Introduction into (projective) algebraic geometry

Maxim Leyenson

The base field k is algebraically closed, unless specified otherwise. Characteristic is any, but sometimes we will have to assume that it is large enough (usually 5 is enough), or zero.

Completed in the Spring of 2020

- Introduction
- Affine and projective varieties - definition and a few examples. Projective spaces. Veronese embedding.
- Algebraic curves - 1 .
- Plane curves, smooth and singular.
- Plane conics are rational.
- Smooth plane cubics are not rational.

Singular plane cubics.

- The group law on a plane cubic (elliptic curve). Case of the field of complex numbers (statement only).
- Algebraic surfaces - 1 .
- Blow-up of a point on a plane.
- Intersection index of properly intersecting curves.
- Main theorem: invariance of the intersection index under the linear equivalence.
- Difficult part: self-intersection of a curve via linear equivalence. Examples: exceptional curve of the blow-up; resolution of a cone singularity.
- Singularities of surfaces - 1 .
- Platonic solids in $\mathrm{R}^{\wedge} 3$ give some finite subgroups in the group $\operatorname{PSL}(2, \mathrm{C})$
- Binary groups: lifting of a finite subgroup to the group SL(2).
- Example: binary icosahedral group after Felix Klein.
- Defining the factor-variety $\mathrm{A}^{\wedge} 2 / \mathrm{G}$.
- Chevalley-Sheppard-Todd theorem: statement only, and some examples.
- Invariant theory: computing singular surfaces $\mathrm{A}^{\wedge} 2 / \mathrm{G}$;
- Resolution of the singularities of surfaces.
- Example: resolution of the singularities $\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2+\mathrm{z}^{\wedge} 2, \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2+$ $\mathrm{z}^{\wedge} 3$.
- Intersection of the components of the exceptional divisor. Difficult part: self-intersection of the components via linear equivalence.
- Example: Resolution of the icosahedral singularity $x^{\wedge} 2+y^{\wedge} 3+z^{\wedge} 5$.

Remaining part

- Genus of a curve, definition via Poincare polynomial.
- Arithmetic genus of a smooth curve via cohomology, $\mathrm{H}^{\wedge} 1(\mathrm{O})^{1}$. Equivalence with the POincare series definition.
- Linear equivalence of divisors.
- Picard group and the notion of Picard variety for a curve.
- Example: projective line, $\mathrm{P}^{\wedge} 1$.
- Example: elliptic curve (plane cubic): detailed study of linear systems.
- Picard group of a surface: elementary examples: projective plane $\mathrm{P}^{\wedge} 2$, quadric $\mathrm{P}^{\wedge} 1 \times \mathrm{P}^{\wedge} 1$.
- Abel-Jacobi morphism from the symmetric power of a curve to the Picard variety.
- Differential forms on curves.
- Residues of differential on a curve: definition only, without proof of invariance.
- Serre duality: sketch of the proof with resudes ${ }^{2}$.
- Riemann-Roch theorem: sheaf-theoretic proof ${ }^{3}$.
- Hurwitz formula: algebraic proof.
- Case of complex numbers: Hurwitz formula: topological proof.
- Canonical embedding of a curve. Example: curves of genus 3 are plane curves of degree 4 .
- Riemann-Roch theorem in a geometric form: linear span of a set of points in the canonical embedding.
- Hyper-elliptic curves. Curves of genus 2 are hyper-elliptic.
- Algebraic surfaces - 2 .

[^0]- Adjunction formula for curves on a surface. Genus of a plane curve, again.
- First Chern class of a line bundle on a surface with values in the Picard group (as zeroes and poles of a rational section).
- Neron-Severi group of a surface. Examples: $\mathrm{P}^{\wedge} 2$, quadric.
- Digression: resolution of singularities of surfaces - some examples.
- Cubic surfaces in $\mathrm{P}^{\wedge} 3$.
- Linear system of plane cubic curves through 6 points on $\mathrm{P}^{\wedge} 2$, and 27 lines: sketch of a proof. Picard group of a cubic surface is isomorphic to E_6.
- Cremona transformations of $\mathrm{P}^{\wedge} 2$: Example.
- Grassmannian varieties - 1 .
- Grassmannian variety $\operatorname{Gr}(2,4)$.
- Projective embedding of $\operatorname{Gr}(2,4)$. Plucker quadric.
- Intersection theory on $\operatorname{Gr}(2,4)$. 27 lines, again. Idea of rational equavlence of cycles.

[^0]: ${ }^{1}$ If I can assume that the notion of sheaf cohomology is known. I only need $\mathrm{H}^{\wedge} 1$ of a sheaf. Cech definition is enough.
 ${ }^{2}$ same
 ${ }^{3}$ same

