Introduction into (projective) algebraic geometry

Maxim Leyenson

The base field k is algebraically closed, unless specified otherwise. Characteristic is any, but sometimes we will have to assume that it is large enough (usually 5 is enough), or zero.

Completed in the Spring of 2020

- Introduction
 - Affine and projective varieties definition and a few examples. Projective spaces. Veronese embedding.
- Algebraic curves 1.
 - Plane curves, smooth and singular.
 - Plane conics are rational.
 - Smooth plane cubics are not rational.

Singular plane cubics.

- The group law on a plane cubic (elliptic curve). Case of the field of complex numbers (statement only).
- Algebraic surfaces 1.
- Blow-up of a point on a plane.
- Intersection index of properly intersecting curves.
- Main theorem: invariance of the intersection index under the linear equivalence.
- Difficult part: self-intersection of a curve via linear equivalence. Examples: exceptional curve of the blow-up; resolution of a cone singularity.
- Singularities of surfaces 1.
- Platonic solids in R³ give some finite subgroups in the group PSL(2,C)
- Binary groups: lifting of a finite subgroup to the group SL(2).
- Example: binary icosahedral group after Felix Klein.
- Defining the factor-variety A² / G.
- Chevalley-Sheppard-Todd theorem: statement only, and some examples.
- Invariant theory: computing singular surfaces A² / G;
- Resolution of the singularities of surfaces.

- Example: resolution of the singularities $x^2 + y^2 + z^2$, $x^2 + y^2 + z^3$.
- Intersection of the components of the exceptional divisor. Difficult part: self-intersection of the components via linear equivalence.
- Example: Resolution of the icosahedral singularity $x^2 + y^3 + z^5$.

Remaining part

- Genus of a curve, definition via Poincare polynomial.
- Arithmetic genus of a smooth curve via cohomology, $\rm H^1(O)$ 1 . Equivalence with the POincare series definition.
- Linear equivalence of divisors.
- Picard group and the notion of Picard variety for a curve.
- Example: projective line, P¹.
- Example: elliptic curve (plane cubic): detailed study of linear systems.
 - Picard group of a surface: elementary examples: projective plane P², quadric P¹ x P¹.
- Abel-Jacobi morphism from the symmetric power of a curve to the Picard variety.
- Differential forms on curves.
- Residues of differential on a curve: definition only, without proof of invariance.
- Serre duality: sketch of the proof with resudes ².
- Riemann-Roch theorem: sheaf-theoretic proof 3 .
- Hurwitz formula: algebraic proof.
- Case of complex numbers: Hurwitz formula: topological proof.
- Canonical embedding of a curve. Example: curves of genus 3 are plane curves of degree 4.
- Riemann-Roch theorem in a geometric form: linear span of a set of points in the canonical embedding.
- Hyper-elliptic curves. Curves of genus 2 are hyper-elliptic.
- Algebraic surfaces 2.

 $^{^1{\}rm If}$ I can assume that the notion of sheaf cohomology is known. I only need H^1 of a sheaf. Cech definition is enough.

 $^{^{2}}$ same

 $^{^{3}}$ same

- Adjunction formula for curves on a surface. Genus of a plane curve, again.
- First Chern class of a line bundle on a surface with values in the Picard group (as zeroes and poles of a rational section).
- Neron-Severi group of a surface. Examples: P², quadric.
- Digression: resolution of singularities of surfaces some examples.
- Cubic surfaces in P³.
 - Linear system of plane cubic curves through 6 points on P², and 27 lines: sketch of a proof. Picard group of a cubic surface is isomorphic to E_6.
 - Cremona transformations of P²: Example.
- Grassmannian varieties 1.
 - Grassmannian variety Gr(2,4).
 - Projective embedding of Gr(2,4). Plucker quadric.
 - Intersection theory on Gr(2,4). 27 lines, again. Idea of rational equavlence of cycles.