \mathcal{H}_{x}=\mathcal{E}_{i} \bullet \mathcal{H}_{y}=\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0, \quad \mathcal{H}_{x} \bullet \mathcal{H}_{y}=1
$$

The Picard Lattice and the Anti-Canonical Divisor Class

- Each blowup creates an additional element in the Picard lattice given by the class of the exceptional fiber. Thus,

$$
\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\} .
$$

- The intersection product for this additional classes is given by

$$
\mathcal{E}_{i} \bullet \mathcal{E}_{j}=-\delta_{i j}, \quad \mathcal{E}_{i} \bullet \mathcal{H}_{x}=\mathcal{E}_{i} \bullet \mathcal{H}_{y}=\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0, \quad \mathcal{H}_{x} \bullet \mathcal{H}_{y}=1
$$

- After blowups, the canonical divisor class becomes

$$
\mathcal{K}_{\mathcal{X}}=-2 \mathcal{H}_{x}-2 \mathcal{H}_{y}+\mathcal{E}_{1}+\cdots+\mathcal{E}_{8}
$$

Thus, each curve in the fibration is in the anti-canonical divisor class;

$$
\Gamma_{\lambda} \in-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}-\mathcal{E}_{1}-\cdots-\mathcal{E}_{8} .
$$

The Picard Lattice and the Anti-Canonical Divisor Class

- Each blowup creates an additional element in the Picard lattice given by the class of the exceptional fiber. Thus,

$$
\operatorname{Pic}(\mathcal{X})=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right\}
$$

- The intersection product for this additional classes is given by

$$
\mathcal{E}_{i} \bullet \mathcal{E}_{j}=-\delta_{i j}, \quad \mathcal{E}_{i} \bullet \mathcal{H}_{x}=\mathcal{E}_{i} \bullet \mathcal{H}_{y}=\mathcal{H}_{x} \bullet \mathcal{H}_{x}=\mathcal{H}_{y} \bullet \mathcal{H}_{y}=0, \quad \mathcal{H}_{x} \bullet \mathcal{H}_{y}=1
$$

- After blowups, the canonical divisor class becomes

$$
\mathcal{K}_{\mathcal{X}}=-2 \mathcal{H}_{x}-2 \mathcal{H}_{y}+\mathcal{E}_{1}+\cdots+\mathcal{E}_{8} .
$$

Thus, each curve in the fibration is in the anti-canonical divisor class;

$$
\Gamma_{\lambda} \in-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{x}+2 \mathcal{H}_{y}-\mathcal{E}_{1}-\cdots-\mathcal{E}_{8} .
$$

- Our mapping then induces a linear mapping on the Picard lattice that preserves the fibration (ad hence both the canonical and the anti-canonical divisor classes). This linear map captures a lot of information about our dynamics (as we will see, essentially everything in the discrete Painlevé case).

Linear Action on $\operatorname{Pic}(\mathcal{X})$

The push-forward and the pull-back actions of $\varphi: \mathcal{X} \rightarrow \mathcal{X}(=\overline{\mathcal{X}})$ on $\operatorname{Pic}(\mathcal{X})$ are:

Linear Action on $\operatorname{Pic}(\mathcal{X})$

The push-forward and the pull-back actions of $\varphi: \mathcal{X} \rightarrow \mathcal{X}(=\overline{\mathcal{X}})$ on $\operatorname{Pic}(\mathcal{X})$ are:

$$
\begin{array}{lll}
& \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{y}, \quad \mathcal{H}_{y} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}-\overline{\mathcal{E}}_{2}-\overline{\mathcal{E}}_{5}-\overline{\mathcal{E}}_{6}, \\
\varphi_{*}: & \mathcal{E}_{1} \mapsto \overline{\mathcal{E}}_{4}, \quad & \mathcal{E}_{2} \mapsto \overline{\mathcal{E}}_{3}, \quad \quad \quad \mathcal{E}_{3} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}, \quad \mathcal{E}_{4} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{2}, \\
& \mathcal{E}_{5} \mapsto \overline{\mathcal{E}}_{8}, \quad \mathcal{E}_{6} \mapsto \overline{\mathcal{E}}_{7}, \quad \mathcal{E}_{7} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{5}, \quad \mathcal{E}_{8} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{6}
\end{array}
$$

Linear Action on $\operatorname{Pic}(\mathcal{X})$

The push-forward and the pull-back actions of $\varphi: \mathcal{X} \rightarrow \mathcal{X}(=\overline{\mathcal{X}})$ on $\operatorname{Pic}(\mathcal{X})$ are:

$$
\begin{array}{lll}
\varphi_{*}: & \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{y}, \quad \mathcal{H}_{y} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}-\overline{\mathcal{E}}_{2}-\overline{\mathcal{E}}_{5}-\overline{\mathcal{E}}_{6}, \\
& \mathcal{E}_{5} \mapsto \overline{\mathcal{E}}_{4}, \quad \overline{\mathcal{E}}_{2} \mapsto \overline{\mathcal{E}}_{6}, \quad \mathcal{E}_{3} \mapsto \overline{\mathcal{E}}_{7}, \quad \mathcal{E}_{7} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}, \quad \overline{\mathcal{E}}_{5}, \quad \mathcal{E}_{8} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{2}, \\
& \overline{\mathcal{H}}_{6} \mapsto 2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7}-\mathcal{E}_{8}, \quad \overline{\mathcal{H}}_{y} \mapsto \mathcal{H}_{x} \\
\varphi^{*}: & \overline{\mathcal{E}}_{1} \mapsto \mathcal{H}_{x}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{2} \mapsto \mathcal{H}_{x}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{3} \mapsto \mathcal{E}_{2}, \quad \overline{\mathcal{E}}_{4} \mapsto \mathcal{E}_{1} \\
& \overline{\mathcal{E}}_{5} \mapsto \mathcal{H}_{x}-\mathcal{E}_{7}, \quad \overline{\mathcal{E}}_{6} \mapsto \mathcal{H}_{x}-\mathcal{E}_{8}, \quad \overline{\mathcal{E}}_{7} \mapsto \mathcal{E}_{6}, \quad \overline{\mathcal{E}}_{8} \mapsto \mathcal{E}_{5} .
\end{array}
$$

Linear Action on $\operatorname{Pic}(\mathcal{X})$

The push-forward and the pull-back actions of $\varphi: \mathcal{X} \rightarrow \mathcal{X}(=\overline{\mathcal{X}})$ on $\operatorname{Pic}(\mathcal{X})$ are:

$$
\begin{aligned}
& \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{y}, \quad \mathcal{H}_{y} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}-\overline{\mathcal{E}}_{2}-\overline{\mathcal{E}}_{5}-\overline{\mathcal{E}}_{6}, \\
& \varphi_{*}: \quad \mathcal{E}_{1} \mapsto \overline{\mathcal{E}}_{4}, \quad \mathcal{E}_{2} \mapsto \overline{\mathcal{E}}_{3}, \quad \quad \mathcal{E}_{3} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{1}, \quad \mathcal{E}_{4} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{2}, \\
& \mathcal{E}_{5} \mapsto \overline{\mathcal{E}}_{8}, \quad \mathcal{E}_{6} \mapsto \overline{\mathcal{E}}_{7}, \quad \mathcal{E}_{7} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{5}, \quad \mathcal{E}_{8} \mapsto \overline{\mathcal{H}}_{y}-\overline{\mathcal{E}}_{6} \\
& \overline{\mathcal{H}}_{x} \mapsto 2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7}-\mathcal{E}_{8}, \quad \overline{\mathcal{H}}_{y} \mapsto \mathcal{H}_{x} \\
& \varphi^{*}: \overline{\mathcal{E}}_{1} \mapsto \mathcal{H}_{x}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{2} \mapsto \mathcal{H}_{x}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{3} \mapsto \mathcal{E}_{2}, \quad \overline{\mathcal{E}}_{4} \mapsto \mathcal{E}_{1} \\
& \overline{\mathcal{E}}_{5} \mapsto \mathcal{H}_{x}-\mathcal{E}_{7}, \quad \overline{\mathcal{E}}_{6} \mapsto \mathcal{H}_{x}-\mathcal{E}_{8}, \quad \overline{\mathcal{E}}_{7} \mapsto \mathcal{E}_{6}, \quad \overline{\mathcal{E}}_{8} \mapsto \mathcal{E}_{5} . \\
& E_{8} \quad E_{8} \\
& H_{y}-E_{7}-E_{8}
\end{aligned}
$$

Types of (Singular) Fibers

Putting the curves $\Gamma(x, y ; k)$ in the Weierstrass normal form and computing the elliptic discriminant, we can compute the singular fibers of our elliptic fibration. In our example, we see that the singular fibers appear at $k=0, k= \pm 4 i\left(a+a^{-1}\right), k= \pm\left(a-a^{-1}\right)$, and $k=\infty$ and have the following types:

Types of (Singular) Fibers

Putting the curves $\Gamma(x, y ; k)$ in the Weierstrass normal form and computing the elliptic discriminant, we can compute the singular fibers of our elliptic fibration. In our example, we see that the singular fibers appear at $k=0, k= \pm 4 i\left(a+a^{-1}\right), k= \pm\left(a-a^{-1}\right)$, and $k=\infty$ and have the following types:

Types of (Singular) Fibers

Putting the curves $\Gamma(x, y ; k)$ in the Weierstrass normal form and computing the elliptic discriminant, we can compute the singular fibers of our elliptic fibration. In our example, we see that the singular fibers appear at $k=0, k= \pm 4 i\left(a+a^{-1}\right), k= \pm\left(a-a^{-1}\right)$, and $k=\infty$ and have the following types:

We emphasize that different types of singular fibers are present in this autonomous dynamical system. Each type gives a deautonomization to different discrete Painlevé equation.

Types of (Singular) Fibers

Putting the curves $\Gamma(x, y ; k)$ in the Weierstrass normal form and computing the elliptic discriminant, we can compute the singular fibers of our elliptic fibration. In our example, we see that the singular fibers appear at $k=0, k= \pm 4 i\left(a+a^{-1}\right), k= \pm\left(a-a^{-1}\right)$, and $k=\infty$ and have the following types:

We emphasize that different types of singular fibers are present in this autonomous dynamical system. Each type gives a deautonomization to different discrete Painlevé equation.

In particular, $k=\infty$ is $x y=0$ of $q-P_{\mathrm{VI}}$ of Jimbo-Sakai.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.
"Shifting" the points off along a particular fiber, but at the same time preserving the action of the mapping on a particular fiber, creates a family of surfaces obtained by blowing up eight points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. That fiber is preserved and it is the unique anti-canonical divisor $-\mathcal{K}_{\mathcal{X}}$ of the family. The intersection configuration of the irreducible components of $-\mathcal{K}_{\mathcal{X}}$ is described by an affine Dynkin diagram, its type is the surface type of the equation. Blowup points can now move along this fixed fiber, so the mapping is non-autonomous.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.
"Shifting" the points off along a particular fiber, but at the same time preserving the action of the mapping on a particular fiber, creates a family of surfaces obtained by blowing up eight points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. That fiber is preserved and it is the unique anti-canonical divisor $-\mathcal{K}_{\mathcal{X}}$ of the family. The intersection configuration of the irreducible components of $-\mathcal{K}_{\mathcal{X}}$ is described by an affine Dynkin diagram, its type is the surface type of the equation. Blowup points can now move along this fixed fiber, so the mapping is non-autonomous.

The elliptic QRT fibration.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.
"Shifting" the points off along a particular fiber, but at the same time preserving the action of the mapping on a particular fiber, creates a family of surfaces obtained by blowing up eight points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. That fiber is preserved and it is the unique anti-canonical divisor $-\mathcal{K}_{\mathcal{X}}$ of the family. The intersection configuration of the irreducible components of $-\mathcal{K}_{\mathcal{X}}$ is described by an affine Dynkin diagram, its type is the surface type of the equation. Blowup points can now move along this fixed fiber, so the mapping is non-autonomous.

Deautonomization with elliptic $A_{0}^{(1)}$-fiber.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.
"Shifting" the points off along a particular fiber, but at the same time preserving the action of the mapping on a particular fiber, creates a family of surfaces obtained by blowing up eight points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. That fiber is preserved and it is the unique anti-canonical divisor $-\mathcal{K}_{\mathcal{X}}$ of the family. The intersection configuration of the irreducible components of $-\mathcal{K}_{\mathcal{X}}$ is described by an affine Dynkin diagram, its type is the surface type of the equation. Blowup points can now move along this fixed fiber, so the mapping is non-autonomous.

Deautonomization with elliptic $A_{1}^{(1)}$-fiber.

What is Geometric Deautonomization?

Base points in the QRT map are very special, since they belong to a pencil of bi-quadratic curves. In general, there is only one (2,2)-curve through generic eight points.
"Shifting" the points off along a particular fiber, but at the same time preserving the action of the mapping on a particular fiber, creates a family of surfaces obtained by blowing up eight points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. That fiber is preserved and it is the unique anti-canonical divisor $-\mathcal{K}_{\mathcal{X}}$ of the family. The intersection configuration of the irreducible components of $-\mathcal{K}_{\mathcal{X}}$ is described by an affine Dynkin diagram, its type is the surface type of the equation. Blowup points can now move along this fixed fiber, so the mapping is non-autonomous.

Deautonomization with elliptic $A_{3}^{(1)}$ - fiber $\left(q-P_{\mathrm{VI}}\right)$.

Discrete Painlevé Equation $\mathrm{q}-P_{\mathrm{VI}}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].

Discrete Painlevé Equation $\mathrm{q}-P_{\mathrm{V} ı}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].
We can easily recognize it as an $A_{3}^{(1)}$-deautonomization of our QRT example. It is a birational map ψ from a complex plane \mathbb{C}^{2} with coordinates (f, g) to a complex plane with coordinates (\bar{f}, \bar{g}) given by

Discrete Painlevé Equation $\mathrm{q}-P_{\mathrm{V} ı}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].
We can easily recognize it as an $A_{3}^{(1)}$-deautonomization of our QRT example. It is a birational map ψ from a complex plane \mathbb{C}^{2} with coordinates (f, g) to a complex plane with coordinates (\bar{f}, \bar{g}) given by

$$
\varphi:\left\{\begin{array}{l}
\bar{x}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)} \\
\bar{y}=x
\end{array} \quad \varphi^{2}:\left\{\begin{array}{l}
\overline{\bar{x}}=\frac{(\bar{x}-\bar{a})\left(\bar{x}-\bar{a}^{-1}\right)}{\bar{y}(\bar{x}+\bar{a})\left(\bar{x}+\bar{a}^{-1}\right)} \\
\bar{y}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}
\end{array} \quad \psi:\left\{\begin{array}{l}
\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\
\bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
\end{array}\right.\right.\right.
$$

where b_{1}, \ldots, b_{8} are some parameters and $q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)$.

Discrete Painlevé Equation $q-P_{\mathrm{V} ı}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].
We can easily recognize it as an $A_{3}^{(1)}$-deautonomization of our QRT example. It is a birational map ψ from a complex plane \mathbb{C}^{2} with coordinates (f, g) to a complex plane with coordinates (\bar{f}, \bar{g}) given by

$$
\varphi:\left\{\begin{array}{l}
\bar{x}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)} \\
\bar{y}=x
\end{array} \quad \varphi^{2}:\left\{\begin{array}{l}
\overline{\bar{x}}=\frac{(\bar{x}-\bar{a})\left(\bar{x}-\bar{a}^{-1}\right)}{\bar{y}(\bar{x}+\bar{a})\left(\bar{x}+\bar{a}^{-1}\right)} \\
\overline{\bar{y}}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}
\end{array} \quad \psi:\left\{\begin{array}{l}
\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\
\bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
\end{array}\right.\right.\right.
$$

where b_{1}, \ldots, b_{8} are some parameters and $q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)$.
It can also be thought of as a non-autonomous automorphism of the field $\mathbb{C}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8} ; f, g\right)$:

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \mapsto\left(\begin{array}{llll}
\bar{b}_{1} & \bar{b}_{2} & \bar{b}_{3} & \bar{b}_{4} \\
\bar{b}_{5} & \bar{b}_{6} & \bar{b}_{7} & \bar{b}_{8} ; \bar{f}, \bar{g}
\end{array}\right),
$$

where $\bar{b}_{1}=q b_{1}, \bar{b}_{2}=q b_{2}, \bar{b}_{3}=b_{3}, \bar{b}_{4}=b_{4}, \bar{b}_{5}=q b_{5}, \bar{b}_{6}=q b_{6}, \bar{b}_{7}=b_{7}, \bar{b}_{8}=b_{8}$, and the map $(\bar{f}, \bar{g})=\varphi(f, g)$ is as above.

Discrete Painlevé Equation $\mathrm{q}-P_{\mathrm{VI}}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].
We can easily recognize it as an $A_{3}^{(1)}$-deautonomization of our QRT example. It is a birational map ψ from a complex plane \mathbb{C}^{2} with coordinates (f, g) to a complex plane with coordinates (\bar{f}, \bar{g}) given by

$$
\varphi:\left\{\begin{array}{l}
\bar{x}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)} \\
\bar{y}=x
\end{array} \quad \varphi^{2}:\left\{\begin{array}{l}
\overline{\bar{x}}=\frac{(\bar{x}-\bar{a})\left(\bar{x}-\bar{a}^{-1}\right)}{\bar{y}(\bar{x}+\bar{a})\left(\bar{x}+\bar{a}^{-1}\right)} \\
\overline{\bar{y}}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}
\end{array} \quad \psi: \quad\left\{\begin{array}{l}
\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\
\bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
\end{array}\right.\right.\right.
$$

where b_{1}, \ldots, b_{8} are some parameters and $q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)$.
It can also be thought of as a non-autonomous automorphism of the field $\mathbb{C}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8} ; f, g\right)$:

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \mapsto\left(\begin{array}{llll}
\bar{b}_{1} & \bar{b}_{2} & \bar{b}_{3} & \bar{b}_{4} \\
\bar{b}_{5} & \bar{b}_{6} & \bar{b}_{7} & \bar{b}_{8} ; \bar{f}, \bar{g}
\end{array}\right),
$$

where $\bar{b}_{1}=q b_{1}, \bar{b}_{2}=q b_{2}, \bar{b}_{3}=b_{3}, \bar{b}_{4}=b_{4}, \bar{b}_{5}=q b_{5}, \bar{b}_{6}=q b_{6}, \bar{b}_{7}=b_{7}, \bar{b}_{8}=b_{8}$, and the map $(\bar{f}, \bar{g})=\varphi(f, g)$ is as above.
Possible problems: $\bar{g}\left(b_{5}, b\right)=0, \bar{g}(a, 0)=\infty\left(\right.$ compactify from \mathbb{C}^{2} to $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. Real issue is at $\bar{g}\left(b_{5}, 0\right)$ - this is an indeterminate or base point.

Discrete Painlevé Equation $\mathrm{q}-P_{\mathrm{VI}}$

We now show how to recover geometry from an equation using the famous $\mathrm{q}-P_{\mathrm{VI}}$ example originally obtained by M. Jimbo and H. Sakai in 1995, [JS96].
We can easily recognize it as an $A_{3}^{(1)}$-deautonomization of our QRT example. It is a birational map ψ from a complex plane \mathbb{C}^{2} with coordinates (f, g) to a complex plane with coordinates (\bar{f}, \bar{g}) given by

$$
\varphi:\left\{\begin{array}{l}
\bar{x}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)} \\
\bar{y}=x
\end{array} \quad \varphi^{2}:\left\{\begin{array}{l}
\overline{\bar{x}}=\frac{(\bar{x}-\bar{a})\left(\bar{x}-\bar{a}^{-1}\right)}{\bar{y}(\bar{x}+\bar{a})\left(\bar{x}+\bar{a}^{-1}\right)} \\
\bar{y}=\frac{(x-a)\left(x-a^{-1}\right)}{y(x+a)\left(x+a^{-1}\right)}
\end{array} \quad \psi:\left\{\begin{array}{l}
\bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \\
\bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
\end{array}\right.\right.\right.
$$

where b_{1}, \ldots, b_{8} are some parameters and $q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)$.
It can also be thought of as a non-autonomous automorphism of the field $\mathbb{C}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8} ; f, g\right)$:

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \mapsto\left(\begin{array}{llll}
\bar{b}_{1} & \bar{b}_{2} & \bar{b}_{3} & \bar{b}_{4} \\
\bar{b}_{5} & \bar{b}_{6} & \bar{b}_{7} & \bar{b}_{8} ; \bar{f}, \bar{g}
\end{array}\right),
$$

where $\bar{b}_{1}=q b_{1}, \bar{b}_{2}=q b_{2}, \bar{b}_{3}=b_{3}, \bar{b}_{4}=b_{4}, \bar{b}_{5}=q b_{5}, \bar{b}_{6}=q b_{6}, \bar{b}_{7}=b_{7}, \bar{b}_{8}=b_{8}$, and the map $(\bar{f}, \bar{g})=\varphi(f, g)$ is as above.
Possible problems: $\bar{g}\left(b_{5}, b\right)=0, \bar{g}(a, 0)=\infty\left(\right.$ compactify from \mathbb{C}^{2} to $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. Real issue is at $\bar{g}\left(b_{5}, 0\right)$ - this is an indeterminate or base point.
We again need to resolve the indeterminate points using the blowup procedure. This is how the space of initial conditions is constructed.

Okamoto Space of Initial Conditions for $\mathrm{q}-P_{\mathrm{VI}}$

The q- P_{VI} map naturally decomposes as $\psi_{1}:(f, g) \mapsto(f, \bar{g})$ and $\psi_{2}:(f, \bar{g}) \mapsto(\bar{f}, \bar{g})$:

Okamoto Space of Initial Conditions for $\mathrm{q}-P_{\mathrm{VI}}$

The q- P_{VI} map naturally decomposes as $\psi_{1}:(f, g) \mapsto(f, \bar{g})$ and $\psi_{2}:(f, \bar{g}) \mapsto(\bar{f}, \bar{g})$:

$$
\psi_{1}: \quad \bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \quad \psi_{2}: \quad \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
$$

Okamoto Space of Initial Conditions for $\mathrm{q}-P_{\mathrm{VI}}$

The q- P_{VI} map naturally decomposes as $\psi_{1}:(f, g) \mapsto(f, \bar{g})$ and $\psi_{2}:(f, \bar{g}) \mapsto(\bar{f}, \bar{g})$:

$$
\psi_{1}: \quad \bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \quad \psi_{2}: \quad \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
$$

The indeterminate points of ψ_{1} in the coordinates (f, g) are $p_{5}\left(b_{5}, 0\right), p_{6}\left(b_{6}, 0\right), p_{7}\left(b_{7}, \infty\right)$, $p_{8}\left(b_{8}, \infty\right)$.

Okamoto Space of Initial Conditions for $\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$

The q- P_{VI} map naturally decomposes as $\psi_{1}:(f, g) \mapsto(f, \bar{g})$ and $\psi_{2}:(f, \bar{g}) \mapsto(\bar{f}, \bar{g})$:

$$
\psi_{1}: \quad \bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \quad \psi_{2}: \quad \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
$$

The indeterminate points of ψ_{1} in the coordinates (f, g) are $p_{5}\left(b_{5}, 0\right), p_{6}\left(b_{6}, 0\right), p_{7}\left(b_{7}, \infty\right)$, $p_{8}\left(b_{8}, \infty\right)$.
The indeterminate points of the map ψ_{2} in the coordinates (f, \bar{g}) are $\left(0, q b_{1}\right),\left(0, q b_{2}\right),\left(\infty, b_{3}\right)$, $\left(\infty, b_{4}\right)$. Applying ψ_{1}^{-1} we then get the corresponding points in the coordinates $(f, g): p_{1}\left(0, b_{1}\right)$, $p_{2}\left(0, b_{2}\right), p_{3}\left(\infty, b_{3}\right), p_{4}\left(\infty, b_{4}\right)$.

Okamoto Space of Initial Conditions for $\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$

The q- P_{VI} map naturally decomposes as $\psi_{1}:(f, g) \mapsto(f, \bar{g})$ and $\psi_{2}:(f, \bar{g}) \mapsto(\bar{f}, \bar{g})$:

$$
\psi_{1}: \quad \bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)\left(f-b_{6}\right)}{\left(f-b_{7}\right)\left(f-b_{8}\right)} \quad \psi_{2}: \quad \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{1}\right)\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}
$$

The indeterminate points of ψ_{1} in the coordinates (f, g) are $p_{5}\left(b_{5}, 0\right), p_{6}\left(b_{6}, 0\right), p_{7}\left(b_{7}, \infty\right)$, $p_{8}\left(b_{8}, \infty\right)$.
The indeterminate points of the map ψ_{2} in the coordinates (f, \bar{g}) are $\left(0, q b_{1}\right),\left(0, q b_{2}\right),\left(\infty, b_{3}\right)$, $\left(\infty, b_{4}\right)$. Applying ψ_{1}^{-1} we then get the corresponding points in the coordinates $(f, g): p_{1}\left(0, b_{1}\right)$, $p_{2}\left(0, b_{2}\right), p_{3}\left(\infty, b_{3}\right), p_{4}\left(\infty, b_{4}\right)$.
Resolve it using the blowup procedure (turns out there are no more indeterminate points):

Okamoto Space of Initial Conditions $\mathcal{X}_{\mathbf{b}}$ for $\mathrm{q}-P_{\mathrm{VI}}$

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.
The orthogonal complement $\left(-\mathcal{K}_{\mathcal{X}}\right)^{\perp} \triangleleft \operatorname{Pic}(\mathcal{X})$ has two important complementary sub-lattices:

- The surface sub-lattice $\Pi(R)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{D}_{i}\right\}$;

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} .
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.
The orthogonal complement $\left(-\mathcal{K}_{\mathcal{X}}\right)^{\perp} \triangleleft \operatorname{Pic}(\mathcal{X})$ has two important complementary sub-lattices:

- The surface sub-lattice $\Pi(R)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{D}_{i}\right\}$;
- The symmetry sub-lattice $\Pi\left(R^{\perp}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\alpha_{i}\right\}$, which is the orthogonal complement of R (thus, reflections w_{i} in the roots α_{i} preserve the type of the surface and the intersection form, i.e., they are Cremona isometries).

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} .
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.
The orthogonal complement $\left(-\mathcal{K}_{\mathcal{X}}\right)^{\perp} \triangleleft \operatorname{Pic}(\mathcal{X})$ has two important complementary sub-lattices:

- The surface sub-lattice $\Pi(R)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{D}_{i}\right\}$;
- The symmetry sub-lattice $\Pi\left(R^{\perp}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\alpha_{i}\right\}$, which is the orthogonal complement of R (thus, reflections w_{i} in the roots α_{i} preserve the type of the surface and the intersection form, i.e., they are Cremona isometries).
- Configurations of \mathcal{D}_{i} and α_{j} are also described by the affine Dynkin diagrams, automorphisms of these diagrams are also symmetries of the surface (also Cremona isometries).

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} .
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.
The orthogonal complement $\left(-\mathcal{K}_{\mathcal{X}}\right)^{\perp} \triangleleft \operatorname{Pic}(\mathcal{X})$ has two important complementary sub-lattices:

- The surface sub-lattice $\Pi(R)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{D}_{i}\right\}$;
- The symmetry sub-lattice $\Pi\left(R^{\perp}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\alpha_{i}\right\}$, which is the orthogonal complement of R (thus, reflections w_{i} in the roots α_{i} preserve the type of the surface and the intersection form, i.e., they are Cremona isometries).
- Configurations of \mathcal{D}_{i} and α_{j} are also described by the affine Dynkin diagrams, automorphisms of these diagrams are also symmetries of the surface (also Cremona isometries).
- $W=\left\langle\alpha_{i} \mid \cdots\right\rangle$ and $\widetilde{W}=\left\langle w_{i}, \sigma_{j} \mid \cdots\right\rangle$ are the affine Weyl group and the extended affine Weyl group of symmetries of our surface;

Generalized Halphen Surfaces

In general, blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at eight points results in a surface \mathcal{X} with the anti-canonical divisor class

$$
-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} .
$$

Its orthogonal complement in the $\operatorname{Picard} \operatorname{lattice} \operatorname{Pic}(\mathcal{X})$ has the affine type $E_{8}^{(1)}$

We say that \mathcal{X} is a generalized Halphen surface of index zero if it has a unique anti-canonical divisor of canonical type: $-\mathcal{K}_{\mathcal{X}} \bullet \mathcal{D}_{i}=0$ for any irreducible component \mathcal{D}_{i} of $-\mathcal{K}_{\mathcal{X}}$.
The orthogonal complement $\left(-\mathcal{K}_{\mathcal{X}}\right)^{\perp} \triangleleft \operatorname{Pic}(\mathcal{X})$ has two important complementary sub-lattices:

- The surface sub-lattice $\Pi(R)=\operatorname{Span}_{\mathbb{Z}}\left\{\mathcal{D}_{i}\right\}$;
- The symmetry sub-lattice $\Pi\left(R^{\perp}\right)=\operatorname{Span}_{\mathbb{Z}}\left\{\alpha_{i}\right\}$, which is the orthogonal complement of R (thus, reflections w_{i} in the roots α_{i} preserve the type of the surface and the intersection form, i.e., they are Cremona isometries).
- Configurations of \mathcal{D}_{i} and α_{j} are also described by the affine Dynkin diagrams, automorphisms of these diagrams are also symmetries of the surface (also Cremona isometries).
- $W=\left\langle\alpha_{i} \mid \cdots\right\rangle$ and $\widetilde{W}=\left\langle w_{i}, \sigma_{j} \mid \cdots\right\rangle$ are the affine Weyl group and the extended affine Weyl group of symmetries of our surface;
- Note that $\Pi(R) \cap \Pi\left(R^{\perp}\right)=\operatorname{Span}_{\mathbb{Z}}\left(-\mathcal{K}_{\mathcal{X}}\right),-K_{\mathcal{X}}=\sum_{i} m_{i} \mathcal{D}_{i}=\sum_{j} n_{j} \alpha_{j}$.

Root Subsystems for $\mathrm{q}-P_{\mathrm{v} I}$

In the $\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ case we have the following root sub-systems

Root Subsystems for $\mathrm{q}-P_{\mathrm{VI}}$

In the $\mathrm{q}-P_{\mathrm{VI}}$ case we have the following root sub-systems

- Irreducible components of the anti-canonical divisor (the surface):

$$
R=A_{3}^{(1)}:
$$

$$
\begin{aligned}
D_{0} & =\mathcal{H}_{f}-\mathcal{E}_{3}-\mathcal{E}_{4}, \\
D_{1} & =\mathcal{H}_{g}-\mathcal{E}_{5}-\mathcal{E}_{6}, \\
D_{2} & =\mathcal{H}_{f}-\mathcal{E}_{1}-\mathcal{E}_{2}, \\
D_{3} & =\mathcal{H}_{g}-\mathcal{E}_{7}-\mathcal{E}_{8},
\end{aligned}
$$

Root Subsystems for $\mathrm{q}-P_{\mathrm{VI}}$

In the $\mathrm{q}-P_{\mathrm{VI}}$ case we have the following root sub-systems

- Irreducible components of the anti-canonical divisor (the surface):

- Orthogonal sub-lattice (the symmetries):

$$
R^{\perp}=D_{5}^{(1)}:
$$

$$
\begin{aligned}
& \alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, \\
& \alpha_{1}=\mathcal{E}_{1}-\mathcal{E}_{2}, \\
& \alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}, \\
& \alpha_{3}=\mathcal{H}_{f}-\mathcal{E}_{5}-\mathcal{E}_{7}, \\
& \alpha_{4}=\mathcal{E}_{5}-\mathcal{E}_{6}, \\
& \alpha_{5}=\mathcal{E}_{7}-\mathcal{E}_{8} .
\end{aligned}
$$

Root Subsystems for $\mathrm{q}-P_{\mathrm{VI}}$

In the $\mathrm{q}-P_{\mathrm{VI}}$ case we have the following root sub-systems

- Irreducible components of the anti-canonical divisor (the surface):

- Orthogonal sub-lattice (the symmetries):

$$
R^{\perp}=D_{5}^{(1)}:
$$

$$
\begin{aligned}
& \alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, \\
& \alpha_{1}=\mathcal{E}_{1}-\mathcal{E}_{2}, \\
& \alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}, \\
& \alpha_{3}=\mathcal{H}_{f}-\mathcal{E}_{5}-\mathcal{E}_{7}, \\
& \alpha_{4}=\mathcal{E}_{5}-\mathcal{E}_{6}, \\
& \alpha_{5}=\mathcal{E}_{7}-\mathcal{E}_{8} .
\end{aligned}
$$

- The anti-canonical divisor decomposes as

$$
-K_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\sum_{i=1}^{8} \mathcal{E}_{i}=D_{0}+D_{1}+D_{2}+D_{3}=\alpha_{0}+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}
$$

The Extended Affine Weyl Symmetry Group $\widetilde{W}\left(D_{5}^{(1)}\right)$

First we need to to describe the realization of $\widetilde{W}\left(D_{5}^{(1)}\right)$ in terms of elementary bilinear maps.

The Extended Affine Weyl Symmetry Group $\widetilde{W}\left(D_{5}^{(1)}\right)$

First we need to to describe the realization of $\widetilde{W}\left(D_{5}^{(1)}\right)$ in terms of elementary bilinear maps.

$$
\widetilde{W}\left(D_{5}^{(1)}\right)=\operatorname{Aut}\left(D_{5}^{(1)}\right) \ltimes W\left(D_{5}^{(1)}\right)
$$

The full extended Weyl symmetry group $\widetilde{W}\left(D_{5}^{(1)}\right)$ is a semi-direct product of

The Extended Affine Weyl Symmetry Group $\widetilde{W}\left(D_{5}^{(1)}\right)$

First we need to to describe the realization of $\widetilde{W}\left(D_{5}^{(1)}\right)$ in terms of elementary bilinear maps.

$$
\widetilde{W}\left(D_{5}^{(1)}\right)=\operatorname{Aut}\left(D_{5}^{(1)}\right) \ltimes W\left(D_{5}^{(1)}\right)
$$

The full extended Weyl symmetry group $\widetilde{W}\left(D_{5}^{(1)}\right)$ is a semi-direct product of

- The affine Weyl symmetry group represented by reflections $w_{i}=w_{\alpha_{i}}$

$$
w_{i}(\mathcal{C})=w_{\alpha_{i}}(\mathcal{C})=\mathcal{C}-2 \frac{\mathcal{C} \bullet \alpha_{i}}{\alpha_{i} \bullet \alpha_{i}} \alpha_{i}=\mathcal{C}+\left(\mathcal{C} \bullet \alpha_{i}\right) \alpha_{i}, \quad \mathcal{C} \in \operatorname{Pic}(\mathcal{X})
$$

in roots α_{i} on $\operatorname{Pic}(\mathcal{X})$, its group structure is given by

The Extended Affine Weyl Symmetry Group $\widetilde{W}\left(D_{5}^{(1)}\right)$

First we need to to describe the realization of $\widetilde{W}\left(D_{5}^{(1)}\right)$ in terms of elementary bilinear maps.

$$
\widetilde{W}\left(D_{5}^{(1)}\right)=\operatorname{Aut}\left(D_{5}^{(1)}\right) \ltimes W\left(D_{5}^{(1)}\right)
$$

The full extended Weyl symmetry group $\widetilde{W}\left(D_{5}^{(1)}\right)$ is a semi-direct product of

- The affine Weyl symmetry group represented by reflections $w_{i}=w_{\alpha_{i}}$

$$
w_{i}(\mathcal{C})=w_{\alpha_{i}}(\mathcal{C})=\mathcal{C}-2 \frac{\mathcal{C} \bullet \alpha_{i}}{\alpha_{i} \bullet \alpha_{i}} \alpha_{i}=\mathcal{C}+\left(\mathcal{C} \bullet \alpha_{i}\right) \alpha_{i}, \quad \mathcal{C} \in \operatorname{Pic}(\mathcal{X})
$$

in roots α_{i} on $\operatorname{Pic}(\mathcal{X})$, its group structure is given by

$$
W\left(D_{5}^{(1)}\right)=\left\langle w_{0}, \ldots, w_{6} \left\lvert\, \begin{array}{ccc}
w_{i}^{2} & =e & \\
w_{i} \circ w_{j}=w_{j} \circ w_{i} & \text { when } & \circ \circ \\
\alpha_{i} & \circ \\
\alpha_{j} \\
w_{i} \circ w_{j} \circ w_{i} & =w_{j} \circ w_{i} \circ w_{j} & \text { when } \\
\stackrel{\circ}{\alpha_{i}} & \alpha_{j}
\end{array}\right.\right\rangle \alpha_{1} \alpha_{0} \alpha_{2}
$$

- The finite group of Dynkin diagram automorphisms

$$
\text { Aut }\left(D_{5}^{(1)}\right) \simeq \operatorname{Aut}\left(A_{3}^{(1)}\right) \simeq \mathbb{D}_{4}=\text { The Dihedral Group, }
$$

The Affine Weyl Group $W\left(E_{6}^{(1)}\right)$

Theorem

Reflections w_{i} on $\operatorname{Pic}(\mathcal{X})$ are induced by the following elementary birational mappings, also denoted by w_{i}, on the family $\mathcal{X}_{\mathbf{b}}$. To ensure the group structure, we require that each map fixes b_{4} and $\chi(\delta)$.

$$
\begin{aligned}
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{0}}{\longmapsto}\left(\begin{array}{llll}
\frac{b_{13}}{b_{4}} & \frac{b_{23}}{b_{4}} & b_{3} & \frac{b_{33}}{b_{4}} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, \frac{b_{3}}{b_{4}} g\right), \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) \stackrel{w_{1}}{\longmapsto}\left(\begin{array}{llll}
b_{2} & b_{1} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right), \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{33}}{b_{1}} & \frac{b_{23}}{b_{1}} & b_{3} & \frac{b_{34}}{b_{1}} \\
\frac{b_{35}}{b_{1}} & \frac{b_{b 6}}{b_{1}} & b_{7} & b_{8}
\end{array} ; f \frac{\left(g-b_{3}\right)}{\left(g-b_{1}\right)}, \frac{b_{3}}{b_{1}} g\right), \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{17}}{b_{5}} & \frac{b_{27}}{b_{5}} & b_{3} & b_{4} \\
\frac{b_{77}}{b_{5}} & \frac{b_{67}}{b_{5}} & b_{7} & \frac{b_{78}}{b_{5}} ; \frac{b_{7}}{b_{5}} f, g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)}
\end{array}\right) \text {. } \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{4}}{\longmapsto}\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{6} & b_{5} & b_{7} & b_{8}
\end{array} ; f, g\right) \text {, } \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{5}}{\longmapsto}\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} \\
\frac{b_{57}}{b_{8}} & \frac{b_{67}}{b_{8}} & b_{7} & \frac{b_{77}}{b_{8}} ; \frac{b_{7}}{b_{8}} f, g
\end{array}\right),
\end{aligned}
$$

Sketch of the Proof

Consider now coordinate description of the elementary birational maps. We have the general formula $w_{i}(\mathcal{C})=\mathcal{C}+\left(\alpha_{i} \bullet \mathcal{C}\right) \alpha_{i}$. We get:

Sketch of the Proof

Consider now coordinate description of the elementary birational maps. We have the general formula $w_{i}(\mathcal{C})=\mathcal{C}+\left(\alpha_{i} \bullet \mathcal{C}\right) \alpha_{i}$. We get:

- Since $\alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, w_{0}\left(\mathcal{E}_{3}\right)=\mathcal{E}_{4}, w_{i}\left(\mathcal{E}_{4}\right)=\mathcal{E}_{3}$, and other basis elements of $\operatorname{Pic}(\mathcal{X})$ are fixed,

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8} ; g
\end{array}\right) \longmapsto\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{4} & b_{3} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ;, g\right) \sim\left(\begin{array}{cccc}
\frac{b_{13}}{b_{4}} & \frac{b_{23}}{b_{4}} & b_{3} & \frac{b_{33}}{b_{4}} ; f, \frac{b_{3}}{b_{5}} \\
b_{6} & b_{7} & b_{8}
\end{array}\right),
$$

where we had to adjust the free scaling parameter to ensure b_{3} is fixed. Maps w_{1}, w_{4}, and w_{5} are similar.

Sketch of the Proof

Consider now coordinate description of the elementary birational maps. We have the general formula $w_{i}(\mathcal{C})=\mathcal{C}+\left(\alpha_{i} \bullet \mathcal{C}\right) \alpha_{i}$. We get:

- Since $\alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, w_{0}\left(\mathcal{E}_{3}\right)=\mathcal{E}_{4}, w_{i}\left(\mathcal{E}_{4}\right)=\mathcal{E}_{3}$, and other basis elements of $\operatorname{Pic}(\mathcal{X})$ are fixed, $\left(\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4} \\ b_{5} & b_{6} & b_{7} & b_{8} ; f, g\end{array}\right) \longmapsto\left(\begin{array}{llll}b_{1} & b_{2} & b_{4} & b_{3} \\ b_{5} & b_{6} & b_{7} & b_{8}\end{array} f, g\right) \sim\left(\begin{array}{llll}\frac{b_{13}}{b_{4}} & \frac{b_{23}}{b_{4}} & b_{3} & \frac{b_{33}}{b_{4}} ; f, \frac{b_{3}}{b_{5}} \\ b_{6} & b_{7} & b_{8}\end{array}\right)$,
where we had to adjust the free scaling parameter to ensure b_{3} is fixed. Maps w_{1}, w_{4}, and w_{5} are similar.
- The case $\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$ is more interesting. We get $w_{2}\left(\mathcal{E}_{1}\right)=\mathcal{H}_{g}-\mathcal{E}_{3}$, $w_{2}\left(\mathcal{E}_{3}\right)=\mathcal{H}_{g}-\mathcal{E}_{1}$, and $w_{2}\left(\mathcal{H}_{f}\right)=\mathcal{H}_{\bar{f}}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$.

Sketch of the Proof

Consider now coordinate description of the elementary birational maps. We have the general formula $w_{i}(\mathcal{C})=\mathcal{C}+\left(\alpha_{i} \bullet \mathcal{C}\right) \alpha_{i}$. We get:

- Since $\alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, w_{0}\left(\mathcal{E}_{3}\right)=\mathcal{E}_{4}, w_{i}\left(\mathcal{E}_{4}\right)=\mathcal{E}_{3}$, and other basis elements of $\operatorname{Pic}(\mathcal{X})$ are fixed,

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8} ; g
\end{array}\right) \longmapsto\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{4} & b_{3} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ;, g\right) \sim\left(\begin{array}{cccc}
\frac{b_{13}}{b_{4}} & \frac{b_{23}}{b_{4}} & b_{3} & \frac{b_{33}}{b_{4}} ; f, \frac{b_{3}}{b_{5}} \\
b_{6} & b_{7} & b_{8}
\end{array}\right),
$$

where we had to adjust the free scaling parameter to ensure b_{3} is fixed. Maps w_{1}, w_{4}, and w_{5} are similar.

- The case $\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$ is more interesting. We get $w_{2}\left(\mathcal{E}_{1}\right)=\mathcal{H}_{g}-\mathcal{E}_{3}$, $w_{2}\left(\mathcal{E}_{3}\right)=\mathcal{H}_{g}-\mathcal{E}_{1}$, and $w_{2}\left(\mathcal{H}_{f}\right)=\mathcal{H}_{\bar{f}}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$.
The last equation means that \bar{f} is a coordinate on the following pencil of $(1,1)$-curves passing through the points $p_{1}\left(0, b_{1}\right)$ and $p_{3}\left(\infty, b_{3}\right)$:

$$
\begin{aligned}
\left|\mathcal{H}_{\bar{f}}\right| & =\left|\mathcal{H}_{\bar{f}}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}\right| \\
& =\left\{A f g+B f+C g+D=0 \mid C b_{1}+D=0, A b_{3}+B=0\right\} \\
& =\left\{A f\left(g-b_{3}\right)+C\left(g-b_{1}\right)=0\right\} .
\end{aligned}
$$

Sketch of the Proof

Consider now coordinate description of the elementary birational maps. We have the general formula $w_{i}(\mathcal{C})=\mathcal{C}+\left(\alpha_{i} \bullet \mathcal{C}\right) \alpha_{i}$. We get:

- Since $\alpha_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, w_{0}\left(\mathcal{E}_{3}\right)=\mathcal{E}_{4}, w_{i}\left(\mathcal{E}_{4}\right)=\mathcal{E}_{3}$, and other basis elements of $\operatorname{Pic}(\mathcal{X})$ are fixed, $\left(\begin{array}{cccc}b_{1} & b_{2} & b_{3} & b_{4} \\ b_{5} & b_{6} & b_{7} & \left.b_{8} ; f, g\right) \longmapsto\left(\begin{array}{cccc}b_{1} & b_{2} & b_{4} & b_{3} \\ b_{5} & b_{6} & b_{7} & b_{8}\end{array} ; f, g\right) \sim\left(\begin{array}{cccc}\frac{b_{13}}{b_{4}} & \frac{b_{23}}{b_{4}} & b_{3} & \frac{b_{33}}{b_{4}} ; f, \frac{b_{3}}{b_{5}} \\ b_{6} & b_{7} & b_{8}\end{array}\right), ~\left(\begin{array}{llll}b_{4}\end{array}\right), ~\end{array}\right.$
where we had to adjust the free scaling parameter to ensure b_{3} is fixed. Maps w_{1}, w_{4}, and w_{5} are similar.
- The case $\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$ is more interesting. We get $w_{2}\left(\mathcal{E}_{1}\right)=\mathcal{H}_{g}-\mathcal{E}_{3}$, $w_{2}\left(\mathcal{E}_{3}\right)=\mathcal{H}_{g}-\mathcal{E}_{1}$, and $w_{2}\left(\mathcal{H}_{f}\right)=\mathcal{H}_{\bar{f}}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}$.
The last equation means that \bar{f} is a coordinate on the following pencil of $(1,1)$-curves passing through the points $p_{1}\left(0, b_{1}\right)$ and $p_{3}\left(\infty, b_{3}\right)$:

$$
\begin{aligned}
\left|\mathcal{H}_{\bar{f}}\right| & =\left|\mathcal{H}_{\bar{f}}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3}\right| \\
& =\left\{A f g+B f+C g+D=0 \mid C b_{1}+D=0, A b_{3}+B=0\right\} \\
& =\left\{A f\left(g-b_{3}\right)+C\left(g-b_{1}\right)=0\right\} .
\end{aligned}
$$

Hence, a projective coordinate on this pencil is $\bar{f}=[-C: A]=\left[f\left(g-b_{3}\right):\left(g-b_{1}\right)\right]$. Recall that the coordinates of our blowup points (parametrization!) points are $p_{1}\left(0, b_{1}\right)$, $p_{2}\left(0, b_{2}\right), p_{3}\left(\infty, b_{3}\right), p_{4}\left(\infty, b_{4}\right), p_{5}\left(b_{5}, 0\right), p_{6}\left(b_{6}, 0\right), p_{7}\left(b_{7}, \infty\right), p_{8}\left(b_{8}, \infty\right)$. Since $w_{2}\left(\mathcal{E}_{2}\right)=\overline{\mathcal{E}}_{2}$, we want $\bar{f}\left(0, b_{2}\right)=0$. Thus, $\bar{f}=f\left(g-b_{3}\right) /\left(g-b_{1}\right)$.

Sketch of the Proof

- So we get $\bar{f}=f\left(g-b_{3}\right) /\left(g-b_{1}\right), \bar{g}=g$. Since $\overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{3}$, which is given by $g=b_{3}$, we get $(\bar{f}, \bar{g})\left(\bar{p}_{1}\right)=\left(0, \bar{b}_{1}\right)=\left(0, b_{3}\right)$. As another example, since $w_{2}\left(\mathcal{E}_{5}\right)=\mathcal{E}_{5}$, $(\bar{f}, \bar{g})\left(\bar{p}_{5}\right)=\left(\bar{f}\left(b_{5}, 0\right), \bar{g}\left(b_{5}, 0\right)\right)=\left(b_{5} b_{3} / b_{1}, 0\right)$, and so on. We finally get:

$$
\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{2} & b_{1} & b_{4} \\
\frac{b_{3} b_{5}}{b_{1}} & \frac{b_{3} b_{6}}{b_{1}} & b_{7} & b_{8} ; f \frac{\left(g-b_{3}\right)}{\left(g-b_{1}\right)}, g
\end{array}\right) .
$$

The remaining cases are similar.

Sketch of the Proof

- So we get $\bar{f}=f\left(g-b_{3}\right) /\left(g-b_{1}\right), \bar{g}=g$. Since $\overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{3}$, which is given by $g=b_{3}$, we get $(\bar{f}, \bar{g})\left(\bar{p}_{1}\right)=\left(0, \bar{b}_{1}\right)=\left(0, b_{3}\right)$. As another example, since $w_{2}\left(\mathcal{E}_{5}\right)=\mathcal{E}_{5}$, $(\bar{f}, \bar{g})\left(\bar{p}_{5}\right)=\left(\bar{f}\left(b_{5}, 0\right), \bar{g}\left(b_{5}, 0\right)\right)=\left(b_{5} b_{3} / b_{1}, 0\right)$, and so on. We finally get:

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{2} & b_{1} & b_{4} \\
\frac{b_{3} b_{5}}{b_{1}} & \frac{b_{3} b_{6}}{b_{1}} & b_{7} & b_{8} ; f \frac{\left(g-b_{3}\right)}{\left(g-b_{1}\right)}, g
\end{array}\right) .
$$

The remaining cases are similar.

- In the similar way, we can compute the birational mappings corresponding to the permutations σ_{j} :

Sketch of the Proof

- So we get $\bar{f}=f\left(g-b_{3}\right) /\left(g-b_{1}\right), \bar{g}=g$. Since $\overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{3}$, which is given by $g=b_{3}$, we get $(\bar{f}, \bar{g})\left(\bar{p}_{1}\right)=\left(0, \bar{b}_{1}\right)=\left(0, b_{3}\right)$. As another example, since $w_{2}\left(\mathcal{E}_{5}\right)=\mathcal{E}_{5}$, $(\bar{f}, \bar{g})\left(\bar{p}_{5}\right)=\left(\bar{f}\left(b_{5}, 0\right), \bar{g}\left(b_{5}, 0\right)\right)=\left(b_{5} b_{3} / b_{1}, 0\right)$, and so on. We finally get:

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{2} & b_{1} & b_{4} \\
\frac{b_{3} b_{5}}{b_{1}} & \frac{b_{3} b_{6}}{b_{1}} & b_{7} & b_{8} ; f \frac{\left(g-b_{3}\right)}{\left(g-b_{1}\right)}, g
\end{array}\right)
$$

The remaining cases are similar.

- In the similar way, we can compute the birational mappings corresponding to the permutations σ_{j} :

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \stackrel{\sigma_{1}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{3} b_{4}}{b_{1}} & \frac{b_{3} b_{4}}{b_{2}} & b_{4} & b_{3} \\
b_{7} & b_{8} & b_{5} & b_{6}
\end{array} ; f, \frac{b_{3} b_{4}}{g}\right),
$$

Sketch of the Proof

- So we get $\bar{f}=f\left(g-b_{3}\right) /\left(g-b_{1}\right), \bar{g}=g$. Since $\overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{3}$, which is given by $g=b_{3}$, we get $(\bar{f}, \bar{g})\left(\bar{p}_{1}\right)=\left(0, \bar{b}_{1}\right)=\left(0, b_{3}\right)$. As another example, since $w_{2}\left(\mathcal{E}_{5}\right)=\mathcal{E}_{5}$, $(\bar{f}, \bar{g})\left(\bar{p}_{5}\right)=\left(\bar{f}\left(b_{5}, 0\right), \bar{g}\left(b_{5}, 0\right)\right)=\left(b_{5} b_{3} / b_{1}, 0\right)$, and so on. We finally get:

$$
\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{2} & b_{1} & b_{4} \\
\frac{b_{3} b_{5}}{b_{1}} & \frac{b_{3} b_{6}}{b_{1}} & b_{7} & b_{8} ; f \frac{\left(g-b_{3}\right)}{\left(g-b_{1}\right)}, g
\end{array}\right)
$$

The remaining cases are similar.

- In the similar way, we can compute the birational mappings corresponding to the permutations σ_{j} :

$$
\begin{aligned}
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \stackrel{\sigma_{1}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{3} b_{4}}{b_{1}} & \frac{b_{3} b_{4}}{b_{2}} & b_{4} & b_{3} ; f, \frac{b_{3} b_{4}}{g} \\
b_{7} & b_{8} & b_{5} & b_{6}
\end{array}\right), \\
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right) \stackrel{\sigma_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{4} & b_{1} & b_{2} ; b_{7} b_{8} \\
\frac{b_{7} b_{8}}{b_{5}} & \frac{b_{7} b_{8}}{b_{6}} & b_{8} & b_{7}
\end{array}\right) .
\end{aligned}
$$

The Dynamic

We can compute the action of $\psi_{*}: \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{H}}_{f}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4} \\
& \overline{\mathcal{H}}_{g}=2 \mathcal{H}_{f}+5 \mathcal{H}_{g}-2 \mathcal{E}_{1}-2 \mathcal{E}_{2}-2 \mathcal{E}_{3}-2 \mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{2}, \quad \overline{\mathcal{E}}_{5}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{6} \\
& \overline{\mathcal{E}}_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}, \quad \overline{\mathcal{E}}_{6}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5} \\
& \overline{\mathcal{E}}_{3}=\mathcal{H}_{g}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{7}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{4}=\mathcal{H}_{g}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{8}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7} .
\end{aligned}
$$

The Dynamic

We can compute the action of $\psi_{*}: \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{H}}_{f}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4} \\
& \overline{\mathcal{H}}_{g}=2 \mathcal{H}_{f}+5 \mathcal{H}_{g}-2 \mathcal{E}_{1}-2 \mathcal{E}_{2}-2 \mathcal{E}_{3}-2 \mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{2}, \quad \quad \overline{\mathcal{E}}_{5}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{6} \\
& \overline{\mathcal{E}}_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}, \quad \overline{\mathcal{E}}_{6}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5} \\
& \overline{\mathcal{E}}_{3}=\mathcal{H}_{g}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{7}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{4}=\mathcal{H}_{g}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{8}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7} .
\end{aligned}
$$

Induced actions on the lattices $\Pi(R)$ and $\Pi(R \perp)$ are

- $\psi_{*}=\left(\mathcal{D}_{0} \mathcal{D}_{2}\right)\left(\mathcal{D}_{1} \mathcal{D}_{3}\right)=\sigma_{0} \sigma_{1}$ on the surface lattice;

The Dynamic

We can compute the action of $\psi_{*}: \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{H}}_{f}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}, \\
& \overline{\mathcal{H}}_{g}=2 \mathcal{H}_{f}+5 \mathcal{H}_{g}-2 \mathcal{E}_{1}-2 \mathcal{E}_{2}-2 \mathcal{E}_{3}-2 \mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{2}, \quad \overline{\mathcal{E}}_{5}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{6} \\
& \overline{\mathcal{E}}_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}, \quad \overline{\mathcal{E}}_{6}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5} \\
& \overline{\mathcal{E}}_{3}=\mathcal{H}_{g}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{7}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{8}, \\
& \overline{\mathcal{E}}_{4}=\mathcal{H}_{g}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{8}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7} .
\end{aligned}
$$

Induced actions on the lattices $\Pi(R)$ and $\Pi(R \perp)$ are

- $\psi_{*}=\left(\mathcal{D}_{0} \mathcal{D}_{2}\right)\left(\mathcal{D}_{1} \mathcal{D}_{3}\right)=\sigma_{0} \sigma_{1}$ on the surface lattice;
- $\psi_{*}: \alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \mapsto \alpha+\langle 0,0,1,-1,0,0\rangle\left(-K_{\mathcal{X}}\right)$, i.e.,

$$
\begin{gathered}
\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3} \mapsto 2 \mathcal{H}_{f}+3 \mathcal{H}_{g}-2 \mathcal{E}_{1}-\mathcal{E}_{2}-2 \mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
=\alpha_{2}+\left(-K_{\mathcal{X}}\right)=\alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}
\end{gathered}
$$

The Dynamic

We can compute the action of $\psi_{*}: \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{H}}_{f}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4} \\
& \overline{\mathcal{H}}_{g}=2 \mathcal{H}_{f}+5 \mathcal{H}_{g}-2 \mathcal{E}_{1}-2 \mathcal{E}_{2}-2 \mathcal{E}_{3}-2 \mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{2}, \quad \quad \overline{\mathcal{E}}_{5}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{6} \\
& \overline{\mathcal{E}}_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}, \quad \overline{\mathcal{E}}_{6}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5} \\
& \overline{\mathcal{E}}_{3}=\mathcal{H}_{g}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{7}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{8} \\
& \overline{\mathcal{E}}_{4}=\mathcal{H}_{g}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{8}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7} .
\end{aligned}
$$

Induced actions on the lattices $\Pi(R)$ and $\Pi(R \perp)$ are

- $\psi_{*}=\left(\mathcal{D}_{0} \mathcal{D}_{2}\right)\left(\mathcal{D}_{1} \mathcal{D}_{3}\right)=\sigma_{0} \sigma_{1}$ on the surface lattice;
- $\psi_{*}: \alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \mapsto \alpha+\langle 0,0,1,-1,0,0\rangle\left(-K_{\mathcal{X}}\right)$, i.e.,

$$
\begin{gathered}
\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3} \mapsto 2 \mathcal{H}_{f}+3 \mathcal{H}_{g}-2 \mathcal{E}_{1}-\mathcal{E}_{2}-2 \mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
=\alpha_{2}+\left(-K_{\mathcal{X}}\right)=\alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}
\end{gathered}
$$

Definition: A discrete Painlevé equation is a discrete dynamical system on the family \mathcal{X}_{b} induced by a translation in the $\Pi\left(R^{\perp}\right)$ affine symmetry sub-lattice of the corresponding surface.

The Dynamic

We can compute the action of $\psi_{*}: \operatorname{Pic}\left(\mathcal{X}_{\mathbf{b}}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{\overline{\mathbf{b}}}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{H}}_{f}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}, \\
& \overline{\mathcal{H}}_{g}=2 \mathcal{H}_{f}+5 \mathcal{H}_{g}-2 \mathcal{E}_{1}-2 \mathcal{E}_{2}-2 \mathcal{E}_{3}-2 \mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}, \\
& \overline{\mathcal{E}}_{1}=\mathcal{H}_{g}-\mathcal{E}_{2}, \quad \overline{\mathcal{E}}_{5}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{6}, \\
& \overline{\mathcal{E}}_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}, \quad \overline{\mathcal{E}}_{6}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}, \\
& \overline{\mathcal{E}}_{3}=\mathcal{H}_{g}-\mathcal{E}_{4}, \quad \overline{\mathcal{E}}_{7}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{8}, \\
& \overline{\mathcal{E}}_{4}=\mathcal{H}_{g}-\mathcal{E}_{3}, \quad \overline{\mathcal{E}}_{8}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{7} .
\end{aligned}
$$

Induced actions on the lattices $\Pi(R)$ and $\Pi(R \perp)$ are

- $\psi_{*}=\left(\mathcal{D}_{0} \mathcal{D}_{2}\right)\left(\mathcal{D}_{1} \mathcal{D}_{3}\right)=\sigma_{0} \sigma_{1}$ on the surface lattice;
- $\psi_{*}: \alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \mapsto \alpha+\langle 0,0,1,-1,0,0\rangle\left(-K_{\mathcal{X}}\right)$, i.e.,

$$
\begin{gathered}
\alpha_{2}=\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{3} \mapsto 2 \mathcal{H}_{f}+3 \mathcal{H}_{g}-2 \mathcal{E}_{1}-\mathcal{E}_{2}-2 \mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
=\alpha_{2}+\left(-K_{\mathcal{X}}\right)=\alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}
\end{gathered}
$$

Definition: A discrete Painlevé equation is a discrete dynamical system on the family \mathcal{X}_{b} induced by a translation in the $\Pi\left(R^{\perp}\right)$ affine symmetry sub-lattice of the corresponding surface.
Questions: How, given a translation direction, obtain the corresponding discrete Painlevé equation? How to identify whether the two directions give the equivalent equations? Which equations are the simplest?

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

- Step 1: Represent the translation as a composition of the generators w_{i} and σ_{j} from the extended affine Weyl group $\widetilde{W}\left(D_{5}^{(1)}\right)$;

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

- Step 1: Represent the translation as a composition of the generators w_{i} and σ_{j} from the extended affine Weyl group $\widetilde{W}\left(D_{5}^{(1)}\right)$;
- Step 2: Find the coordinate description for each elementary birational transformation of the Okamoto surface \mathcal{X} corresponding to the generators of our affine Weyl group;

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

- Step 1: Represent the translation as a composition of the generators w_{i} and σ_{j} from the extended affine Weyl group $\widetilde{W}\left(D_{5}^{(1)}\right)$;
- Step 2: Find the coordinate description for each elementary birational transformation of the Okamoto surface \mathcal{X} corresponding to the generators of our affine Weyl group;
- Step 3: Find the coordinate description of the composition obtained in Step 1.

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

- Step 1: Represent the translation as a composition of the generators w_{i} and σ_{j} from the extended affine Weyl group $\widetilde{W}\left(D_{5}^{(1)}\right)$;
- Step 2: Find the coordinate description for each elementary birational transformation of the Okamoto surface \mathcal{X} corresponding to the generators of our affine Weyl group;
- Step 3: Find the coordinate description of the composition obtained in Step 1.

For Step 1, we use the following Lemma:

The Reverse Process: from Translations to Equations

Suppose we are now given the generalized Halphen surface of type $A_{3}^{(1)}$. It can be parameterized as above and we can define the corresponding roots α_{i} and D_{i}. How, given the translation
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$, write down the corresponding discrete Painlevé equation?

- Step 1: Represent the translation as a composition of the generators w_{i} and σ_{j} from the extended affine Weyl group $\widetilde{W}\left(D_{5}^{(1)}\right)$;
- Step 2: Find the coordinate description for each elementary birational transformation of the Okamoto surface \mathcal{X} corresponding to the generators of our affine Weyl group;
- Step 3: Find the coordinate description of the composition obtained in Step 1.

For Step 1, we use the following Lemma:

Reduction Lemma (V. Kac, Infinite dimensional Lie algebras, Lemma 3.11)

If $w\left(\alpha_{i}\right)<0$, then

$$
I\left(w \circ w_{i}\right)<I(w)
$$

where $I(w)$ is length of $w \in W$, and α_{i} is a simple root.

Decomposing Translations into Elementary Reflections and Automorphisms

So we get

Decomposing Translations into Elementary Reflections and Automorphisms

So we get
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$

Decomposing Translations into Elementary Reflections and Automorphisms

So we get
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right.$,

$$
\left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \begin{aligned}
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5},\right. \\
&\left.\quad-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ \mathrm{w}_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle
\end{aligned}
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \begin{array}{r}
\text { q- } P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
\text { q- } P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5},\right. \\
\\
\left.\quad-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
\text { q- } P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},\right. \\
\\
\left.\quad \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle
\end{array} \\
& \begin{array}{c}
\mathrm{q}-P_{\mathrm{VII}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle
\end{array}
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{V} 1} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0}: \alpha \mapsto\left\langle\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{2},-\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0}: \alpha \mapsto\left\langle\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{2},-\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{V} I} \circ \mathrm{w}_{3} \circ \mathrm{w}_{4} \circ \mathrm{w}_{5} \circ \mathrm{w}_{3} \circ \sigma_{1} \circ \mathrm{w}_{2} \circ \mathrm{w}_{1} \circ \mathrm{w}_{0} \circ \mathrm{w}_{2}: \alpha \mapsto\left\langle\alpha_{1}, \alpha_{0}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

$$
\begin{aligned}
& \text { So we get } \\
& \mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right. \text {, } \\
& \left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right. \text {, } \\
& \left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0}: \alpha \mapsto\left\langle\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{2},-\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{V} 1} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0} \circ w_{2}: \alpha \mapsto\left\langle\alpha_{1}, \alpha_{0}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle \\
& \mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0} \circ w_{2} \circ \sigma_{2}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle
\end{aligned}
$$

Decomposing Translations into Elementary Reflections and Automorphisms

So we get
$\mathrm{q}-P_{\mathrm{VI}}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{0}+\alpha_{1}+3 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}, \alpha_{4}, \alpha_{5}\right\rangle$
$\mathrm{q}-P_{\mathrm{VI}} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right.$,

$$
\left.-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle
$$

$\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}-\alpha_{4}\right\rangle$ $\mathrm{q}-P_{\mathrm{V} 1} \circ w_{3} \circ w_{4} \circ w_{5}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}+\alpha_{3},-\alpha_{0}-\alpha_{1}-2 \alpha_{2}-\alpha_{3}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{5}\right.$,

$$
\left.\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\rangle
$$

$\mathrm{q}-P_{\mathrm{V} 1} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{5}, \alpha_{4}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1},-\alpha_{0}-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2},-\alpha_{0}-\alpha_{2}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1}: \alpha \mapsto\left\langle-\alpha_{1}-\alpha_{2}, \alpha_{0}+\alpha_{2}, \alpha_{1}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0}: \alpha \mapsto\left\langle\alpha_{1}+\alpha_{2}, \alpha_{0}+\alpha_{2},-\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$ $q-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0} \circ w_{2}: \alpha \mapsto\left\langle\alpha_{1}, \alpha_{0}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$ $\mathrm{q}-P_{\mathrm{VI}} \circ w_{3} \circ w_{4} \circ w_{5} \circ w_{3} \circ \sigma_{1} \circ w_{2} \circ w_{1} \circ w_{0} \circ w_{2} \circ \sigma_{2}: \alpha \mapsto\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\rangle$

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{V} I}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{b_{7}} \\
b_{6} & b_{5} & b_{8}
\end{array}\right)
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} ; f, g \\
b_{5} & b_{6} & b_{7} & b_{8} ; f
\end{array}\right) \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{7} & b_{6} & b_{5} & b_{8}
\end{array}\right)
$$

$$
\stackrel{w_{4}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{5} & b_{8}
\end{array}\right)
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\begin{aligned}
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) & \stackrel{w_{3}}{\longleftrightarrow}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{7} & b_{6} & b_{5} & b_{8}
\end{array}\right) \\
& \stackrel{w_{4}}{\longleftrightarrow}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{5} & b_{8}
\end{array}\right) \\
& \stackrel{w_{5}}{\longleftrightarrow}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{8} & b_{5}
\end{array}\right)
\end{aligned}
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\begin{aligned}
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) & \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{7} & b_{6} & b_{5} & b_{8}
\end{array}\right) \\
& \stackrel{w_{4}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{5} & b_{8}
\end{array}\right. \\
& \stackrel{w_{5}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{8} & b_{5}
\end{array}\right) \\
& \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{3} b_{4}}{q b_{2}} & \frac{b_{3} b_{4}}{q b_{1}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{b_{8}} \\
b_{7} & b_{6} & b_{5} & \frac{\left(f-b_{8}\right)}{\left(f-b_{5}\right)} \frac{\left(f-b_{6}\right)}{(f)}
\end{array}\right)
\end{aligned}
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} ; f, g
\end{array}\right) \stackrel{w_{3}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} \\
b_{7} & b_{6} & b_{5} & b_{8}
\end{array} ; f \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)}\right) \\
& \stackrel{w_{4}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)} \\
b_{6} & b_{7} & b_{5} & b_{8}
\end{array}\right) \\
& \stackrel{w_{5}}{\longmapsto}\left(\begin{array}{cccc}
\frac{b_{1} b_{7}}{b_{5}} & \frac{b_{2} b_{7}}{b_{5}} & b_{3} & b_{4} \\
b_{6} & b_{7} & b_{8} & b_{5}
\end{array} ; f ; g \frac{\left(f-b_{7}\right)}{\left(f-b_{5}\right)}\right) \\
& \xrightarrow{\stackrel{w_{3}}{\longrightarrow}}\left(\begin{array}{cccc}
\frac{b_{3} b_{4}}{q b_{2}} & \frac{b_{3} b_{4}}{q b_{1}} & b_{3} & b_{4} ; f ; g \frac{\left(f-b_{7}\right)}{b_{8}} \\
b_{7} & b_{6} & b_{5}
\end{array} ; f\left(f-b_{8}\right),\left(\frac{\left(f-b_{5}\right)}{\left(f-b_{6}\right)}\right)\right. \\
& \stackrel{\sigma_{1}}{\longmapsto}\left(\begin{array}{cccc}
q b_{2} & q b_{1} & b_{4} & b_{3} \\
b_{6} & b_{5} & b_{8} & b_{7}
\end{array} ; f ; \bar{g}=\frac{b_{3} b_{4}}{g} \frac{\left(f-b_{5}\right)}{\left(f-b_{7}\right)} \frac{\left(f-b_{6}\right)}{\left(f-b_{8}\right)}\right)
\end{aligned}
$$

$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{V} I}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\begin{gathered}
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right) \\
\cdots \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}
\end{array}\right)
\end{gathered}
$$

$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\begin{aligned}
& \mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right) \\
& \cdots \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & \left.b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{w_{0}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\begin{aligned}
& \mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right) \\
& \cdots \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{w_{0}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{w_{1}}{\longmapsto}\left(\begin{array}{cccc}
q b_{1} & b_{4} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right)
\end{aligned}
$$

$\mathrm{q}-P_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\begin{aligned}
& \mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right) \\
& \cdots \\
& \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}
\end{array}\right) \\
& \stackrel{w_{0}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}
\end{array}\right) \\
& \stackrel{w_{1}}{\longmapsto}\left(\begin{array}{cccc}
q b_{1} & b_{4} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}
\end{array}\right) \\
& \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{3} & b_{4} & q b_{1} & q b_{2} \\
\frac{b_{7} b_{8}}{q b_{5}} & \frac{b_{7} b_{8}}{q b_{6}} & b_{8} & \left.b_{7} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} \frac{\left(\bar{g}-b_{3}\right)}{\left(\bar{g}-q b_{1}\right)} ; \bar{g}\right)
\end{array}\right)
\end{aligned}
$$

$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\begin{aligned}
& \mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right) \\
& \ldots \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{w_{0}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{w_{1}}{\longmapsto}\left(\begin{array}{cccc}
q b_{1} & b_{4} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \xrightarrow{\stackrel{\omega_{2}}{\longrightarrow}}\left(\begin{array}{cccc}
b_{3} & b_{4} & q b_{1} & q b_{2} \\
\frac{b_{7} b_{8}}{q b_{5}} & \frac{b_{7} b_{8}}{q b_{6}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} \frac{\left(\bar{g}-b_{3}\right)}{\left(\bar{g}-q b_{1}\right)} ; \bar{g}\right) \\
& \stackrel{\sigma_{2}}{\longmapsto}\left(\begin{array}{llll}
q b_{1} & q b_{2} & b_{3} & b_{4} \\
q b_{5} & q b_{6} & b_{7} & b_{8}
\end{array} \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{4}\right)} \frac{\left(\bar{g}-q b_{1}\right)}{\left(\bar{g}-b_{3}\right)} ; \bar{g}\right),
\end{aligned}
$$

$\mathrm{q}-\mathrm{P}_{\mathrm{VI}}$ from Elementary Birational Transformations (cont.)

Decomposition of $\mathrm{q}-P_{\mathrm{VI}}$:

$$
\mathrm{q}-P_{\mathrm{VI}}=\sigma_{2} \circ w_{2} \circ w_{0} \circ w_{1} \circ w_{2} \circ \sigma_{1} \circ w_{3} \circ w_{5} \circ w_{4} \circ w_{3}, \quad q=\left(b_{3} b_{4} b_{5} b_{6}\right) /\left(b_{1} b_{2} b_{7} b_{8}\right)
$$

$$
\begin{aligned}
& \cdots \stackrel{w_{2}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & q b_{2} & b_{3} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{\omega_{0}}{\longmapsto}\left(\begin{array}{cccc}
b_{4} & q b_{1} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \stackrel{\omega_{1}}{\longmapsto}\left(\begin{array}{cccc}
q b_{1} & b_{4} & b_{3} & q b_{2} \\
\frac{b_{4} b_{6}}{q b_{2}} & \frac{b_{4} b_{5}}{q b_{2}} & b_{8} & b_{7}
\end{array} ; f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} ; \bar{g}\right) \\
& \xrightarrow{\omega_{2}}\left(\begin{array}{cccc}
b_{3} & b_{4} & q b_{1} & q b_{2} \\
\frac{b_{7} b_{8}}{q b_{5}} & \frac{b_{7} b_{8}}{q b_{6}} & b_{8} & b_{7}
\end{array} f \frac{\left(\bar{g}-b_{4}\right)}{\left(\bar{g}-q b_{2}\right)} \frac{\left(\bar{g}-b_{3}\right)}{\left(\bar{g}-q b_{1}\right)} ; \bar{g}\right) \\
& \stackrel{\sigma_{2}}{\longmapsto}\left(\begin{array}{llll}
q b_{1} & q b_{2} & b_{3} & b_{4} \\
q b_{5} & q b_{6} & b_{7} & b_{8}
\end{array} \bar{f}=\frac{b_{7} b_{8}}{f} \frac{\left(\bar{g}-q b_{2}\right)}{\left(\bar{g}-b_{4}\right)} \frac{\left(\bar{g}-q b_{1}\right)}{\left(\bar{g}-b_{3}\right)} ; \bar{g}\right),
\end{aligned}
$$

as it should be!

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.
- Observation 2: Painlevé equations, both continuous and discrete, are very important for a wide range of applications. Here I want to emphasize that, in addition to developing a particular mathematical theory, it is often very important to make it available for applications, in an effective way.

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.
- Observation 2: Painlevé equations, both continuous and discrete, are very important for a wide range of applications. Here I want to emphasize that, in addition to developing a particular mathematical theory, it is often very important to make it available for applications, in an effective way.
- Actually, P. Painlevé original motivation was to construct new nonlinear special functions (similar to the construction of the usual special functions, such as Airy or Bessel, as general solutions of linear ODE), as general solutions of nonlinear ODE. Painlevé transcendent (general solutions of Painlevé differential equations) play an increasingly important role in a wide range of nonlinear problems and applications (e.g. the Tracy-Widom distribution).

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.
- Observation 2: Painlevé equations, both continuous and discrete, are very important for a wide range of applications. Here I want to emphasize that, in addition to developing a particular mathematical theory, it is often very important to make it available for applications, in an effective way.
- Actually, P. Painlevé original motivation was to construct new nonlinear special functions (similar to the construction of the usual special functions, such as Airy or Bessel, as general solutions of linear ODE), as general solutions of nonlinear ODE. Painlevé transcendent (general solutions of Painlevé differential equations) play an increasingly important role in a wide range of nonlinear problems and applications (e.g. the Tracy-Widom distribution).
- The theory of discrete Painlevé equations is much more recent, but it is already very clear that the same is true - these equations appear in many important applied problems.

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.
- Observation 2: Painlevé equations, both continuous and discrete, are very important for a wide range of applications. Here I want to emphasize that, in addition to developing a particular mathematical theory, it is often very important to make it available for applications, in an effective way.
- Actually, P. Painlevé original motivation was to construct new nonlinear special functions (similar to the construction of the usual special functions, such as Airy or Bessel, as general solutions of linear ODE), as general solutions of nonlinear ODE. Painlevé transcendent (general solutions of Painlevé differential equations) play an increasingly important role in a wide range of nonlinear problems and applications (e.g. the Tracy-Widom distribution).
- The theory of discrete Painlevé equations is much more recent, but it is already very clear that the same is true - these equations appear in many important applied problems.
- Issue: It can be very difficult to recognize a discrete Painlevé equation. Even when there are reasons to expect that some discrete recurrence will fall in the discrete Painlevé framework, it will most likely not be written in a standard "catalogue form". This is the issue of coordinates - the application coordinates that are natural to the applied problem can be very different from the good Painlevé coordinates. The necessary change of variables can be very difficult, if not impossible, to guess.

Example of Applications: Discrete Orthogonal Polynomials

- Observation 1: The theory of Painlevé equations is mathematically beautiful. It is related to the theory of special functions and orthogonal polynomials, ordinary and partial differential equations, algebraic geometry, group and representation theory, the theory of cluster algebras, and this list goes on.
- Observation 2: Painlevé equations, both continuous and discrete, are very important for a wide range of applications. Here I want to emphasize that, in addition to developing a particular mathematical theory, it is often very important to make it available for applications, in an effective way.
- Actually, P. Painlevé original motivation was to construct new nonlinear special functions (similar to the construction of the usual special functions, such as Airy or Bessel, as general solutions of linear ODE), as general solutions of nonlinear ODE. Painlevé transcendent (general solutions of Painlevé differential equations) play an increasingly important role in a wide range of nonlinear problems and applications (e.g. the Tracy-Widom distribution).
- The theory of discrete Painlevé equations is much more recent, but it is already very clear that the same is true - these equations appear in many important applied problems.
- Issue: It can be very difficult to recognize a discrete Painlevé equation. Even when there are reasons to expect that some discrete recurrence will fall in the discrete Painlevé framework, it will most likely not be written in a standard "catalogue form". This is the issue of coordinates - the application coordinates that are natural to the applied problem can be very different from the good Painlevé coordinates. The necessary change of variables can be very difficult, if not impossible, to guess.
- Here is one such example.

Discrete Orthogonal Polynomials with the Hypergeometric Weight

Consider the collection $\left\{p_{n}(x)=\gamma_{n} x^{n}+\cdots\right\}$ of polynomials that are orthonormal on the set $\mathbb{N}=\{0,1,2, \ldots\}$ with respect to the hypergeometric weight w_{k} :

$$
\sum_{k=0}^{\infty} p_{n}(k) p_{m}(k) w_{k}=\delta_{m, n}, \quad w_{k}=\frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} c^{k}, \quad \alpha, \beta, \gamma>0,0<c<1,
$$

where $(\cdot)_{k}$ is the usual Pochhammer symbol and $\delta_{m, n}$ is the Kronecker delta.

Discrete Orthogonal Polynomials with the Hypergeometric Weight

Consider the collection $\left\{p_{n}(x)=\gamma_{n} x^{n}+\cdots\right\}$ of polynomials that are orthonormal on the set $\mathbb{N}=\{0,1,2, \ldots\}$ with respect to the hypergeometric weight w_{k} :

$$
\sum_{k=0}^{\infty} p_{n}(k) p_{m}(k) w_{k}=\delta_{m, n}, \quad w_{k}=\frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} c^{k}, \quad \alpha, \beta, \gamma>0,0<c<1
$$

where $(\cdot)_{k}$ is the usual Pochhammer symbol and $\delta_{m, n}$ is the Kronecker delta.

This collection of polynomials is known as the discrete orthogonal polynomials with hypergeometric weights since the moments of this weight function are given in terms of the Gauss hypergeometric function ${ }_{2} F_{1}(\alpha, \beta ; \gamma ; c)$ and its derivatives and it has been studied in [FVA18].

Discrete Orthogonal Polynomials with the Hypergeometric Weight

Consider the collection $\left\{p_{n}(x)=\gamma_{n} x^{n}+\cdots\right\}$ of polynomials that are orthonormal on the set $\mathbb{N}=\{0,1,2, \ldots\}$ with respect to the hypergeometric weight w_{k} :

$$
\sum_{k=0}^{\infty} p_{n}(k) p_{m}(k) w_{k}=\delta_{m, n}, \quad w_{k}=\frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} c^{k}, \quad \alpha, \beta, \gamma>0,0<c<1
$$

where $(\cdot)_{k}$ is the usual Pochhammer symbol and $\delta_{m, n}$ is the Kronecker delta.

This collection of polynomials is known as the discrete orthogonal polynomials with hypergeometric weights since the moments of this weight function are given in terms of the Gauss hypergeometric function ${ }_{2} F_{1}(\alpha, \beta ; \gamma ; c)$ and its derivatives and it has been studied in [FVA18].

These polynomials satisfy the usual three term recurrence relation

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x),
$$

where $a_{0}=0$. The coefficients a_{n} and b_{n} are called the recurrence coefficients.
The corresponding monic orthogonal polynomials $P_{n}=p_{n} / \gamma_{n}$ satisfy a similar three term recurrence relation

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n}^{2} P_{n-1}(x)
$$

The Recurrence Coefficients

Following [FVA18], let us introduce two new variables x_{n} and y_{n} parameterizing the recurrence coefficients a_{n}^{2} and b_{n} as follows:

$$
a_{n}^{2} \frac{1-c}{c}=y_{n}+\sum_{k=0}^{n-1} x_{k}+\frac{n(n+\alpha+\beta-\gamma-1)}{1-c}, \quad b_{n}=x_{n}+\frac{n+(n+\alpha+\beta) c-\gamma}{1-c} .
$$

The Recurrence Coefficients

Following [FVA18], let us introduce two new variables x_{n} and y_{n} parameterizing the recurrence coefficients a_{n}^{2} and b_{n} as follows:

$$
a_{n}^{2} \frac{1-c}{c}=y_{n}+\sum_{k=0}^{n-1} x_{k}+\frac{n(n+\alpha+\beta-\gamma-1)}{1-c}, \quad b_{n}=x_{n}+\frac{n+(n+\alpha+\beta) c-\gamma}{1-c} .
$$

Note that $x_{n}=x(n, c ; \alpha, \beta, \gamma), y_{n}=y(n, c ; \alpha, \beta, \gamma)$. As functions of the continuous parameter c, x_{n}, y_{n} satisfy the differential Toda system

$$
\left\{\begin{array}{lll}
c \frac{d}{d c} a_{n}^{2}=a_{n}^{2}\left(b_{n}-b_{n-1}\right), & & n \geq 1 \\
c \frac{d}{d c} b_{n}=a_{n+1}^{2}-a_{n}^{2}, & & n \geq 0
\end{array}\right.
$$

The Recurrence Coefficients

Following [FVA18], let us introduce two new variables x_{n} and y_{n} parameterizing the recurrence coefficients a_{n}^{2} and b_{n} as follows:

$$
a_{n}^{2} \frac{1-c}{c}=y_{n}+\sum_{k=0}^{n-1} x_{k}+\frac{n(n+\alpha+\beta-\gamma-1)}{1-c}, \quad b_{n}=x_{n}+\frac{n+(n+\alpha+\beta) c-\gamma}{1-c} .
$$

Note that $x_{n}=x(n, c ; \alpha, \beta, \gamma), y_{n}=y(n, c ; \alpha, \beta, \gamma)$. As functions of the continuous parameter c, x_{n}, y_{n} satisfy the differential Toda system

$$
\left\{\begin{array}{lll}
c \frac{d}{d c} a_{n}^{2}=a_{n}^{2}\left(b_{n}-b_{n-1}\right), & & n \geq 1 \\
c \frac{d}{d c} b_{n}=a_{n+1}^{2}-a_{n}^{2}, & & n \geq 0
\end{array}\right.
$$

This system can be reduced to the sigma-form of the sixth Painlevé equation. Namely, a simple linear change of variable transforms $S_{n}=\sum_{k=0}^{n-1} x_{k}$ into the solutions of the σ-form of the sixth Painlevé equation. Moreover, the differential equation for x_{n} can be directly reduced to the sixth Painlevé equation, [HFC19].

The Recurrence Coefficients

Following [FVA18], let us introduce two new variables x_{n} and y_{n} parameterizing the recurrence coefficients a_{n}^{2} and b_{n} as follows:

$$
a_{n}^{2} \frac{1-c}{c}=y_{n}+\sum_{k=0}^{n-1} x_{k}+\frac{n(n+\alpha+\beta-\gamma-1)}{1-c}, \quad b_{n}=x_{n}+\frac{n+(n+\alpha+\beta) c-\gamma}{1-c} .
$$

Note that $x_{n}=x(n, c ; \alpha, \beta, \gamma), y_{n}=y(n, c ; \alpha, \beta, \gamma)$. As functions of the continuous parameter c, x_{n}, y_{n} satisfy the differential Toda system

$$
\left\{\begin{array}{llrl}
c \frac{d}{d c} a_{n}^{2} & =a_{n}^{2}\left(b_{n}-b_{n-1}\right), & & n \geq 1 \\
c \frac{d}{d c} b_{n} & =a_{n+1}^{2}-a_{n}^{2}, & & n \geq 0
\end{array}\right.
$$

This system can be reduced to the sigma-form of the sixth Painlevé equation. Namely, a simple linear change of variable transforms $S_{n}=\sum_{k=0}^{n-1} x_{k}$ into the solutions of the σ-form of the sixth Painlevé equation. Moreover, the differential equation for x_{n} can be directly reduced to the sixth Painlevé equation, [HFC19].

As functions of discrete parameter n, x_{n}, y_{n} satisfy a certain recurrence relation; this is the relation we are interested in. In view of the above, it is not surprising that this recurrence relation is related to the standard discrete Painlevé-V equation that describes certain Bäcklund transformations of P_{VI}. In fact, via a direct computation, is is possible to shown that the discrete system is a composition of the Bäcklund transformations of the sixth Painlevé equation, [HFC19].

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right),
\end{aligned}
$$

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right), \\
& \left(x_{n}+Y_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right), \\
& \left(x_{n}+Y_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

where $\alpha, \beta, \gamma>0$ and $0<c<1$ are some parameters and

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right) \\
& \left(x_{n}+Y_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

where $\alpha, \beta, \gamma>0$ and $0<c<1$ are some parameters and

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

The initial conditions for this recurrence are given by

$$
x_{0}=\frac{\alpha \beta c}{\gamma} \frac{{ }_{2} F_{1}(\alpha+1, \beta+1 ; \gamma+1 ; c)}{{ }_{2} F_{1}(\alpha, \beta ; \gamma ; c)}+\frac{(\alpha+\beta) c-\gamma}{c-1}, \quad y_{0}=0 .
$$

The Discrete System

In [FVA18, Theorem 3.1] it was shown that x_{n}, y_{n}, as functions of $n \in \mathbb{N}$, satisfy the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right), \\
& \left(x_{n}+Y_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

where $\alpha, \beta, \gamma>0$ and $0<c<1$ are some parameters and

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

The initial conditions for this recurrence are given by

$$
x_{0}=\frac{\alpha \beta c}{\gamma} \frac{{ }_{2} F_{1}(\alpha+1, \beta+1 ; \gamma+1 ; c)}{{ }_{2} F_{1}(\alpha, \beta ; \gamma ; c)}+\frac{(\alpha+\beta) c-\gamma}{c-1}, \quad y_{0}=0 .
$$

We show that this system is equivalent to the standard $\mathrm{d}-P_{\vee}$ equation and provide the explicit change of variables transforming one system into the other.

Theorem (Main Result)

The above discrete system is equivalent to to the standard discrete Painlevé equation

$$
\bar{f} f=\frac{\operatorname{tg}\left(g-a_{4}\right)}{\left(g+a_{2}\right)\left(g+a_{1}+a_{2}\right)}, \quad g+\underline{g}=a_{0}+a_{3}+a_{4}+\frac{a_{3}}{f-1}+\frac{t a_{0}}{f-t},
$$

with $\bar{a}_{0}=a_{0}-1, \bar{a}_{1}=a_{1}, \bar{a}_{2}=a_{2}+1, \bar{a}_{3}=a_{3}-1, \bar{a}_{4}=a_{4}$, and $a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$. This equivalence is achieved via the following change of variables:

$$
\begin{aligned}
x(f, g)= & \gamma-g-\frac{(n+\beta) f}{f-1} \\
y(f, g)= & (g+\alpha+\beta+n-\gamma)(g+2 \beta+2 n-\gamma)-n \alpha-\frac{g t(g+\beta-\gamma)}{f} \\
& +\frac{(n+\beta)((c-1)(2 g+\alpha+3 \beta+3 n-2 \gamma)+(\alpha+\beta+\gamma-n)+n)}{c(f-1)}+\frac{(c-1)(n+\beta)^{2}}{c(f-1)^{2}}
\end{aligned}
$$

The inverse change of variables is given by

$$
\begin{aligned}
& f(x, y)=\frac{t(x-\beta)(x-\gamma)}{((x-\alpha)(x-\beta)-n x-y)}, \\
& g(x, y)=-\frac{(x-\gamma)(((x-\alpha)(x-\beta)-n x-y)-t(x-\beta)(x-\gamma+\beta+n))}{((x-\alpha)(x-\beta)-n x-y)-t(x-\beta)(x-\gamma)} .
\end{aligned}
$$

Parameters α, β, γ and c of the weight are related to the standard Painlevé parameters (root variables) by

$$
\alpha=a_{1}+1, \quad \beta=a_{0}+a_{1}+a_{2}, \quad \gamma=1-a_{2}-a_{3}, \quad n=a_{2}+a_{4}-1, \quad c t=1 .
$$

The Sakai Classification Scheme for Discrete Painlevé Equations

The definitive classification scheme for discrete Painlevé equations is due to H. Sakai. It is quite intricate and is given in terms of certain algebro-geometric data, such as the configuration type of singular points of the equation. These points lie on some configuration of curves that, after the blowup procedure resolving the singularities, becomes a collection of -2 curves that are irreducible components of the unique anti-canonical divisor. The intersection configuration of these components are described by a certain affine Dynkin diagram; the type of this diagram is known as the surface type of the equation.

The Sakai Classification Scheme for Discrete Painlevé Equations

The definitive classification scheme for discrete Painlevé equations is due to H. Sakai. It is quite intricate and is given in terms of certain algebro-geometric data, such as the configuration type of singular points of the equation. These points lie on some configuration of curves that, after the blowup procedure resolving the singularities, becomes a collection of -2 curves that are irreducible components of the unique anti-canonical divisor. The intersection configuration of these components are described by a certain affine Dynkin diagram; the type of this diagram is known as the surface type of the equation.

Surface-type classification scheme for Painlevé equations

The Sakai Classification Scheme for Discrete Painlevé Equations

A more traditional approach to Painlevé equations is through studying their symmetries, which gives us the dual symmetry-type classification scheme. It is also given in terms of affine Dynkin diagrams, although this time each diagram encodes the affine Weyl symmetry group structure of the equation (and its surface).

The Sakai Classification Scheme for Discrete Painlevé Equations

A more traditional approach to Painlevé equations is through studying their symmetries, which gives us the dual symmetry-type classification scheme. It is also given in terms of affine Dynkin diagrams, although this time each diagram encodes the affine Weyl symmetry group structure of the equation (and its surface).

$$
\mathrm{q}-P_{1}
$$

$\left(E_{8}^{(1)}\right)^{e}$

${ }^{q-P_{\mathrm{VI}}} \quad \mathrm{q}^{\mathrm{q}} \mathrm{P}_{\mathrm{V}}$

The Sakai Classification Scheme for Discrete Painlevé Equations

A more traditional approach to Painlevé equations is through studying their symmetries, which gives us the dual symmetry-type classification scheme. It is also given in terms of affine Dynkin diagrams, although this time each diagram encodes the affine Weyl symmetry group structure of the equation (and its surface).

$$
\mathrm{q}-P_{\mathrm{l}}
$$

$$
\left(E_{8}^{(1)}\right)^{e}
$$

Symmetry-type classification schemes for Painlevé equations
Each discrete Painlevé equation then corresponds to a translation element in this extended affine Weyl group. There are infinitely-many non-equivalent translations, and hence there are infinitely-many non-equivalent discrete Painlevé equations of each type. Still, it is often possible to focus on certain simple equations (short translations).

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important.

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?
(b) If so, what is the surface type of this equation?

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?
(b) If so, what is the surface type of this equation?
(c) Given the type of the equation, can we match it to any of the known examples? It is well-known that there are infinitely many non-equivalent discrete Painlevé equations of each type, but some simple forms of such equations are well-known, as in the canonical reference [KNY17], see also the original paper of Sakai [Sak01]. This can give access to special solutions and may provide links with other models.

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?
(b) If so, what is the surface type of this equation?
(c) Given the type of the equation, can we match it to any of the known examples? It is well-known that there are infinitely many non-equivalent discrete Painlevé equations of each type, but some simple forms of such equations are well-known, as in the canonical reference [KNY17], see also the original paper of Sakai [Sak01]. This can give access to special solutions and may provide links with other models.
(d) Finally, if the equation is indeed equivalent to some canonical form, how to find an explicit change of variables transforming one into the other? In particular, this part requires matchin the parameters of the applied problem with the standard discrete Painlevé parameters.

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?
(b) If so, what is the surface type of this equation?
(c) Given the type of the equation, can we match it to any of the known examples? It is well-known that there are infinitely many non-equivalent discrete Painlevé equations of each type, but some simple forms of such equations are well-known, as in the canonical reference [KNY17], see also the original paper of Sakai [Sak01]. This can give access to special solutions and may provide links with other models.
(d) Finally, if the equation is indeed equivalent to some canonical form, how to find an explicit change of variables transforming one into the other? In particular, this part requires matchin the parameters of the applied problem with the standard discrete Painlevé parameters.

The present theory of discrete Painlevé equations is very powerful. It allows us to create an essentially algorithmic procedure to answer this series of questions. The main tools here are algebraic: birational algebraic geometry, birational representations of affine Weyl groups, word equivalence problem in groups, etc.

The Identification Question

Thus, from the applications point of view the following identification question (in fact, a series of questions) becomes very important. Suppose that a certain non-linear non-autonomous second-order recurrence relation appears in an applied problem. Then we can ask the following sequence of questions.
(a) Does this recurrence fit into the discrete Painlevé framework, i.e., into Sakai's scheme?
(b) If so, what is the surface type of this equation?
(c) Given the type of the equation, can we match it to any of the known examples? It is well-known that there are infinitely many non-equivalent discrete Painlevé equations of each type, but some simple forms of such equations are well-known, as in the canonical reference [KNY17], see also the original paper of Sakai [Sak01]. This can give access to special solutions and may provide links with other models.
(d) Finally, if the equation is indeed equivalent to some canonical form, how to find an explicit change of variables transforming one into the other? In particular, this part requires matchin the parameters of the applied problem with the standard discrete Painlevé parameters.

The present theory of discrete Painlevé equations is very powerful. It allows us to create an essentially algorithmic procedure to answer this series of questions. The main tools here are algebraic: birational algebraic geometry, birational representations of affine Weyl groups, word equivalence problem in groups, etc.
We now show how this procedure works in practice by considering an example related to the theory of discrete orthogonal polynomials. It concerns the computation of the recurrence coefficients of discrete orthogonal polynomials with the hypergeometric weight (joint work with G. Filipuk and A. Stokes).

The Identification Procedure

Here is an outline of a proposed general process of identifying a discere dynamical system as a discrete Painlevé equation and explicitly rewriting it in some standard form. This process consists of the following steps, where we assume that we indeed have some discrete Painlevé equation, otherwise the process will terminate at some step.

The Identification Procedure

Here is an outline of a proposed general process of identifying a discere dynamical system as a discrete Painlevé equation and explicitly rewriting it in some standard form. This process consists of the following steps, where we assume that we indeed have some discrete Painlevé equation, otherwise the process will terminate at some step.

(Step 1) Identify the singularity structure of the problem.

For that, if necessary, rewrite our recurrence equation as a system of two first-order recurrences, $\left(x_{n+1}, y_{n+1}\right)=\psi^{(n)}\left(x_{n}, y_{n}\right)$. The mapping $\psi^{(n)}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ should be a birational mapping that can depends on various parameters, including the iteration step n that we consider to be generic. Then compactify the configuration space from $\mathbb{C}^{2}=\mathbb{C} \times \mathbb{C}$ to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Find the base points of the mapping and resolve them using the blowup procesure. Continue doing that until all base points for both $\psi^{(n)}$ and $\left(\psi^{n}\right)^{-1}$ are resolved (for discrete Painlevé equations this process should terminate in finitely many steps). Thus, we get an isomorphism of resulting rational algebraic surfaces, $\psi^{(n)}: \mathcal{X}_{n} \xrightarrow{\simeq} \mathcal{X}_{n+1}$. In making this computation, it is important to keep in mind that positions of base points usually evolve with the mapping, so one needs to be careful distinguishing between the points in the domain and the points in the range. We also remark that sometimes the singularity structure can be seen before even studying the dynamics; e.g., singularities can occur as a result of a parameterization of some moduli space appearing in the problem, as in [DK19].

Recall: The Discrete System

We have the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right) \\
& \left(x_{n}+Y_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

where $\alpha, \beta, \gamma>0$ and $0<c<1$ are some parameters and

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

Recall: The Discrete System

We have the first-order system of non-linear non-autonomous difference equations

$$
\begin{aligned}
& \left(y_{n}-\alpha \beta+(\alpha+\beta+n) x_{n}-x_{n}^{2}\right)\left(y_{n+1}-\alpha \beta+(\alpha+\beta+n+1) x_{n}-x_{n}^{2}\right) \\
& \quad=\frac{1}{c}\left(x_{n}-1\right)\left(x_{n}-\alpha\right)\left(x_{n}-\beta\right)\left(x_{n}-\gamma\right) \\
& \left(x_{n}+\mathfrak{Y}_{n}\right)\left(x_{n-1}+\mathfrak{Y}_{n}\right) \\
& \quad=\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}+n-(1-\alpha)(1-\beta)\right)}{\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}},
\end{aligned}
$$

where $\alpha, \beta, \gamma>0$ and $0<c<1$ are some parameters and

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

This recurrence also naturally breaks into two mappings, the forward mapping $\psi_{1}^{(n)}:\left(x_{n}, y_{n}\right) \mapsto\left(x_{n}, y_{n+1}\right)$ and the backward mapping $\psi_{2}^{(n)}:\left(x_{n}, y_{n}\right) \mapsto\left(x_{n-1}, y_{n}\right)$.

This is typical for many discrete Painlevé equations, in particular, for those that are obtained as deautonomizations of QRT mappings, [CDT17].

The Identification Procedure. Step 1: The Singularity Structure

The first step in the identification procedure is identifying the singularity structure of the problem.

The Identification Procedure. Step 1: The Singularity Structure

The first step in the identification procedure is identifying the singularity structure of the problem.
Consider first the forward mapping. As usual, put $x:=x_{n}, \bar{x}:=x_{n+1}, y:=y_{n}, \bar{y}:=y_{n+1}$ and omit the index n in the mapping notation. The map $\psi_{1}:(x, y) \mapsto(\bar{x}, \bar{y})$ then becomes

$$
(\bar{x}, \bar{y})=\left(x, \frac{(x-1)(x-\alpha)(x-\beta)(x-\gamma)}{c(y-(x-\alpha)(x-\beta)+n x)}+(x-\alpha)(x-\beta)-(n+1) x\right)
$$

The Identification Procedure. Step 1: The Singularity Structure

The first step in the identification procedure is identifying the singularity structure of the problem.
Consider first the forward mapping. As usual, put $x:=x_{n}, \bar{x}:=x_{n+1}, y:=y_{n}, \bar{y}:=y_{n+1}$ and omit the index n in the mapping notation. The map $\psi_{1}:(x, y) \mapsto(\bar{x}, \bar{y})$ then becomes

$$
(\bar{x}, \bar{y})=\left(x, \frac{(x-1)(x-\alpha)(x-\beta)(x-\gamma)}{c(y-(x-\alpha)(x-\beta)+n x)}+(x-\alpha)(x-\beta)-(n+1) x\right)
$$

We immediately see the following base points (in the affine coordinates (x, y)):

$$
p_{1}(1,(1-\alpha)(1-\beta)-n), \quad p_{2}(\alpha,-n \alpha), \quad p_{3}(\beta,-n \beta), \quad p_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-n \gamma) .
$$

The Identification Procedure. Step 1: The Singularity Structure

The first step in the identification procedure is identifying the singularity structure of the problem.
Consider first the forward mapping. As usual, put $x:=x_{n}, \bar{x}:=x_{n+1}, y:=y_{n}, \bar{y}:=y_{n+1}$ and omit the index n in the mapping notation. The map $\psi_{1}:(x, y) \mapsto(\bar{x}, \bar{y})$ then becomes

$$
(\bar{x}, \bar{y})=\left(x, \frac{(x-1)(x-\alpha)(x-\beta)(x-\gamma)}{c(y-(x-\alpha)(x-\beta)+n x)}+(x-\alpha)(x-\beta)-(n+1) x\right)
$$

We immediately see the following base points (in the affine coordinates (x, y)):

$$
p_{1}(1,(1-\alpha)(1-\beta)-n), \quad p_{2}(\alpha,-n \alpha), \quad p_{3}(\beta,-n \beta), \quad p_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-n \gamma) .
$$

Rewriting the mapping for \bar{y} in the (X, Y)-chart, $X=1 / x, Y=1 / y$ we get

$$
\bar{y}=\frac{\binom{Y(1-X)(1-\alpha X)(1-\beta X)(1-\gamma X)}{+c\left(X^{2}-Y(1-\alpha X)(1-\beta X)+n X\right)((1-\alpha X)(1-\beta X)-(n+1) X)}}{c X^{2}\left(X^{2}-Y(1-\alpha X)(1-\beta X)+n X\right)},
$$

and so we get a new base point $p_{5}(x=\infty, y=\infty)$. These points are the only base points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ for the forward dynamic. Thus, if this mapping is indeed in the discrete Painlevé family, there should be (at least) three more points on exceptional divisors.

The Identification Procedure. Step 1: The Singularity Structure

Indeed, we get the following cascade of "infinitely close" base points starting from the point $p_{5}(x=\infty, y=\infty)$:

$$
\begin{aligned}
p_{5}(X=0, Y=0) & \leftarrow p_{6}\left(u_{5}=X=0, v_{5}=\frac{Y}{X}=0\right) \leftarrow p_{7}\left(u_{6}=u_{5}=0, v_{6}=\frac{v_{5}}{u_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow p_{8}\left(u_{7}=u_{6}=0, v_{7}=\frac{(c-1) v_{6}-c}{(c-1) u_{6}}=\frac{c(c(\alpha+\beta+n)+n-\gamma)}{(c-1)^{2}}\right) .
\end{aligned}
$$

The Identification Procedure. Step 1: The Singularity Structure

Indeed, we get the following cascade of "infinitely close" base points starting from the point $p_{5}(x=\infty, y=\infty)$:

$$
\begin{aligned}
p_{5}(X=0, Y=0) & \leftarrow p_{6}\left(u_{5}=X=0, v_{5}=\frac{Y}{X}=0\right) \leftarrow p_{7}\left(u_{6}=u_{5}=0, v_{6}=\frac{v_{5}}{u_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow p_{8}\left(u_{7}=u_{6}=0, v_{7}=\frac{(c-1) v_{6}-c}{(c-1) u_{6}}=\frac{c(c(\alpha+\beta+n)+n-\gamma)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Consider now the backward mapping. We put $x:=x_{n}, \underline{x}=x_{n-1}, y:=y_{n}, \underline{y}=y_{n-1}$. The backward mapping $\psi_{2}:(x, y) \mapsto(\underline{x}, \underline{y})$ then becomes
$(\underline{x}, \underline{y})=\left(\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}-n-(1-\alpha)(1-\beta)\right)}{\left(x_{n}+\mathfrak{Y}_{n}\right)\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}}-\mathfrak{Y}_{n}, y\right)$
where \mathfrak{Y}_{n} is given by

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

The Identification Procedure. Step 1: The Singularity Structure

Indeed, we get the following cascade of "infinitely close" base points starting from the point $p_{5}(x=\infty, y=\infty)$:

$$
\begin{aligned}
p_{5}(X=0, Y=0) & \leftarrow p_{6}\left(u_{5}=X=0, v_{5}=\frac{Y}{X}=0\right) \leftarrow p_{7}\left(u_{6}=u_{5}=0, v_{6}=\frac{v_{5}}{u_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow p_{8}\left(u_{7}=u_{6}=0, v_{7}=\frac{(c-1) v_{6}-c}{(c-1) u_{6}}=\frac{c(c(\alpha+\beta+n)+n-\gamma)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Consider now the backward mapping. We put $x:=x_{n}, \underline{x}=x_{n-1}, y:=y_{n}, \underline{y}=y_{n-1}$. The backward mapping $\psi_{2}:(x, y) \mapsto(\underline{x}, \underline{y})$ then becomes
$(\underline{x}, \underline{y})=\left(\frac{\left(y_{n}+n \alpha\right)\left(y_{n}+n \beta\right)\left(y_{n}+n \gamma-(\gamma-\alpha)(\gamma-\beta)\right)\left(y_{n}-n-(1-\alpha)(1-\beta)\right)}{\left(x_{n}+\mathfrak{Y}_{n}\right)\left(y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)\right)^{2}}-\mathfrak{Y}_{n}, y\right)$
where \mathfrak{Y}_{n} is given by

$$
\mathfrak{Y}_{n}=\frac{y_{n}^{2}+y_{n}(n(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)-\alpha \beta n(n+\alpha+\beta-\gamma-1)}{y_{n}(2 n+\alpha+\beta-\gamma-1)+n((n+\alpha+\beta)(n+\alpha+\beta-\gamma-1)-\alpha \beta+\gamma)} .
$$

The same standard computation shows that the only base points of the backwards dynamic are the same points p_{1}, \ldots, p_{4}

$$
p_{1}(1,(1-\alpha)(1-\beta)-n), \quad p_{2}(\alpha,-n \alpha), \quad p_{3}(\beta,-n \beta), \quad p_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-n \gamma),
$$

but the singularity cascade at p_{5} is not present. We then get the following picture.

The Identification Procedure

Here is an outline of a proposed general process of identifying a discere dynamical system as a discrete Painlevé equation and explicitly rewriting it in some standard form. This process consists of the following steps, where we assume that we indeed have some discrete Painlevé equation, otherwise the process will terminate at some step.

(Step 1) Identify the singularity structure of the problem.

For that, if necessary, rewrite our recurrence equation as a system of two first-order recurrences, $\left(x_{n+1}, y_{n+1}\right)=\psi^{(n)}\left(x_{n}, y_{n}\right)$. The mapping $\psi^{(n)}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ should be a birational mapping that can depends on various parameters, including the iteration step n that we consider to be generic. Then compactify the configuration space from $\mathbb{C}^{2}=\mathbb{C} \times \mathbb{C}$ to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Find the base points of the mapping and resolve them using the blowup procesure. Continue doing that until all base points for both $\psi^{(n)}$ and $\left(\psi^{n}\right)^{-1}$ are resolved (for discrete Painlevé equations this process should terminate in finitely many steps). Thus, we get an isomorphism of resulting rational algebraic surfaces, $\psi^{(n)}: \mathcal{X}_{n} \xrightarrow{\simeq} \mathcal{X}_{n+1}$. In making this computation, it is important to keep in mind that positions of base points usually evolve with the mapping, so one needs to be careful distinguishing between the points in the domain and the points in the range. We also remark that sometimes the singularity structure can be seen before even studying the dynamics; e.g., singularities can occur as a result of a parameterization of some moduli space appearing in the problem, as in [DK19].

(Step 2) Linearize the mapping on $\operatorname{Pic}(\mathcal{X})$.

This can be done explicitly in relatively simple cases. Sometimes, however, the evolution mapping can be too complicated even for a Computer Algebra System. In this case, it may be possible to deduce the action of the mapping on $\operatorname{Pic}(\mathcal{X})$ from the knowledge of parameter evolution via the Period Map, see [DK19].

The Identification Procedure. Step 2: The Action on $\operatorname{Pic}(\mathcal{X})$

In parallel with resolving the base points of the mapping, we can compute the induced linear action on the Picard Lattice.

Lemma (The Forward Action)

The action of the forward dynamic $\left(\psi_{1}\right)_{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\overline{\mathcal{X}})$ is given by

$$
\begin{aligned}
& \mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{x}, \quad \mathcal{F}_{1} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{1}, \mathcal{F}_{3} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{3}, \mathcal{F}_{5} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{8}, \mathcal{F}_{7} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{6}, \\
& \mathcal{H}_{y} \mapsto 4 \overline{\mathcal{H}}_{x}+\overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{12345678}, \mathcal{F}_{2} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{2}, \mathcal{F}_{4} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{4}, \mathcal{F}_{6} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{7}, \mathcal{F}_{8} \mapsto \overline{\mathcal{H}}_{x}-\overline{\mathcal{F}}_{5},
\end{aligned}
$$

and the evolution of base points $\bar{p}_{i}=\psi_{1}\left(p_{i}\right)$ is given by
$\bar{p}_{1}(1,(1-\alpha)(1-\beta)-(n+1)), \bar{p}_{2}(\alpha,-(n+1) \alpha), \bar{p}_{3}(\beta,-(n+1) \beta), \bar{p}_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-(n+1) \gamma)$, for finite points, and for the degeneration cascade we get

$$
\begin{aligned}
\bar{p}_{5}(\bar{X}=0, \bar{Y}=0) & \leftarrow p_{6}\left(\bar{u}_{5}=\bar{X}=0, \bar{v}_{5}=\frac{\bar{Y}}{\bar{X}}=0\right) \leftarrow \bar{p}_{7}\left(\bar{u}_{6}=\bar{u}_{5}=0, \bar{v}_{6}=\frac{\bar{v}_{5}}{\bar{u}_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow \bar{p}_{8}\left(\bar{u}_{7}=\bar{u}_{6}=0, \bar{v}_{7}=\frac{(c-1) \bar{v}_{6}-c}{(c-1) \bar{u}_{6}}=\frac{c(c(\alpha+\beta+n+1)+n-\gamma-1)}{(c-1)^{2}}\right)
\end{aligned}
$$

From the evolution of base points we see that $\psi_{1}(n)=n+1$.

The Identification Procedure. Step 2: The Action on $\operatorname{Pic}(\mathcal{X})$

Lemma (The Backward Action)

The action of the backwards dynamic $\left(\psi_{2}\right)_{*}: \operatorname{Pic}(\mathcal{X}) \rightarrow \operatorname{Pic}(\underline{\mathcal{X}})$ is given by

$$
\begin{array}{llll}
\mathcal{H}_{x} \mapsto \underline{\mathcal{H}}_{x}+2 \underline{\mathcal{H}}_{y}-\underline{\mathcal{F}}_{1234}, & \mathcal{F}_{1} \mapsto \underline{\mathcal{H}}_{y}-\underline{\mathcal{F}}_{1}, & \mathcal{F}_{3} \mapsto \underline{\mathcal{H}}_{y}-\underline{\mathcal{F}}_{3}, & \mathcal{F}_{5} \mapsto \underline{\mathcal{F}}_{5}, \\
\mathcal{F}_{7} \mapsto \underline{\mathcal{F}}_{7}, \\
\mathcal{H}_{y} \mapsto \underline{\mathcal{H}}_{y}, & \mathcal{F}_{2} \mapsto \underline{\mathcal{H}}_{y}-\underline{\mathcal{F}}_{2}, & \mathcal{F}_{4} \mapsto \underline{\mathcal{H}}_{y}-\underline{\mathcal{F}}_{4}, & \mathcal{F}_{6} \mapsto \underline{\mathcal{F}}_{6},
\end{array} \mathcal{F}_{8} \mapsto \underline{\mathcal{F}}_{8} .
$$

From this we can also easily compute the evolution of base points. We get

$$
\underline{p}_{1}(1,(1-\alpha)(1-\beta)-n), \underline{p}_{2}(\alpha,-n \alpha), \underline{p}_{3}(\beta,-n \beta), \underline{p}_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-n \gamma),
$$

as well as the degeneration cascade

$$
\begin{aligned}
\underline{p}_{5}(\underline{X}=0, \equiv 0) & \leftarrow p_{6}\left(\underline{u}_{5}=\underline{X}=0, \underline{v}_{5}=\frac{Y}{\bar{X}}=0\right) \leftarrow \underline{p}_{7}\left(\underline{u}_{6}=\underline{u}_{5}=0, \underline{v}_{6}=\frac{\underline{v}_{5}}{\underline{u}_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow \underline{p}_{8}\left(\underline{u}_{7}=\underline{u}_{6}=0, \underline{v}_{7}=\frac{(c-1) \underline{v}_{6}-c}{(c-1) \underline{u}_{6}}=\frac{c(c(\alpha+\beta+n)+n-\gamma-2)}{(c-1)^{2}}\right) .
\end{aligned}
$$

From the evolution of base points we see that $\psi_{2}(n)=n$.

The Identification Procedure. Step 2: The Action on $\operatorname{Pic}(\mathcal{X})$

Lemma (The Composed Action)

The action of the composed mapping $\psi_{*}^{(n)}=\psi_{*}=\left(\psi_{2}\right)_{*}^{-1} \circ\left(\psi_{1}\right)_{*}: \operatorname{Pic}\left(\mathcal{X}_{n}\right) \rightarrow \operatorname{Pic}\left(\mathcal{X}_{n+1}\right)$ is given by

$$
\begin{array}{ll}
\mathcal{H}_{x} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{1234}, & \\
\mathcal{H}_{y} \mapsto 4 \overline{\mathcal{H}}_{x}+5 \overline{\mathcal{H}}_{y}-3 \overline{\mathcal{F}}_{1234}-\overline{\mathcal{F}}_{5678}, \\
\mathcal{F}_{1} \mapsto \overline{\mathcal{H}}_{x}+\overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{234}, & \mathcal{F}_{5} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{12348} \\
\mathcal{F}_{2} \mapsto \overline{\mathcal{H}}_{x}+\overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{134}, & \mathcal{F}_{6} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{12347}, \\
\mathcal{F}_{3} \mapsto \overline{\mathcal{H}}_{x}+\overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{124}, & \mathcal{F}_{7} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{12346}, \\
\mathcal{F}_{4} \mapsto \overline{\mathcal{H}}_{x}+\overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{123}, & \mathcal{F}_{8} \mapsto \overline{\mathcal{H}}_{x}+2 \overline{\mathcal{H}}_{y}-\overline{\mathcal{F}}_{12345} .
\end{array}
$$

The evolution of the base points (here $\bar{p}_{i}=\psi^{(n)}\left(p_{i}\right)$) is $\bar{p}_{1}(1,(1-\alpha)(1-\beta)-(n+1)), \bar{p}_{2}(\alpha,-(n+1) \alpha), \bar{p}_{3}(\beta,-(n+1) \beta), \bar{p}_{4}(\gamma,(\gamma-\alpha)(\gamma-\beta)-(n+1) \gamma)$, for finite points, and

$$
\begin{aligned}
\bar{p}_{5}(\bar{X}=0, \bar{Y}=0) & \leftarrow p_{6}\left(\bar{u}_{5}=\bar{X}=0, \bar{v}_{5}=\frac{\bar{Y}}{\bar{X}}=0\right) \leftarrow \bar{p}_{7}\left(\bar{u}_{6}=\bar{u}_{5}=0, \bar{v}_{6}=\frac{\bar{v}_{5}}{\bar{u}_{5}}=\frac{c}{c-1}\right) \\
& \leftarrow \bar{p}_{8}\left(\bar{u}_{7}=\bar{u}_{6}=0, \bar{v}_{7}=\frac{(c-1) \bar{v}_{6}-c}{(c-1) \bar{u}_{6}}=\frac{c(c(\alpha+\beta+n+1)+n+1-\gamma)}{(c-1)^{2}}\right)
\end{aligned}
$$

for the degeneration cascade.
From the evolution of base points we see that $\psi^{(n)}(n)=n+1$.

The Identification Procedure (continued)

(Step 3) Determine the surface type, according to Sakai's classification scheme.

For a discrete Painlevé equation, although the positions of base points may evolve, the configuration will stay fixed, and so the surfaces $\left\{\mathcal{X}_{n}\right\}$ will all have the same type. There should be eight such base points; those points will lie on some (generically unique) biquadratic curve on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (i.e., a curve whose defining polynomial, when written in a coordinate chart, has a bi-degree (2,2)) and the point configuration is defined to be the configuration of the irreducible components of this curve. Each such component should have self-intersection index -2 and is associated with a node in an affine Dynkin diagram, nodes are connected when the corresponding components intersect. The type of this Dynkin diagram is called the surface type of the equation. This description assumes that the surfaces \mathcal{X}_{n} are minimal, but can happen that after the initial blowup procedure is complete, some -1 -curves would have to be blown down. This will also result in some irreducible components having higher negative self-intersection index. The blowing down procedure is quite delicate, so here we assume that the surfaces \mathcal{X}_{n} are indeed minimal, but see [DST13] and [DK19] for examples requiring a blowing down.

The Identification Procedure. Step 3: Determining the Surface Type

Looking back at the base point configuration,

we see that base points lie on a reducible $(2,2)$ curve $\Gamma=V\left(Y_{s}(X, Y)\right)$, where $s(X, Y)=X^{2}-\alpha \beta X^{2} Y+(n+\alpha+\beta) X Y-Y$.

The Identification Procedure. Step 3: Determining the Surface Type

we see that base points lie on a reducible $(2,2)$ curve $\Gamma=V\left(Y_{s}(X, Y)\right)$, where $s(X, Y)=X^{2}-\alpha \beta X^{2} Y+(n+\alpha+\beta) X Y-Y$.
Γ is the pole divisor of a symplectic form $\omega=k \frac{d X \wedge d Y}{s(X, Y) Y}=k \frac{d X \wedge d s}{s\left(s-X^{2}\right)}$, and the anti-canonical divisor class $-\mathcal{K}_{\mathcal{X}}=-\left[\omega_{\mathcal{X}}\right]$ decomposes into irreducible components as follows: $-[\omega]_{\mathcal{X}}=\left(2 H_{x}+H_{y}-F_{1}-F_{2}-F_{3}-F_{4}-F_{5}-F_{6}\right)+\left(H_{y}-F_{5}-F_{6}\right)+\left(F_{5}-F_{6}\right)+2\left(F_{6}-F_{7}\right)+\left(F_{7}-F_{8}\right)$.

The Identification Procedure. Step 3: Determining the Surface Type

we see that base points lie on a reducible $(2,2)$ curve $\Gamma=V\left(Y_{s}(X, Y)\right)$, where $s(X, Y)=X^{2}-\alpha \beta X^{2} Y+(n+\alpha+\beta) X Y-Y$.
Γ is the pole divisor of a symplectic form $\omega=k \frac{d X \wedge d Y}{s(X, Y) Y}=k \frac{d X \wedge d s}{s\left(s-X^{2}\right)}$, and the anti-canonical divisor class $-\mathcal{K}_{\mathcal{X}}=-\left[\omega_{\mathcal{X}}\right]$ decomposes into irreducible components as follows: $-[\omega]_{\mathcal{X}}=\left(2 H_{x}+H_{y}-F_{1}-F_{2}-F_{3}-F_{4}-F_{5}-F_{6}\right)+\left(H_{y}-F_{5}-F_{6}\right)+\left(F_{5}-F_{6}\right)+2\left(F_{6}-F_{7}\right)+\left(F_{7}-F_{8}\right)$.
The intersection structure of irreducible components is given by the $D_{4}^{(1)}$ affine Dynkin diagram

$$
\begin{array}{ll}
d_{0}=F_{5}-F_{6}, & d_{3}=F_{7}-F_{8} \\
d_{1}=2 H_{x}+H_{y}-F_{123456}, & d_{4}=H_{y}-F_{56} \\
d_{2}=F_{6}-F_{7}, &
\end{array}
$$

Detour: The Standard d- P_{\vee} Mapping. The Point Configuration

Let us briefly review discrete Painlevé equations of type d-P $\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$, and in particular, the usual $d-P_{V}$ equation, following the standard reference $[K N Y 17]$ for choices of root bases.

Detour: The Standard $\mathrm{d}-P_{\vee}$ Mapping. The Point Configuration

Let us briefly review discrete Painlevé equations of type d-P $\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$, and in particular, the usual $\mathrm{d}-\mathrm{P}_{V}$ equation, following the standard reference $[\mathrm{KNY} 17]$ for choices of root bases.

We start with the root basis of the surface sub-lattice that is given by the classes $\delta_{i}=\left[d_{i}\right]$ of the irreducible components of the anti-canonical divisor

$$
\delta=-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}=\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4} .
$$

The intersection configuration of those roots is given by the Dynkin diagram of type $D_{4}^{(1)}$.

$$
\begin{array}{rlr}
\delta_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, & \delta_{3}=\mathcal{E}_{7}-\mathcal{E}_{8} \\
\delta_{1}=\mathcal{H}_{f}-\mathcal{E}_{1}-\mathcal{E}_{2}, & \delta_{4}=\mathcal{H}_{f}-\mathcal{E}_{5}-\mathcal{E}_{6} \\
\delta_{2}=\mathcal{H}_{g}-\mathcal{E}_{3}-\mathcal{E}_{7}, & \\
\delta & =\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4}
\end{array}
$$

Detour: The Standard d- P_{\vee} Mapping. The Point Configuration

Let us briefly review discrete Painlevé equations of type d-P $\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$, and in particular, the usual $d-P_{V}$ equation, following the standard reference [KNY17] for choices of root bases.

We start with the root basis of the surface sub-lattice that is given by the classes $\delta_{i}=\left[d_{i}\right]$ of the irreducible components of the anti-canonical divisor

$$
\delta=-\mathcal{K}_{\mathcal{X}}=2 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{2}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}=\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4} .
$$

The intersection configuration of those roots is given by the Dynkin diagram of type $D_{4}^{(1)}$.

$$
\begin{aligned}
\delta_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, & \delta_{3}=\mathcal{E}_{7}-\mathcal{E}_{8} \\
\delta_{1}=\mathcal{H}_{f}-\mathcal{E}_{1}-\mathcal{E}_{2}, & \delta_{4}=\mathcal{H}_{f}-\mathcal{E}_{5}-\mathcal{E}_{6} \\
\delta_{2}=\mathcal{H}_{g}-\mathcal{E}_{3}-\mathcal{E}_{7}, & \\
\delta & =\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4}
\end{aligned}
$$

Using the action of the $\mathbf{P G L}_{2}(\mathbb{C}) \times \mathbf{P G L}_{2}(\mathbb{C})$ gauge group (i.e., the action of a Möbius group on each of the factors of $\mathbb{P}^{1} \times \mathbb{P}^{1}$), we can, without loss of generality, put d_{i}, with $\delta_{i}=\left[d_{i}\right]$ to be

$$
d_{1}=V(F)=\{f=\infty\}, \quad d_{2}=V(G)=\{g=\infty\}, \quad d_{4}=V(f)=\{f=0\}
$$

which then reduces the gauge group action to that of a three-parameter subgroup, $(f, g) \mapsto(\lambda f, \mu g+\nu)$.

The Standard $\mathrm{d}-P_{\vee}$ Mapping: The Point Configuration

The corresponding point configuration and the Sakai surface are as follows:

The Standard $\mathrm{d}-P_{\vee}$ Mapping: The Point Configuration

The corresponding point configuration and the Sakai surface are as follows:

This point configuration can be parameterized by eight parameters b_{1}, \ldots, b_{8} as follows:

$$
\begin{array}{lll}
p_{1}\left(\infty, b_{1}\right), & p_{2}\left(\infty, b_{2}\right), & p_{3}\left(b_{3}, \infty\right) \leftarrow p_{4}\left(b_{3}, \infty ; g\left(f-b_{3}\right)=b_{4}\right), \\
p_{5}\left(0, b_{5}\right), & p_{6}\left(0, b_{6}\right), & p_{7}\left(b_{7}, \infty\right) \leftarrow p_{8}\left(b_{7}, \infty ; g\left(f-b_{7}\right)=b_{8}\right) .
\end{array}
$$

The Standard $\mathrm{d}-P_{\vee}$ Mapping: The Point Configuration

The corresponding point configuration and the Sakai surface are as follows:

This point configuration can be parameterized by eight parameters b_{1}, \ldots, b_{8} as follows:

$$
\begin{array}{lll}
p_{1}\left(\infty, b_{1}\right), & p_{2}\left(\infty, b_{2}\right), & p_{3}\left(b_{3}, \infty\right) \leftarrow p_{4}\left(b_{3}, \infty ; g\left(f-b_{3}\right)=b_{4}\right), \\
p_{5}\left(0, b_{5}\right), & p_{6}\left(0, b_{6}\right), & p_{7}\left(b_{7}, \infty\right) \leftarrow p_{8}\left(b_{7}, \infty ; g\left(f-b_{7}\right)=b_{8}\right) .
\end{array}
$$

The three-parameter gauge group above acts on these configurations via

$$
\left(\begin{array}{cccc}
b_{1} & b_{2} & b_{3} & b_{4} ; f \\
b_{5} & b_{6} & b_{7} & b_{8} ; g
\end{array}\right) \sim\left(\begin{array}{cccc}
\mu b_{1}+\nu & \mu b_{2}+\nu & \lambda b_{3} & \lambda \mu b_{4} ; \\
\mu b_{5}+\nu & \mu b_{6}+\nu & \lambda b_{7} & \lambda \mu b_{8} ; \mu g+\nu
\end{array}\right), \lambda, \mu \neq 0,
$$

and so the true number of parameters is five. The correct gauge-invariant parameterization is given by the root variables.

The Standard d-PV Mapping: The Period Map

To define the root variables we begin by choosing a root basis in the symmetry sub-lattice $Q=\Pi\left(R^{\perp}\right) \triangleleft \operatorname{Pic}(\mathcal{X})$ and defining the symplectic form ω whose polar divisor $-K_{\mathcal{X}}$ is the configuration of -2 -curves shown on on the previous figure.

The Standard d-PV Mapping: The Period Map

To define the root variables we begin by choosing a root basis in the symmetry sub-lattice $Q=\Pi\left(R^{\perp}\right) \triangleleft \operatorname{Pic}(\mathcal{X})$ and defining the symplectic form ω whose polar divisor $-K_{\mathcal{X}}$ is the configuration of -2 -curves shown on on the previous figure.

A symplectic form $\omega \in-\mathcal{K}_{\mathcal{X}}$ such that $[\omega]=\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4}$ can be given in local coordinate charts as

$$
\omega=k \frac{d f \wedge d g}{f}=-k \frac{d F \wedge d g}{F}=-k \frac{d f \wedge d G}{f G^{2}}=k \frac{d F \wedge d G}{F G^{2}}=-k \frac{d U_{3} \wedge d V_{3}}{\left(b_{3}+U_{3} V_{3}\right) V_{3}}=-k \frac{d U_{7} \wedge d V_{7}}{\left(b_{7}+U_{7} V_{7}\right) V_{7}},
$$

where $F=1 / f, G=1 / g$ are the coordinates centered at infinity, the blowup coordinates $\left(U_{i}, V_{i}\right)$ at the points $p_{i}, i=3,7$, are given by $f=b_{i}+U_{i} V_{i}$ and $g=V_{i}$, and k is some non-zero proportionality constant that we normalize later.

The Standard $\mathrm{d}-P_{\vee}$ Mapping: The Period Map

To define the root variables we begin by choosing a root basis in the symmetry sub-lattice $Q=\Pi\left(R^{\perp}\right) \triangleleft \operatorname{Pic}(\mathcal{X})$ and defining the symplectic form ω whose polar divisor $-K_{\mathcal{X}}$ is the configuration of -2 -curves shown on on the previous figure.

A symplectic form $\omega \in-\mathcal{K}_{\mathcal{X}}$ such that $[\omega]=\delta_{0}+\delta_{1}+2 \delta_{2}+\delta_{3}+\delta_{4}$ can be given in local coordinate charts as

$$
\omega=k \frac{d f \wedge d g}{f}=-k \frac{d F \wedge d g}{F}=-k \frac{d f \wedge d G}{f G^{2}}=k \frac{d F \wedge d G}{F G^{2}}=-k \frac{d U_{3} \wedge d V_{3}}{\left(b_{3}+U_{3} V_{3}\right) V_{3}}=-k \frac{d U_{7} \wedge d V_{7}}{\left(b_{7}+U_{7} V_{7}\right) V_{7}},
$$

where $F=1 / f, G=1 / g$ are the coordinates centered at infinity, the blowup coordinates $\left(U_{i}, V_{i}\right)$ at the points $p_{i}, i=3,7$, are given by $f=b_{i}+U_{i} V_{i}$ and $g=V_{i}$, and k is some non-zero proportionality constant that we normalize later.

We take the following symmetry root basis, following [KNY17]:

$$
\begin{array}{rlr}
\alpha_{0}=\mathcal{H}_{f}-\mathcal{E}_{3}-\mathcal{E}_{4}, & \alpha_{3}=\mathcal{H}_{f}-\mathcal{E}_{7}-\mathcal{E}_{8} \\
\alpha_{1} & =\mathcal{E}_{1}-\mathcal{E}_{2}, & \alpha_{4}=\mathcal{E}_{5}-\mathcal{E}_{6} \\
\alpha_{2} & =\mathcal{H}_{g}-\mathcal{E}_{1}-\mathcal{E}_{5}, & \\
\delta & =\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}
\end{array}
$$

The Standard d-Pv Mapping: The Period Map

Lemma

(i) The residues of the symplectic form ω along the irreducible components of the polar divisor is given by

$$
\operatorname{res}_{d_{0}} \omega=k \frac{d U_{3}}{b_{3}}, \operatorname{res}_{d_{1}} \omega=-k d g, \operatorname{res}_{d_{2}} \omega=0, \operatorname{res}_{d_{3}} \omega=k \frac{d U_{7}}{b_{7}}, \operatorname{res}_{d_{4}} \omega=k d g .
$$

The Standard d-Pv Mapping: The Period Map

Lemma

(i) The residues of the symplectic form ω along the irreducible components of the polar divisor is given by

$$
\operatorname{res}_{d_{0}} \omega=k \frac{d U_{3}}{b_{3}}, \operatorname{res}_{d_{1}} \omega=-k d g, \operatorname{res}_{d_{2}} \omega=0, \operatorname{res}_{d_{3}} \omega=k \frac{d U_{7}}{b_{7}}, \operatorname{res}_{d_{4}} \omega=k d g .
$$

(ii) The root variables a_{i} are given by

$$
a_{0}=-k \frac{b_{4}}{b_{3}}, a_{1}=k\left(b_{2}-b_{1}\right), a_{2}=k\left(b_{1}-b_{5}\right), a_{3}=-k \frac{b_{8}}{b_{7}}, a_{4}=k\left(b_{5}-b_{6}\right)
$$

The Standard d-PV Mapping: The Period Map

Lemma

(i) The residues of the symplectic form ω along the irreducible components of the polar divisor is given by

$$
\operatorname{res}_{d_{0}} \omega=k \frac{d U_{3}}{b_{3}}, \operatorname{res}_{d_{1}} \omega=-k d g, \operatorname{res}_{d_{2}} \omega=0, \operatorname{res}_{d_{3}} \omega=k \frac{d U_{7}}{b_{7}}, \operatorname{res}_{d_{4}} \omega=k d g .
$$

(ii) The root variables a_{i} are given by

$$
a_{0}=-k \frac{b_{4}}{b_{3}}, a_{1}=k\left(b_{2}-b_{1}\right), a_{2}=k\left(b_{1}-b_{5}\right), a_{3}=-k \frac{b_{8}}{b_{7}}, a_{4}=k\left(b_{5}-b_{6}\right) .
$$

It is convenient to take $k=-1$. We can then use the gauge action to normalize $b_{5}=0$, $b_{7}=1$, and $\chi(\delta)=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$. In view of the relation of this example to $P_{V I}$, it is also convenient to denote b_{3} by t.

The Standard d-PV Mapping: The Period Map

Lemma

(i) The residues of the symplectic form ω along the irreducible components of the polar divisor is given by

$$
\operatorname{res}_{d_{0}} \omega=k \frac{d U_{3}}{b_{3}}, \operatorname{res}_{d_{1}} \omega=-k d g, \operatorname{res}_{d_{2}} \omega=0, \operatorname{res}_{d_{3}} \omega=k \frac{d U_{7}}{b_{7}}, \operatorname{res}_{d_{4}} \omega=k d g .
$$

(ii) The root variables a_{i} are given by

$$
a_{0}=-k \frac{b_{4}}{b_{3}}, a_{1}=k\left(b_{2}-b_{1}\right), a_{2}=k\left(b_{1}-b_{5}\right), a_{3}=-k \frac{b_{8}}{b_{7}}, a_{4}=k\left(b_{5}-b_{6}\right) .
$$

It is convenient to take $k=-1$. We can then use the gauge action to normalize $b_{5}=0$, $b_{7}=1$, and $\chi(\delta)=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$. In view of the relation of this example to $P_{V I}$, it is also convenient to denote b_{3} by t. Then we get the following parameterization of the point configuration in terms of root variables:

$$
b_{1}=-a_{2}, b_{2}=-a_{1}-a_{2}, b_{3}=t, b_{4}=t a_{0}, b_{5}=0, b_{6}=a_{4}, b_{7}=1, b_{8}=a_{3}
$$

The Standard d-PV Mapping: The Period Map

Lemma

(i) The residues of the symplectic form ω along the irreducible components of the polar divisor is given by

$$
\operatorname{res}_{d_{0}} \omega=k \frac{d U_{3}}{b_{3}}, \operatorname{res}_{d_{1}} \omega=-k d g, \operatorname{res}_{d_{2}} \omega=0, \operatorname{res}_{d_{3}} \omega=k \frac{d U_{7}}{b_{7}}, \operatorname{res}_{d_{4}} \omega=k d g .
$$

(ii) The root variables a_{i} are given by

$$
a_{0}=-k \frac{b_{4}}{b_{3}}, a_{1}=k\left(b_{2}-b_{1}\right), a_{2}=k\left(b_{1}-b_{5}\right), a_{3}=-k \frac{b_{8}}{b_{7}}, a_{4}=k\left(b_{5}-b_{6}\right) .
$$

It is convenient to take $k=-1$. We can then use the gauge action to normalize $b_{5}=0$, $b_{7}=1$, and $\chi(\delta)=a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$. In view of the relation of this example to $P_{V I}$, it is also convenient to denote b_{3} by t. Then we get the following parameterization of the point configuration in terms of root variables:

$$
b_{1}=-a_{2}, b_{2}=-a_{1}-a_{2}, b_{3}=t, b_{4}=t a_{0}, b_{5}=0, b_{6}=a_{4}, b_{7}=1, b_{8}=a_{3} .
$$

The proof of this Lemma is a standard computation.

The Standard d-PV Mapping: The Symmetry Group

The symmetry group of $D_{4}^{(1)}$ surface family is the extended affine Weyl symmetry group $\widetilde{W}\left(D_{4}^{(1)}\right)=$ Aut $\left(D_{4}^{(1)}\right) \ltimes W\left(D_{4}^{(1)}\right)$, which is a semi-direct product of the usual affine Weyl group $W\left(D_{4}^{(1)}\right)$ and the group of Dynkin diagram automorphisms Aut $\left(D_{4}^{(1)}\right)$.

The Standard d-PV Mapping: The Symmetry Group

The symmetry group of $D_{4}^{(1)}$ surface family is the extended affine Weyl symmetry group $\widetilde{W}\left(D_{4}^{(1)}\right)=$ Aut $\left(D_{4}^{(1)}\right) \ltimes W\left(D_{4}^{(1)}\right)$, which is a semi-direct product of the usual affine Weyl group $W\left(D_{4}^{(1)}\right)$ and the group of Dynkin diagram automorphisms Aut $\left(D_{4}^{(1)}\right)$.

The affine Weyl group $W\left(D_{4}^{(1)}\right)$ is defined in terms of generators $w_{i}=w_{\alpha_{i}}$ and relations that are encoded by the affine Dynkin diagram $D_{4}^{(1)}$,

The Standard d-PV Mapping: The Symmetry Group

The symmetry group of $D_{4}^{(1)}$ surface family is the extended affine Weyl symmetry group $\widetilde{W}\left(D_{4}^{(1)}\right)=$ Aut $\left(D_{4}^{(1)}\right) \ltimes W\left(D_{4}^{(1)}\right)$, which is a semi-direct product of the usual affine Weyl group $W\left(D_{4}^{(1)}\right)$ and the group of Dynkin diagram automorphisms Aut $\left(D_{4}^{(1)}\right)$.

The affine Weyl group $W\left(D_{4}^{(1)}\right)$ is defined in terms of generators $w_{i}=w_{\alpha_{i}}$ and relations that are encoded by the affine Dynkin diagram $D_{4}^{(1)}$,

The natural action of this group on $\operatorname{Pic}(\mathcal{X})$ is given by reflections in the roots α_{i},

$$
w_{i}(\mathcal{C})=w_{\alpha_{i}}(\mathcal{C})=\mathcal{C}-2 \frac{\mathcal{C} \bullet \alpha_{i}}{\alpha_{i} \bullet \alpha_{i}} \alpha_{i}=\mathcal{C}+\left(\mathcal{C} \bullet \alpha_{i}\right) \alpha_{i}, \quad \mathcal{C} \in \operatorname{Pic}(\mathcal{X})
$$

which can be extended to an action on point configurations by elementary birational maps (which lifts to isomorphisms $w_{i}: \mathcal{X}_{\mathbf{b}} \rightarrow \mathcal{X}_{\overline{\mathbf{b}}}$ on the family of Sakai's surfaces), this is known as a birational representation of $W\left(D_{4}^{(1)}\right)$.

Theorem

Reflections w_{i} on $\operatorname{Pic}(\mathcal{X})$ are induced by the elementary birational mappings given below and also denoted by w_{i}, on the family $\mathcal{X}_{\mathbf{b}}$. To ensure the group structure, we require that each map preserves our normalization

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array}\right)=\left(\begin{array}{cccc}
b_{1} & b_{2} & t & b_{4} \\
0 & b_{6} & 1 & b_{8}
\end{array}\right)=\left(\begin{array}{cccc}
-a_{2} & -a_{1}-a_{2} & t & t a_{0} \\
0 & a_{4} & 1 & a_{3}
\end{array}\right) .
$$

For the initial configuration

$$
\left(\begin{array}{ccccc}
b_{1} & b_{2} & t & b_{4} & f \\
0 & b_{6} & 1 & b_{8}
\end{array}, g\right)=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & f \\
a_{3} & a_{4} & t & t
\end{array}\right),
$$

the action of w_{i} is given by the following expressions.

$$
\begin{aligned}
& w_{0}:\left(\begin{array}{cccc}
b_{1}-\frac{b_{4}}{t} & b_{2}-\frac{b_{4}}{t} & t & -b_{4} \\
0 & b_{6} & 1 & b_{8}
\end{array} \quad g-\frac{b_{4} f}{t(f-t)}\right)=\left(\begin{array}{ccc}
-a_{0} & a_{1} & a_{0}+a_{2} \\
a_{3} & a_{4} & t
\end{array} \quad \begin{array}{c}
f \\
\\
\end{array}\right. \\
& w_{1}:\left(\begin{array}{ccccc}
b_{2} & b_{1} & t & b_{4} \\
0 & b_{6} & 1 & b_{8} & f \\
g
\end{array}\right) \quad=\left(\begin{array}{cccc}
a_{0} & -a_{1} & a_{1}+a_{2} & f \\
a_{3} & a_{4} & t & g
\end{array}\right) \text {, } \\
& w_{2}:\left(\begin{array}{ccccc}
-b_{1} & b_{2}-b_{1} & t & b_{4}-t b_{1} \\
0 & b_{6}-b_{1} & 1 & b_{8}-b_{1}
\end{array} ; \begin{array}{c}
f-\frac{b_{1} f}{g} \\
g-b_{1}
\end{array}\right)=\left(\begin{array}{ccc}
a_{0}+a_{2} & a_{1}+a_{2} & -a_{2} \\
a_{2}+a_{3} & a_{2}+a_{4} & t
\end{array} ; \begin{array}{c}
f+\frac{a_{2} f}{g} \\
g+a_{2}
\end{array}\right) \text {, } \\
& w_{3}:\left(\begin{array}{ccccc}
b_{1}-b_{8} & b_{2}-b_{8} & t & b_{4} & f \\
0 & b_{6} & 1 & -b_{8} & g-\frac{b_{8} f}{f-1}
\end{array}\right)=\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2}+a_{3} \\
-a_{3} & a_{4} & t
\end{array} \quad \begin{array}{c}
f-\frac{a_{3} f}{f-1}
\end{array}\right) \text {, } \\
& w_{4}:\left(\begin{array}{cccc}
b_{1}-b_{6} & b_{2}-b_{6} & t & b_{4} \\
0 & -b_{6} & 1 & b_{8} \\
0 & f-b_{6}
\end{array}\right) \quad=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2}+a_{4} & f \\
a_{3} & -a_{4} & t & g-a_{4}
\end{array}\right) \text {. }
\end{aligned}
$$

Let us now describe the group of Dynkin diagram automorphisms. It is clear that Aut $\left(D_{4}^{(1)}\right) \simeq \mathcal{S}_{4}$, so we only describe three transpositions that generate the whole group.

Theorem

Consider the following generators $\sigma_{1}, \ldots, \sigma_{3}$ of Aut $\left(D_{4}^{(1)}\right)$ that act on the symmetry and the surface root bases as follows (here we use the standard cycle notations for permutations):

$$
\sigma_{1}=\left(\alpha_{3} \alpha_{4}\right)=\left(\delta_{3} \delta_{4}\right), \quad \sigma_{2}=\left(\alpha_{0} \alpha_{3}\right)=\left(\delta_{0} \delta_{3}\right), \quad \sigma_{3}=\left(\alpha_{1} \alpha_{4}\right)=\left(\delta_{1} \delta_{4}\right) .
$$

Then σ_{i} act on the Picard lattice as

$$
\sigma_{1}=\left(\mathcal{E}_{6} \mathcal{E}_{8}\right) w_{\rho}, \quad \sigma_{2}=\left(\mathcal{E}_{3} \mathcal{E}_{7}\right)\left(\mathcal{E}_{4} \mathcal{E}_{8}\right), \quad \sigma_{3}=\left(\mathcal{E}_{1} \mathcal{E}_{5}\right)\left(\mathcal{E}_{2} \mathcal{E}_{6}\right),
$$

where w_{ρ} is a reflection in the root $\rho=\mathcal{H}_{f}-\mathcal{E}_{5}-\mathcal{E}_{7}$ (note also that a transposition $\left.\left(\mathcal{E}_{i} \mathcal{E}_{j}\right)=w_{\mathcal{E}_{i}-\mathcal{E}_{j}}\right)$. The induced elementary birational mappings are then given by the following expressions.

$$
\begin{aligned}
& \sigma_{1}:\left(\begin{array}{cccc}
b_{1} & b_{2} & 1-t & \frac{(1-t) b_{4}}{t} \\
0 & b_{8} & 1 & b_{6}
\end{array} ; \begin{array}{c}
1-f \\
\frac{(f-1) g}{f}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} \\
a_{4} & a_{3} & 1-t & \left.\begin{array}{c}
1-f \\
\frac{(f-1) g}{f}
\end{array}\right), ~
\end{array}\right. \\
& \sigma_{2}:\left(\begin{array}{ccccc}
b_{1} & b_{2} & \frac{1}{t} & \frac{b_{8}}{t} \\
0 & b_{6} & 1 & \frac{f}{t} \\
\frac{b_{4}}{t} & g
\end{array}\right) \quad=\left(\begin{array}{cccc}
a_{3} & a_{1} & a_{2} & \frac{f}{t} \\
a_{0} & a_{4} & \frac{1}{t} & g
\end{array}\right) \text {, } \\
& \sigma_{3}:\left(\begin{array}{ccccc}
b_{1} & b_{1}-b_{6} & \frac{1}{t} & \frac{b_{4}}{t^{2}} & \frac{1}{f} \\
0 & b_{1}-b_{2} & 1 & b_{8}
\end{array} b_{1}-g\right)=\left(\begin{array}{cccc}
a_{0} & a_{4} & a_{2} \\
a_{3} & a_{1} & \frac{1}{t} ; & \frac{1}{f} \\
-g-a_{2}
\end{array}\right) .
\end{aligned}
$$

The Standard $\mathrm{d}-P_{\vee}$ Mapping

Recall that there are infinitely many different discrete Painlevé equations of the same type, since they correspond to the non-conjugate translations in the affine symmetry sub-lattice Q. Some of these equations are special, since they either appear in applications, or have a particularly nice form, or have degenerations to other known equations. In the d- $P\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$ family one such equation is known as a discrete Painlevé- V equation, since it has a continuous limit to the differential Painlevé-V equation.

The Standard $\mathrm{d}-P_{\vee}$ Mapping

Recall that there are infinitely many different discrete Painlevé equations of the same type, since they correspond to the non-conjugate translations in the affine symmetry sub-lattice Q. Some of these equations are special, since they either appear in applications, or have a particularly nice form, or have degenerations to other known equations. In the d- $P\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$ family one such equation is known as a discrete Painlevé- V equation, since it has a continuous limit to the differential Painlevé-V equation.

In [KNY17] this equation is given in the form

$$
\bar{f} f=\frac{t g\left(g-a_{4}\right)}{\left(g+a_{2}\right)\left(g+a_{1}+a_{2}\right)}, \quad g+\underline{g}=a_{0}+a_{3}+a_{4}+\frac{a_{3}}{f-1}+\frac{t a_{0}}{f-t},
$$

with $\bar{a}_{0}=a_{0}-1, \bar{a}_{1}=a_{1}, \bar{a}_{2}=a_{2}+1, \bar{a}_{3}=a_{3}-1, \bar{a}_{4}=a_{4}$, and $a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$.

The Standard $\mathrm{d}-P_{\vee}$ Mapping

Recall that there are infinitely many different discrete Painlevé equations of the same type, since they correspond to the non-conjugate translations in the affine symmetry sub-lattice Q. Some of these equations are special, since they either appear in applications, or have a particularly nice form, or have degenerations to other known equations. In the d- $P\left(D_{4}^{(1)} / D_{4}^{(1)}\right)$ family one such equation is known as a discrete Painlevé- V equation, since it has a continuous limit to the differential Painlevé-V equation.

In [KNY17] this equation is given in the form

$$
\bar{f} f=\frac{\operatorname{tg}\left(g-a_{4}\right)}{\left(g+a_{2}\right)\left(g+a_{1}+a_{2}\right)}, \quad g+\underline{g}=a_{0}+a_{3}+a_{4}+\frac{a_{3}}{f-1}+\frac{t a_{0}}{f-t},
$$

with $\bar{a}_{0}=a_{0}-1, \bar{a}_{1}=a_{1}, \bar{a}_{2}=a_{2}+1, \bar{a}_{3}=a_{3}-1, \bar{a}_{4}=a_{4}$, and $a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$.
From this root variable evolution we immediately see that the corresponding translation on the root lattice is

$$
\varphi_{*}: \alpha=\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle \mapsto \varphi_{*}(\alpha)=\alpha+\langle 1,0,-1,1,0\rangle \delta .
$$

Using the standard techniques we get the following decomposition of ψ in terms of the generators of $\widetilde{W}\left(D_{4}^{(1)}\right)$:

$$
\varphi=\sigma_{3} \sigma_{2} w_{3} w_{0} w_{2} w_{4} w_{1} w_{2}
$$

The Standard $\mathrm{d}-P_{\vee}$ Mapping

This mapping can be further decomposed, in the natural way, as $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}$, where φ_{1} is a forward mapping $\varphi_{1}:(f, g) \mapsto(\bar{f},-g)$ and φ_{2} is a backward mapping $\varphi_{2}:(f, g) \mapsto(f,-\underline{g})$; the additional negative sign is necessary for the mapping to be a Cremona isometry.

The Standard $\mathrm{d}-P_{\vee}$ Mapping

This mapping can be further decomposed, in the natural way, as $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}$, where φ_{1} is a forward mapping $\varphi_{1}:(f, g) \mapsto(\bar{f},-g)$ and φ_{2} is a backward mapping $\varphi_{2}:(f, g) \mapsto(f,-\underline{g})$; the additional negative sign is necessary for the mapping to be a Cremona isometry.

The individual mappings $\varphi_{1,2}$ do not correspond to translations on the symmetry sub-lattice, but they can also be written in terms of generators, in two natural, but slightly different ways; $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}=\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi_{1}}:$
$\varphi_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=a_{1}, \bar{a}_{2}=-a_{1}-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$ $\varphi_{2}=w_{0} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=a_{1}, \underline{a}_{2}=1-a_{1}-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$,
or
$\tilde{\varphi}_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2} w_{1}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=-a_{1}, \bar{a}_{2}=-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$ $\tilde{\varphi}_{2}=w_{0} w_{1} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=-a_{1}, \underline{a}_{2}=1-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$.

The Standard $\mathrm{d}-P_{\vee}$ Mapping

This mapping can be further decomposed, in the natural way, as $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}$, where φ_{1} is a forward mapping $\varphi_{1}:(f, g) \mapsto(\bar{f},-g)$ and φ_{2} is a backward mapping $\varphi_{2}:(f, g) \mapsto(f,-\underline{g})$; the additional negative sign is necessary for the mapping to be a Cremona isometry.

The individual mappings $\varphi_{1,2}$ do not correspond to translations on the symmetry sub-lattice, but they can also be written in terms of generators, in two natural, but slightly different ways; $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}=\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi_{1}}:$
$\varphi_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=a_{1}, \bar{a}_{2}=-a_{1}-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$ $\varphi_{2}=w_{0} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=a_{1}, \underline{a}_{2}=1-a_{1}-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$,
or
$\tilde{\varphi}_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2} w_{1}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=-a_{1}, \bar{a}_{2}=-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$ $\tilde{\varphi}_{2}=w_{0} w_{1} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=-a_{1}, \underline{a}_{2}=1-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$.

The additional negative sign disappears if we consider complete forward or backward steps in the dynamics,

$$
(\underline{f}, \underline{g}) \stackrel{\varphi_{1}^{-1}}{\longleftrightarrow}(f,-\underline{g}) \stackrel{\varphi_{2}}{\longleftrightarrow}(f, g) \xrightarrow{\varphi_{1}}(\bar{f},-g) \xrightarrow{\varphi_{2}^{-1}}(\bar{f}, \bar{g}) .
$$

The Standard $\mathrm{d}-P_{\vee}$ Mapping

This mapping can be further decomposed, in the natural way, as $\varphi=\varphi_{2}^{-1} \circ \varphi_{1}$, where φ_{1} is a forward mapping $\varphi_{1}:(f, g) \mapsto(\bar{f},-g)$ and φ_{2} is a backward mapping $\varphi_{2}:(f, g) \mapsto(f,-\underline{g})$; the additional negative sign is necessary for the mapping to be a Cremona isometry.

The individual mappings $\varphi_{1,2}$ do not correspond to translations on the symmetry sub-lattice, but they can also be written in terms of generators, in two natural, but slightly different ways;
$\varphi=\varphi_{2}^{-1} \circ \varphi_{1}=\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi_{1}}:$
$\varphi_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=a_{1}, \bar{a}_{2}=-a_{1}-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$
$\varphi_{2}=w_{0} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=a_{1}, \underline{a}_{2}=1-a_{1}-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$,
or
$\tilde{\varphi}_{1}=\sigma_{3} \sigma_{2} w_{1} w_{2} w_{4} w_{1} w_{2} w_{1}:(f, g) \mapsto(\bar{f},-g) ; \quad \bar{a}_{0}=1-a_{0}, \bar{a}_{1}=-a_{1}, \bar{a}_{2}=-a_{2}, \bar{a}_{3}=1-a_{3}, \bar{a}_{4}=-a_{4} ;$
$\tilde{\varphi}_{2}=w_{0} w_{1} w_{3} w_{4}:(f, g) \mapsto(f,-\underline{g}) ; \quad \underline{a}_{0}=-a_{0}, \underline{a}_{1}=-a_{1}, \underline{a}_{2}=1-a_{2}, \underline{a}_{3}=-a_{3}, \underline{a}_{4}=-a_{4}$.

The additional negative sign disappears if we consider complete forward or backward steps in the dynamics,

$$
(\underline{f}, \underline{g}) \stackrel{\varphi_{1}^{-1}}{\longleftrightarrow}(f,-\underline{g}) \stackrel{\varphi_{2}}{\longleftrightarrow}(f, g) \xrightarrow{\varphi_{1}}(\bar{f},-g) \xrightarrow{\varphi_{2}^{-1}}(\bar{f}, \bar{g}) .
$$

This is the equation that we want to match with our discrete dynamical system for the recurrence coefficients for discrete orthogonal polynomials with the hypergeometric weight. We do this next.

The Identification Procedure (continued)

(Step 3) Determine the surface type, according to Sakai's classification scheme.

For a discrete Painlevé equation, although the positions of base points may evolve, the configuration will stay fixed, and so the surfaces $\left\{\mathcal{X}_{n}\right\}$ will all have the same type. There should be eight such base points; those points will lie on some (generically unique) biquadratic curve on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (i.e., a curve whose defining polynomial, when written in a coordinate chart, has a bi-degree (2,2)) and the point configuration is defined to be the configuration of the irreducible components of this curve. Each such component should have self-intersection index -2 and is associated with a node in an affine Dynkin diagram, nodes are connected when the corresponding components intersect. The type of this Dynkin diagram is called the surface type of the equation. This description assumes that the surfaces \mathcal{X}_{n} are minimal, but can happen that after the initial blowup procedure is complete, some -1 -curves would have to be blown down. This will also result in some irreducible components having higher negative self-intersection index. The blowing down procedure is quite delicate, so here we assume that the surfaces \mathcal{X}_{n} are indeed minimal, but see [DST13] and [DK19] for examples requiring a blowing down.

(Step 4) Find a preliminary change of basis of $\operatorname{Pic}(\mathcal{X})$.

At this step, we only need to ensure that this change of basis identifies the surface roots (or nodes of the Dynkin diagrams of our surface) with the standard example. This essentially matches the geometry of the application problem with the geometry of the model example. However, matching the geometries does not guarantee matching of the dynamics. This will be adjusted at the next step.

The Identification Procedure. Step 4: Preliminary Geometry Identification

We want to match

with

The Identification Procedure. Step 4: Preliminary Geometry Identification

We match the geometries by looking at the surface roots:

$$
\begin{array}{ll}
\delta_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, & =\mathcal{F}_{5}-\mathcal{F}_{6}, \\
\delta_{1}=\mathcal{H}_{f}-\mathcal{E}_{12} & =2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{123456}, \\
\delta_{2}=\mathcal{H}_{g}-\mathcal{E}_{37} & =\mathcal{F}_{6}-\mathcal{F}_{7} \\
\delta_{3}=\mathcal{E}_{7}-\mathcal{E}_{8} & =\mathcal{F}_{7}-\mathcal{F}_{8}, \\
\delta_{4}=\mathcal{H}_{f}-\mathcal{E}_{56} & =\mathcal{H}_{y}-\mathcal{F}_{56} .
\end{array}
$$

The Identification Procedure. Step 4: Preliminary Geometry Identification

We match the geometries by looking at the surface roots:

$$
\begin{array}{ll}
\delta_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, & =\mathcal{F}_{5}-\mathcal{F}_{6}, \\
\delta_{1}=\mathcal{H}_{f}-\mathcal{E}_{12} & =2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{123456}, \\
\delta_{2}=\mathcal{H}_{g}-\mathcal{E}_{37} & =\mathcal{F}_{6}-\mathcal{F}_{7} \\
\delta_{3}=\mathcal{E}_{7}-\mathcal{E}_{8} & =\mathcal{F}_{7}-\mathcal{F}_{8}, \\
\delta_{4}=\mathcal{H}_{f}-\mathcal{E}_{56} & =\mathcal{H}_{y}-\mathcal{F}_{56} .
\end{array}
$$

The Identification Procedure. Step 4: Preliminary Geometry Identification

We match the geometries by looking at the surface roots:

$$
\begin{array}{ll}
\delta_{0}=\mathcal{E}_{3}-\mathcal{E}_{4}, & =\mathcal{F}_{5}-\mathcal{F}_{6}, \\
\delta_{1}=\mathcal{H}_{f}-\mathcal{E}_{12} & =2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{123456}, \\
\delta_{2}=\mathcal{H}_{g}-\mathcal{E}_{37} & =\mathcal{F}_{6}-\mathcal{F}_{7} \\
\delta_{3}=\mathcal{E}_{7}-\mathcal{E}_{8} & =\mathcal{F}_{7}-\mathcal{F}_{8}, \\
\delta_{4}=\mathcal{H}_{f}-\mathcal{E}_{56} & =\mathcal{H}_{y}-\mathcal{F}_{56} .
\end{array}
$$

Lemma

The following change of bases of $\operatorname{Pic}(\mathcal{X})$ identifies the root bases between the standard $D_{4}^{(1)}$ surface and the surface that we obtained for the hypergeometric weight recurrence:

$$
\begin{array}{ll}
\mathcal{H}_{x}=\mathcal{H}_{g}, & \mathcal{H}_{f}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{3}-\mathcal{F}_{4}-\mathcal{F}_{5}-\mathcal{F}_{6}, \\
\mathcal{H}_{y}=\mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}, & \mathcal{H}_{g}=\mathcal{H}_{x}, \\
\mathcal{F}_{1}=\mathcal{E}_{1}, & \mathcal{E}_{1}=\mathcal{F}_{1}, \\
\mathcal{F}_{2}=\mathcal{E}_{2}, & \mathcal{E}_{2}=\mathcal{F}_{2}, \\
\mathcal{F}_{3}=\mathcal{H}_{g}-\mathcal{E}_{6}, & \mathcal{E}_{3}=\mathcal{H}_{x}-\mathcal{F}_{6}, \\
\mathcal{F}_{4}=\mathcal{H}_{g}-\mathcal{E}_{5}, & \mathcal{E}_{4}=\mathcal{H}_{x}-\mathcal{F}_{5}, \\
\mathcal{F}_{5}=\mathcal{H}_{g}-\mathcal{E}_{4}, & \mathcal{E}_{5}=\mathcal{H}_{x}-\mathcal{F}_{4}, \\
\mathcal{F}_{6}=\mathcal{H}_{g}-\mathcal{E}_{3}, & \mathcal{E}_{6}=\mathcal{H}_{x}-\mathcal{F}_{3}, \\
\mathcal{F}_{7}=\mathcal{E}_{7}, & \mathcal{E}_{7}=\mathcal{F}_{7}, \\
\mathcal{F}_{8}=\mathcal{E}_{8}, & \mathcal{E}_{8}=\mathcal{F}_{8} .
\end{array}
$$

The Identification Procedure (continued)

(Step 5) Find the translation vector and compare it with the standard dynamic.

Using this preliminary change of basis we can define the symmetry roots for our surface that match the standard example. Using the action φ_{*} of the mapping on $\operatorname{Pic}(\mathcal{X})$ we can then see the induced action on the symmetry sub-lattice and, in particular, on the symmetry roots. For the discrete Painlevé equations, this action on each root should be a translation by some multiple of the anti-canonical divisor class. Even when this vector is not the same as the translation vector for the reference dynamic, it may be conjugate to it. To find out whether this is the case, we represent each translation as a word in the generators of the extended affine Weyl group and solve the conjugacy problem for words in groups. If they are conjugate, the conjugation element is the necessary adjustment to our preliminary change of basis.

The Identification Procedure. Step 5: Comparing the Translations

We are now in the position to compare the dynamics. Using this preliminary change of bases we get the following expressions for the symmetry roots for the applied problem:

$$
\begin{array}{ll}
\alpha_{0}=\mathcal{H}_{y}-\mathcal{F}_{34}, & \alpha_{3}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{345678} \\
\alpha_{1}=\mathcal{F}_{1}-\mathcal{F}_{2}, & \alpha_{4}=\mathcal{F}_{3}-\mathcal{F}_{4} . \\
\alpha_{2}=\mathcal{F}_{4}-\mathcal{F}_{1}, &
\end{array}
$$

The Identification Procedure. Step 5: Comparing the Translations

We are now in the position to compare the dynamics. Using this preliminary change of bases we get the following expressions for the symmetry roots for the applied problem:

$$
\begin{array}{ll}
\alpha_{0}=\mathcal{H}_{y}-\mathcal{F}_{34}, & \alpha_{3}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{345678} \\
\alpha_{1}=\mathcal{F}_{1}-\mathcal{F}_{2}, & \alpha_{4}=\mathcal{F}_{3}-\mathcal{F}_{4} \\
\alpha_{2}=\mathcal{F}_{4}-\mathcal{F}_{1}, &
\end{array}
$$

From the action of ψ_{*} on $\operatorname{Pic}(\mathcal{X})$ we immediately see that the corresponding translation on the root lattice is

$$
\psi_{*}: \alpha=\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle \mapsto \psi_{*}(\alpha)=\alpha+\langle 1,0,0,-1,0\rangle \delta,
$$

which is different than the standard translation vector $\langle 1,0,-1,1,0\rangle$.

The Identification Procedure. Step 5: Comparing the Translations

We are now in the position to compare the dynamics. Using this preliminary change of bases we get the following expressions for the symmetry roots for the applied problem:

$$
\begin{array}{ll}
\alpha_{0}=\mathcal{H}_{y}-\mathcal{F}_{34}, & \alpha_{3}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{345678} \\
\alpha_{1}=\mathcal{F}_{1}-\mathcal{F}_{2}, & \alpha_{4}=\mathcal{F}_{3}-\mathcal{F}_{4} \\
\alpha_{2}=\mathcal{F}_{4}-\mathcal{F}_{1}, &
\end{array}
$$

From the action of ψ_{*} on $\operatorname{Pic}(\mathcal{X})$ we immediately see that the corresponding translation on the root lattice is

$$
\psi_{*}: \alpha=\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle \mapsto \psi_{*}(\alpha)=\alpha+\langle 1,0,0,-1,0\rangle \delta,
$$

which is different than the standard translation vector $\langle 1,0,-1,1,0\rangle$.
However, decomposing ψ in terms of generators of the extended affine Weyl symmetry group and comparing it with the expression for φ,

$$
\psi=\sigma_{3} \sigma_{2} w_{3} w_{2} w_{4} w_{1} w_{2} w_{3}, \quad \varphi=\sigma_{3} \sigma_{2} w_{3} w_{0} w_{2} w_{4} w_{1} w_{2}
$$

we immediately see that $\psi=w_{3} \circ \varphi \circ w_{3}^{-1}$ (recall that $w_{3} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} w_{0}$ and that w_{3} is an involution, $w_{3}^{-1}=w_{3}$). Thus, our dynamic is indeed equivalent to the standard $d-P_{V}$ equation, but the preliminary change of bases in the previous Lemma needs to be adjusted by acting by w_{3}.

The Identification Procedure. Step 5: Comparing the Translations

We now adjust the change of basis by w_{3} action to get the following Lemma.

The Identification Procedure. Step 5: Comparing the Translations

We now adjust the change of basis by w_{3} action to get the following Lemma.

Lemma

After the change of bases of $\operatorname{Pic}(\mathcal{X})$ given by

$$
\begin{array}{ll}
\mathcal{H}_{x}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{7}-\mathcal{E}_{8}, & \mathcal{H}_{f}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{3}-\mathcal{F}_{4}-\mathcal{F}_{5}-\mathcal{F}_{6}, \\
\mathcal{H}_{y}=3 \mathcal{H}_{f}+2 \mathcal{H}_{g}-\mathcal{E}_{3}-\mathcal{E}_{4}-\mathcal{E}_{5}-\mathcal{E}_{6}-2 \mathcal{E}_{7}-2 \mathcal{E}_{8}, & \mathcal{H}_{g}=3 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{3}-\mathcal{F}_{4}-\mathcal{F}_{5}-\mathcal{F}_{6}-\mathcal{F}_{7}-\mathcal{F}_{8}, \\
\mathcal{F}_{1}=\mathcal{E}_{1}, & \mathcal{E}_{1}=\mathcal{F}_{1}, \\
\mathcal{F}_{2}=\mathcal{E}_{2}, & \mathcal{E}_{2}=\mathcal{F}_{2}, \\
\mathcal{F}_{3}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{6}-\mathcal{E}_{7}-\mathcal{E}_{8}, & \mathcal{E}_{3}=\mathcal{H}_{x}-\mathcal{F}_{6}, \\
\mathcal{F}_{4}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{5}-\mathcal{E}_{7}-\mathcal{E}_{8}, & \mathcal{E}_{4}=\mathcal{H}_{x}-\mathcal{F}_{5}, \\
\mathcal{F}_{5}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{4}-\mathcal{E}_{7}-\mathcal{E}_{8}, & \mathcal{E}_{5}=\mathcal{H}_{x}-\mathcal{F}_{4}, \\
\mathcal{F}_{6}=\mathcal{H}_{f}+\mathcal{H}_{g}-\mathcal{E}_{3}-\mathcal{E}_{7}-\mathcal{E}_{8}, & \mathcal{E}_{6}=\mathcal{H}_{x}-\mathcal{F}_{3}, \\
\mathcal{F}_{7}=\mathcal{H}_{f}-\mathcal{E}_{8}, & \mathcal{E}_{7}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{3}-\mathcal{F}_{4}-\mathcal{F}_{5}-\mathcal{F}_{6}-\mathcal{F}_{8}, \\
\mathcal{F}_{8}=\mathcal{H}_{f}-\mathcal{E}_{7}, & \mathcal{E}_{8}=2 \mathcal{H}_{x}+\mathcal{H}_{y}-\mathcal{F}_{3}-\mathcal{F}_{4}-\mathcal{F}_{5}-\mathcal{F}_{6}-\mathcal{F}_{7},
\end{array}
$$

the recurrence relations for variables x_{n} and y_{n} coincides with the standard $d-P_{V}$ discrete Painlevé equation. The resulting identification of the symmetry root bases (the surface root bases do not change) is

$$
\begin{array}{ll}
\alpha_{0}=\mathcal{H}_{y}-\mathcal{F}_{34}, & \alpha_{3}=-2 \mathcal{H}_{x}-\mathcal{H}_{y}+\mathcal{F}_{345678} \\
\alpha_{1}=\mathcal{F}_{1}-\mathcal{F}_{2}, & \alpha_{4}=\mathcal{F}_{3}-\mathcal{F}_{4}
\end{array}
$$

The Identification Procedure (continued)

(Step 5) Find the translation vector and compare it with the standard dynamic.

Using this preliminary change of basis we can define the symmetry roots for our surface that match the standard example. Using the action φ_{*} of the mapping on $\operatorname{Pic}(\mathcal{X})$ we can then see the induced action on the symmetry sub-lattice and, in particular, on the symmetry roots. For the discrete Painlevé equations, this action on each root should be a translation by some multiple of the anti-canonical divisor class. Even when this vector is not the same as the translation vector for the reference dynamic, it may be conjugate to it. To find out whether this is the case, we represent each translation as a word in the generators of the extended affine Weyl group and solve the conjugacy problem for words in groups. If they are conjugate, the conjugation element is the necessary adjustment to our preliminary change of basis.
(Step 6) Find the change of variables reducing the applied problem to the standard example. Adjusting the change of bases in $\operatorname{Pic}(\mathcal{X})$, if necessary, we now have the identification on the level of the Picard lattice. Next, we need to fing the actual change of variables that induces that linear change of basis. For that, identify the curves that form the basis in the corresponding coordinate pencils. Those curves then are our projective coordinates, up to a Möbius transformation. To fix the Möbius transformations, use the mapping of coordinate divisors. An importnat part of this computation is the identification of various parameters between the two problems. This, in fact, can be done ahead of time by using the Period Map, which gives the parameterization in terms of canonical (for the given choice of root bases) root variables. Expressing these root variables in terms of parameters of the problem gives the necessary identification of parameters.

The Identification Procedure. Step 6: The Change of Coordinates

Next we need to realize this change of basis on $\operatorname{Pic}(\mathcal{X})$ by the explicit change of coordinates. For that, it is convenient to first match the parameters between the applied problem and the reference example. This is done with the help of the Period Map.

The Identification Procedure. Step 6: The Change of Coordinates

Next we need to realize this change of basis on $\operatorname{Pic}(\mathcal{X})$ by the explicit change of coordinates. For that, it is convenient to first match the parameters between the applied problem and the reference example. This is done with the help of the Period Map.

Lemma

(i) The residues of the symplectic form $\omega=k \frac{d X \wedge d Y}{s(X, Y) Y}=k \frac{d X \wedge d s}{s\left(s-X^{2}\right)}$ along the irreducible components of the polar divisor are given by

$$
\begin{aligned}
\operatorname{res}_{d_{0}} \omega & =-k \frac{d v_{5}}{v_{5}^{2}}, & \operatorname{res}_{d_{2}} \omega & =-k \frac{(n+\alpha+\beta) d v_{6}}{\left(v_{6}-1\right)^{2}}, \quad \operatorname{res}_{d_{4}} \omega=-k \frac{X}{X^{2}} \\
\operatorname{res}_{d_{1}} \omega & =k \frac{d X}{X^{2}}, & \operatorname{res}_{d_{3}} \omega & =-k \frac{(c-1)^{2} d v_{7}}{c},
\end{aligned}
$$

(ii) The root variables are given by
$a_{0}=k(\gamma-n-\alpha), \quad a_{1}=k(\alpha-1), \quad a_{2}=k(1+n+\beta-\gamma), \quad a_{3}=-k(n+\beta), \quad a_{4}=k(\gamma-\beta)$.
The normalization condition $a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$ then implies that $k=1$, and we get the following relations between our parameters and the root variables:

$$
\alpha=a_{1}+1, \quad \beta=a_{0}+a_{1}+a_{2}, \quad \gamma=1-a_{2}-a_{3}, \quad n=a_{2}+a_{4}-1 .
$$

Note that the root variable evolution, which is the same as in the standard case, is consistent with what we expect: $\bar{\alpha}=\alpha, \bar{\beta}=\beta, \bar{\gamma}=\gamma$, and $\bar{n}=n+1$. Also observe that we can not yet see the relationship between parameters t and c in this identification.

The Identification Procedure. Step 6: The Change of Coordinates

Theorem (Main Result)

The discrete dynamical system on recurrence coefficients of discrete orthogonal polynomials with the hypergeometric weight is equivalent to to the standard difference Painlevé- V equation

$$
\bar{f} f=\frac{\operatorname{tg}\left(g-a_{4}\right)}{\left(g+a_{2}\right)\left(g+a_{1}+a_{2}\right)}, \quad g+\underline{g}=a_{0}+a_{3}+a_{4}+\frac{a_{3}}{f-1}+\frac{t a_{0}}{f-t},
$$

with $\bar{a}_{0}=a_{0}-1, \bar{a}_{1}=a_{1}, \bar{a}_{2}=a_{2}+1, \bar{a}_{3}=a_{3}-1, \bar{a}_{4}=a_{4}$, and $a_{0}+a_{1}+2 a_{2}+a_{3}+a_{4}=1$. This equivalence is achieved via the following change of variables:

$$
\begin{aligned}
x(f, g)= & \gamma-g-\frac{(n+\beta) f}{f-1} \\
y(f, g)= & (g+\alpha+\beta+n-\gamma)(g+2 \beta+2 n-\gamma)-n \alpha-\frac{g t(g+\beta-\gamma)}{f} \\
& +\frac{(n+\beta)((c-1)(2 g+\alpha+3 \beta+3 n-2 \gamma)+(\alpha+\beta+\gamma-n)+n)}{c(f-1)}+\frac{(c-1)(n+\beta)^{2}}{c(f-1)^{2}} .
\end{aligned}
$$

The inverse change of variables is given by

$$
\begin{aligned}
& f(x, y)=\frac{t(x-\beta)(x-\gamma)}{((x-\alpha)(x-\beta)-n x-y)} \\
& g(x, y)=-\frac{(x-\gamma)(((x-\alpha)(x-\beta)-n x-y)-t(x-\beta)(x-\gamma+\beta+n))}{((x-\alpha)(x-\beta)-n x-y)-t(x-\beta)(x-\gamma)}
\end{aligned}
$$

Parameters α, β, γ and c of the weight are related to the standard Painlevé parameters (root variables) by $\alpha=a_{1}+1, \beta=a_{0}+a_{1}+a_{2}, \gamma=1-a_{2}-a_{3}, n=a_{2}+a_{4}-1$, and $c t=1$.

References

Masatoshi Noumi，Painlevé equations through symmetry．，Translations of Mathematical Monographs，223．American Mathematical Society，（2004） 156 pp．

Hidetaka Sakai，Rational surfaces associated with affine root systems and geometry of the Painlevé equations，Comm．Math．Phys． 220 （2001），no．1，165－229．
T－Kenji Kajiwara，Masatoshi Noumi，Yasuhiko Yamada，Geometric Aspects of Painlevé Equations，J．Phys．A：Math．Theor． 50 （2017） 073001 （164pp），arXiv：1509． 08186 ［nlin．SI］

Tsuda，T．，Integrable mappings via rational elliptic surfaces．，J．Phys．A 37 （2004） 2721－2730．

Duistermaat，J．J．，Discrete Integrable Systems：QRT Maps and Elliptic Surfaces， （Springer－Verlag，New York，2010）

Adrian Stefan Carstea，Anton Dzhamay，and Tomoyuki Takenawa，Fiber－dependent deautonomization of integrable 2D mappings and discrete Painlevé equations，J．Phys．A 50 （2017），no．40，405202， 41.
目
Michio Jimbo and Hidetaka Sakai，A q－analog of the sixth Painlevé equation，Lett．Math． Phys． 38 （1996），no．2，145－154．

References（cont．）

Anton Dzhamay，Galina Filipuk，Alexander Stokes，Recurrence coefficients for discrete orthogonal polynomials with hypergeometric weight and discrete Painlevé equations， arXiv：1910．10981［nlin．SI］

Anton Dzhamay，Hidetaka Sakai，Tomoyuki Takenawa，Discrete Hamiltonian Structure of Schlesinger Transformations，arXiv：1302．2972v2［math－ph］

Anton Dzhamay and Tomoyuki Takenawa，On Some Applications of Sakai＇s Geometric Theory of Discrete Painlevé Equations，SIGMA 14 （2018），075， 20 pages， arXiv：1804．10341［math－ph］

Anton Dzhamay and Alisa Knizel，q－Racah polynomial ensemble and discrete q－Painlevé equations，Int．Math．Res．Not．IMRN（2019），no．doi：10．1093／imrn／rnz211，1－47．

Galina Filipuk and Walter Van Assche，Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI，SIGMA Symmetry Integrability Geom．Methods Appl． 14 （2018）， Paper No．088， 19.

J．Hu，G．Filipuk，and Y．Chen，Differential and difference equations for recurrence coefficients of orthogonal polynomials with hypergeometric weights and Bäcklund transformations of the sixth Painlevé equation，submitted， 2019.

