Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 21 |  Оглавление |  Глава 21. § 2

§ 1.  Конечное число точек, прямых и т. д.

21.1.
Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.
21.2.
Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0,5.
21.3.
В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит Ц5.

21.4.
На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?
21.5.
На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
21.6*.
В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
21.7*.
Каждый из двух дисков разделен на 1985 равных секторов и на каждом окрашено произвольным образом (одним цветом) по 200 секторов. Диски наложили друг на друга и один стали поворачивать на углы, кратные 360°/1985. Докажите, что существует по крайней мере 80 положений, при которых совпадает не более 20 окрашенных секторов.
21.8*.
Каждая из девяти прямых разбивает квадрат на два четырехугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
21.9*.
В парке растет 10 000 деревьев, посаженных квадратно-гнездовым способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев можно срубить, чтобы выполнялось следующее условие: если встать на любой пень, то не будет видно ни одного другого пня? (Деревья можно считать достаточно тонкими.)
21.10*.
Какое наименьшее число точек достаточно отметить внутри выпуклого n-угольника, чтобы внутри любого треугольника с вершинами в вершинах n-угольника содержалась хотя бы одна отмеченная точка?
21.11*.
Внутри выпуклого 2n-угольника взята точка P. Через каждую вершину и точку P проведена прямая. Докажите, что найдется сторона многоугольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
21.12*.
Докажите, что в любом выпуклом 2n-угольнике найдется диагональ, не параллельная ни одной из его сторон.
21.13*.
Узлы бесконечной клетчатой бумаги раскрашены в три цвета. Докажите, что существует равнобедренный прямоугольный треугольник с вершинами одного цвета.

  Глава 21 |  Оглавление |  Глава 21. § 2

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100