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PYTHAGOREAN TRIPLES

For a right triangle with legs X and Y and hypotenuse Z, the
Pythagorean theorem states that the sum of the squared lengths of the
legs is equal to the squared length of the hypotenuse, i.e.,

X2 + Y 2 = Z2: (1)

Even in ancient times, people had an example of positive integers X,
Y , and Z, satisfying this equation: X = 3, Y = 4, Z = 5. The triangle
with these side lengths is known as the Egyptian triangle. It can be
constructed by stretching a circular rope with knots dividing it into
12 equal parts over three pegs stuck in the ground so that they form
a triangle with sides lengths 3, 4, and 5 (Fig. 1). This is how one can
construct a right angle on a �at terrain.

Fig. 1

Let us describe all Pythagorean triples, i.e., triples (X;Y; Z) of non-
negative integers satisfying the relation X2 + Y 2 = Z2. First, note
that if we have such a triple, then, multiplying all three integers of this
triple by the same positive integer, we again obtain a Pythagorean triple.
Therefore, it is su�cient to �nd only triples of coprime integers. More-
over, it su�ces to �nd triples of pairwise coprime integers: if two of the
numbers X, Y , and Z are divisible by a prime p, then so is the third
number.

Note that the only solution with Z = 0 is X = Y = Z = 0, and
we shall not consider it in what follows. For all other solutions of the
equation X2+Y 2 = Z2, the number Z is nonzero. Dividing the equation
by the square of Z, we obtain the following new equation

x2 + y2 = 1; (2)

where x =
X

Z
and y =

Y

Z
are rational numbers.
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Equation (2) determines a circle S of radius 1 centered at the origin
(Fig. 2). We have reduced the initial problem to that of listing all rational
points1) of this circle. It turns out that there are, in a certain sense, as
many such points as there are rational points on the real line. Some
of these rational points are easy to �nd: (�1; 0), (0;�1). Let us choose
one of them, say A = (0; 1), and draw all straight lines (except for the
horizontal one) passing through point A. Every such line l intersects
the circle in yet another point B = (x; y) and the x-axis in some point
C = (c; 0).

(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)(c, 0)

CO

y

x

A(0, 1)

B(x, y)

x 2+y 2=1

x=c−cy

Fig. 2

1. Check that, assigning the point C to each point B, we obtain a one-
to-one correspondence between the points of the circle S (except A)
and the points of the straight line y = 0.2)

Such is the geometry. What about the arithmetic? It turns out that
the correspondence indicated above preserves the rationality of points.

Let us prove that a point B has rational coordinates if and only if the
number c is rational. The line passing through A and C is determined
by the equation x = c� cy. Let us substitute it into the equation of the
circle. We obtain

(c� cy)2 + y2 = 1; i.e., (c2 + 1)y2 � 2c2y + c2 � 1 = 0;

whence y = 1 (which corresponds to the point A) or y =
c2 � 1
c2 + 1

, so that

x = c� cy =
2c

c2 + 1
. If the number c is rational, then so are x and y.

The converse is an immediate consequence of the following two as-
sertions (which we constantly use in what follows).

1) A rational point is a point with rational coordinates.
2) The vertical double bar indicates text problems for unassisted solution. Chal-
lenging problems are marked by a star *.
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2. If the coordinates of two points are rational, then the equation of
the straight line passing through them can be written so that it has
rational coe�cients.

If two straight lines are determined by equations with rational
coe�cients, then their intersection point has rational coordinates (if
it exists).

Thus, every rational solution of equation (2), except x = 0, y = 1,
can be obtained by substituting some rational number for c into the
formula

x =
2c

c2 + 1
; y =

c2 � 1
c2 + 1

:

Let us represent c as an irreducible fraction m=n (m and n are
integers). We have

x =
2c

c2 + 1
=

2mn
m2 + n2

; y =
c2 � 1
c2 + 1

=
m2 � n2

m2 + n2

(note that, for n = 0 and m 6= 0, we obtain the solution x = 0, y = 1,
which we had intentionally �lost�).

Recall that our goal is to �nd all positive integer solutions of equa-
tion (1). We have

X

Z
=

2mn
m2 + n2

;
Y

Z
=

m2 � n2

m2 + n2

(where m2 + n2 6= 0). The fractions on the left-hand sides of these
equations are irreducible, because X, Y , and Z are pairwise coprime.
If the fractions on the right-hand sides were irreducible as well, then
we could set X = 2mn, Y = m2 � n2, and Z = m2 + n2, but this
is not always the case; e.g., both fractions are reducible for m = 5
and n = 3. However, these fractions can be reduced only by 2. Indeed,
consider the �rst fraction. Suppose that the prime p (p 6= 2) divides 2mn;
if p divides m, then it cannot divide n, because the fraction m=n is
irreducible. Therefore, m2 + n2 is not divisible by p, and if m and n are

odd, then the fraction
2mn

m2 + n2
can be reduced only by 2. Consider the

second fraction: if the prime p divides both m2�n2 and m2+n2, then p
divides 2m2 and 2n2. The numbers m and n have no common divisors;
hence p = 2, and both m and n are odd.

Thus, the coprime positive integer solutions of (1) are

X = mn; Y =
m2 � n2

2
; Z =

m2 + n2

2
(3)

for mutually coprime odd m and n, m > n > 0, whence we obtain

X = 2mn; Y = m2 � n2; Z = m2 + n2 (4)
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The �gure above shows the Plimpton 322 clay tablet in the Plimpton collec-
tion at Columbia University, New York, with a Babylonian cuneiform inscription
(19th to 17th century B.C.) discovered by G. Plimpton in the 1920s.

The tablet contains a list of several right triangles with integer side lengthsX,
Y , and Z. Several columns to the left of the tablet have been broken o�. The �rst

unbroken column, I, contains quotients
Z2

X2
, which smoothly decrease from 2 to

a value slightly greater than 4=3. The next two columns, II and III, contain the
corresponding �widths� Y and �diagonals� Z. The last column, IV, contains only
the sequence of consecutive numbers from 1 to 15.

The widths Y and diagonals Z satisfy the equation

X2 + Y 2 = Z2;

in which the �height� X is an integer and the only prime divisors of X are 2, 3,
and 5. In the 11th and 15th rows, the numbers X, Y , and Z have a common
divisor greater than 1. In all other cases, these numbers are coprime.

The Plimpton 322 table is deciphered on p. 7 (the numbers are �rst presented
in Babylonian sexagesimal notation, so that, say, the expression 1,22;5,14 denotes
the number

1 � 601 + 22 � 600 + 5 � 60�1 + 14 � 60�2;

and then appear in decimal notation).
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It should be mentioned that the Babylonian notation for integers is ambigu-
ous. For example, the notations for 1,22;5,14, 1,22,5;14, and 1,22,5,14 (which
correspond to di�erent integers) were identical, and one could understand which
one of these integers is meant only from the context. The notations for 5,14;1 and
5,0,14;1 were identical as well, because there was no symbol for zero. The deci-
phered version presented below was made under the assumption that all numbers
in columns II and III are integer (to be more precise, they have the least positive
integer values among all possible ones).

Z2=X2 X Y Z No.

1;59,0,15 2,0 1,59 2,49 1
1;56,56,58,14,50,6,15 57,36 56,7 1,20,251) 2
1;55,7,41,15,33,45 1,20,0 1,16,41 1,50,49 3
1;53,10,29,32,52,16 3,45,0 3,31,49 5,9,1 4
1;48,54,1,40 1,12 1,5 1,37 5
1;47,6,41,40 6,0 5,19 8,1 6
1;43,11,56,28,26,40 45,0 38,11 59,1 7
1;41,33,45,14,3,45 16,0 13,19 20,49 8
1;38,33,36,36 10,0 8,12) 12,49 9
1;35,10,2,28,27,24,26 1,48,0 1,22,41 2,16,1 10
1;33,45 1,0 45 1,15 11
1;29,21,54,2,15 40,0 27,59 48,49 12
1;27,0,3,45 4,0 2,413) 4,49 13
1;25,48,51,35,6,40 45,0 29,31 53,49 14
1;23,13,46,40 1,30 56 1,464) 15

| {z } | {z } | {z } |{z}

I II III IV

approximately 1,98340 120 119 169 1
" 1,94916 3456 3367 4825 2
" 1,91880 4800 4601 6649 3
" 1,88625 13500 12709 18541 4
" 1,81501 72 65 97 5
" 1,78519 360 319 481 6
" 1,71998 2700 2291 3541 7
" 1,69271 960 799 1249 8
" 1,64267 600 481 769 9
" 1,58612 6480 4961 8161 10

1,5625 60 45 75 11
approximately 1,48942 2400 1679 2929 12

" 1,45002 240 161 289 13
" 1,43024 2700 1771 3229 14
" 1,38716 90 56 106 15

In deciphering this table, the following four corrections were made:
1) the number 3,12,1 (written in the Plimpton 322 table) was replaced by 1,20,25;
2) 9,1 was replaced by 8,1;
3) 7,12,1 was replaced by 2,41;
4) 53 was replaced by 1,46.

7



for the coprime integers m and n, m > n > 0, one of which is even.
(It is easy to check that any such triple (X;Y; Z) is indeed a solution.)
All positive integer solutions are obtained by multiplying (3) or (4) by
a positive integer.

Note that, in fact, formulae (3) and (4) coincide. If X = pq,

Y =
p2 � q2

2
, Z =

p2 + q2

2
is the solution calculated by (3) (here p and q

are odd and coprime), then the same solution is obtained by (4) with

m =
p+ q

2
and n =

p� q

2
(check that m and n are coprime and precisely

one of them is even), although X and Y exchange places. Similarly, any
solution from (4) can be written in the form (3). One may say that all
positive integer solutions of (1) are described by (4) up to interchanging
X and Y and multiplying X, Y , and Z by a positive integer.

All solutions of equation (1) can also be written as

X = 2mnr; Y = (m2 � n2)r;

Z = (m2 + n2)r;

)
(30�40)

wherem and n are any integers and r is a suitable rational, i.e., a rational
such that X, Y , and Z are integers.

Check that the known solutions (3; 4; 5) and (4; 3; 5) are given by
formulae (3) with m = 3 and n = 1 and by formulae (4) with m = 2
and n = 1. These solutions are also given by (30�40) with m = 3, n = 1,

r =
1
2
and with m = 2, n = 1, and r = 1.

3. Write out all Pythagorean triples (a; b; c), 0 < a < b < c < 100.

4. What do we obtain when we take (1; 0) for the point A and consider
the intersection point of lines through A with the line y = �1 rather
than with the x-axis (see Fig. 3)?

y

x

A(1, 0)O

x 2+y 2=1

y=−1

Fig. 3
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A bit of history

The ancient Greeks learned about the triangle with sides 3, 4, 5
from the Egyptians and called it the Egyptian triangle. We refer to a
right triangle with integer sides as a Pythagorean triangle. Actually,
neither Pythagoras nor the Egyptians were the �rst to use them. On
ancient Mesopotamian headstones (over 5 000 years old), an isosceles
triangle constructed from two right triangles with sides 9, 12, and 15 ells
already appears. Constructing the pyramid of Pharaoh Sneferu (17th
century BC), Egyptian architects used a right triangle with sides of ten
times 20, 21, and 29 ells, and another right triangle with sides of ten
times 18, 24, and 30 ells. In the Plimpton clay tablet no. 322 (19th�17th
centuries BC), there are 15 rows containing the values Y , Z, and Z2=X2

(see pages 6�7 above). Note that the triples of numbers mentioned by
us are fairly large. It is natural to assume that the ancient Babylonians
also knew a general method for �nding these solutions.

The Greek mathematician Diophantus (3rd century AD) knew how
to �nd integer solutions not only of equation (1), but also of certain
other quadratic equations, some systems of two quadratic equations in
three unknowns, as well as some cubic equations in two unknowns (see
Supplement 4). Probably Diophantus knew and used the work of several
of his precursors. Number theory of present times begins with Fermat's
notes on the margins of Diophantus' book. The foundations of the new
geometrical approach to integer solutions were laid by Newton, who un-
derstood that the complicated changes of variable used by Diophantus
often reduce to drawing secants and tangents.

RATIONAL CURVES

The example involving the construction of secants considered above
is actually quite general. Let us use it to solve the following problem:
describe all the integer triples such that the square of the �rst plus twice
the square of the second one equals three times the square of the third,
i.e., let us �nd the integer solutions of the equation

X2 + 2Y 2 = 3Z2: (5)

As noted above, the unique solution with Z = 0 is X = Y = Z = 0,
which we have agreed to ignore. Dividing both sides of the equation (5)
by Z2, we obtain the following new equation:

x2 + 2y2 = 3; (6)

where x = X=Z and y = Y=Z are rational numbers.

Equation (6) describes the ellipse with horizontal semi-axis
p
3 and

vertical semi axis
p
6=2 centered at the origin (Fig. 4).
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A(1, 1)

c

x

O

y

(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)(x, y)

x 2+2y 2=3 x=c+(1−c)y

( 3, 0)

0, 1
2
6

(−1, 1)

Fig. 4

It is not di�cult to �nd a rational point on this ellipse: such is, for
instance, the point (1; 1). Just as in the problem of Pythagorean triples,
let us construct a bijection between all the points of the ellipse (except
for (�1; 1)) and the points of the line y = 0. Here again there are as
many rational points on the ellipse (with (1; 1) removed) as on the line.
The equation of the line passing through the points A(1; 1) and (c; 0)
can be written as x = c + (1 � c)y. The y coordinate of the second
intersection point of the line with the ellipse satis�es the condition

(c+ (1� c)y)2 + 2y2 = 3:

We know one root of this quadratic equation, it equals 1. Now, using
Vieta's theorem, it is not di�cult to �nd the other root:

y =
c2 � 3

c2 � 2c+ 3

Then

x = c+ (1� c)y =
�c2 + 6c� 3
c2 � 2c+ 3

:

(Note that for c = 3 we get x = 1, y = 1, i.e., this is not the second
intersection point but a tangent point. The point (�1; 1) does not lie on
such a line.)

Using the assertion of Problem 2, we conclude that all the rational
solutions of equation (6) (except for the solution x = �1, y = 1, which
corresponds to the horizontal line), are given by the formulae

x =
�c2 + 6c� 3
c2 � 2c+ 3

; y =
c2 � 3

c2 � 2c+ 3
;

where c is a rational number, while the integer solutions of equation (5)
are given by the formulae

X = (�m2+6mn�3n2)r; Y = (m2�3n2)r; Z = (m2�2mn+3n2)r;

10



where m and n are integers and r is an appropriate rational num-
ber1).

5. Describe all the integer solutions of the equations
a) X2 � 15Y 2 = Z2, b) X2 � Y Z = 9Z2, c) X2 + 3Y 2 = 5Z2.

� � �
Now let the curve be given by the equation f(x; y) = 0, where f(x; y)

is a polynomial that cannot be decomposed into the product of polyno-
mials of degree higher than zero, even if complex coe�cients are allowed
(such curves are called absolutely irreducible)2). If, as in the above exam-
ples, there exist polynomials with rational coe�cients F (c), G(c), and

H(c), such that at least one of the functions
F (c)

H(c)
and

G(c)

H(c)
is non-

constant, and substituting x =
F (c)

H(c)
and y =

G(c)

H(c)
into f(x; y) we get

identical zero, then we say that our curve is rational (since the ratio of
two polynomials is called a rational function).

6. Let f(x; y) be a polynomial of degree 2 with rational coe�cients
and assume that the curve f(x; y) = 0 is absolutely irreducible. Prove
that if this curve contains at least one rational point, then it is a
rational curve.

Legendre’s Theorem

Consider the following problem. Let a; b; c be positive integers. How
can one �nd the rational solutions of the equation

ax2 + by2 = c?

You have probably guessed: we work as above, and begin by �nding
at least one rational point on the curve determined by the equation
ax2 + by2 = c:

Thus the following question arises: When does the equation ax2 +
by2 = c have a rational solution? The answer is not as easy as one may
think. For example, for a = b = 1, the following problem arises:

7*. When is a positive integer c equal to the sum of squares of two
rational numbers?

This is a very di�cult problem. We recommend not to hurry with its
solution, and �rst get acquainted with the notion of quadratic residue.

1) Note that for a di�erent choice of the point A on the ellipse the �nal formulae
may di�er from those presented above, however, they will obviously describe the same
set of solutions (cf. Problem 4).
2) Attention: the curve x2 + y2 = 0 is not absolutely irreducible, since x2 + y2 =
(x+

p�1y)(x�p�1y))
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Now let us consider the general situation. We can assume that the
integers a; b; c are coprime (if they aren't, divide them by their great-
est common divisor) and square-free, i.e., are not divisible by squares
of integers (if, say, a is divisible by m2, make the change of variables
x0 = mx).

8*. Let a; b; c be pairwise coprime square-free integers. If the equation
ax2+ by2 = c has a rational solution, then there exist integers m;n; k
such that m2+ab is divisible by c, n2�ac is divisible by b, and k2�bc
is divisible by a.

Thus, the remainders in the division of (�ab) by c, of ac by b, and
of bc by a cannot be arbitrary.

� � �
Quadratic residues. The remainders obtained in the division of

squares of integers by a number M are called quadratic residues modulo
M , while all the other remainders are quadratic nonresidues modulo M .
For example, 2 is a quadratic residue modulo 7, while 3 is a quadratic
nonresidue modulo 7 (prove this!). We also say that an integer N is a
quadratic residue (nonresidue) modulo M if the remainder in the divi-
sion of N by M is a quadratic residue (respectively, nonresidue) modulo
M . For example, 8 is quadratic residue modulo 7, while 10 is a quadratic
nonresidue modulo 7.

9. Find all the quadratic residues and nonresidues modulo 7, modu-
lo 17, modulo 24, and modulo 30.

10. Let p be an odd prime number. Prove that among the p possible
remainders in division by p exactly (p + 1)=2 are quadratic residues
and exactly (p� 1)=2 are quadratic nonresidues.

11*. Let M = p1 � : : : pn be the product of distinct primes. Find the
number of quadratic residues and nonresidues modulo M .

12*. Let p be an odd prime. Prove that the remainder p � 1 is a
quadratic residue modulo p if and only if the remainder in the division
of p by 4 is 1.

� � �
Thus, the equation ax2 + by2 = c, where a; b; c are square-free co-

prime positive integers, will have a rational solution, it is necessary that
the integer (�ab) be a quadratic residue modulo c, the integer ac be a
quadratic residue modulo b, and (bc) be a quadratic residue modulo a.
It turns out that these conditions are also su�cient:

Legendre's Theorem. The equation ax2 + by2 = c, where a; b; c
are coprime positive integers, will have a rational solution if and only
if the integer (�ab) is a quadratic residue modulo c, the integer ac is a
quadratic residue modulo b, and bc is a quadratic residue modulo a.

12



13. Do the equations

a) 3x2 + 5y2 = 7; b) 5x2 + 7y2 = 3

have rational solutions?

14. Let us prove the Legendre Theorem. Let a; b; c satisfy the condi-
tions of the theorem.

a) Show that in the statement of the Legendre Theorem it su�ces
to assume that the integers are pairwise coprime.

b) Let p be a prime that divides abc. Show that there exist linear
functions with integer coe�cients

Lp = �1(p)x+ �2(p)y + �3(p)z;

Mp = �1(p)x+ �2(p)y + �3(p)z

such that ax2 + by2 � cz2 � LpMp (mod p).
c) Show that there exist linear functions with integer coe�cients

L = �1x+ �2y + �3z;

M = �1x+ �2y + �3z

such that ax2 + by2 � cz2 � LM (mod abc):
d) Prove that there exists a nonzero solution of the equation

ax2 + by2 + cz2 � 0 (mod abc) such that

�
p
bc < x <

p
bc; �pac < y <

p
ac; �

p
ab < z <

p
ab:

e) Let (x0; y0; z0) be a solution of of the equation from item d).
Prove that either ax20 + by20 � cz20 = 0 or ax20 + by20 � cz20 = abc:

f) Let ax20 + by20 � cz20 = abc: Prove that in that case

a(x0z0 + by0)
2 + b(y0z0 � ax0)

2 � c(z20 + ab)2 = 0:

g) Prove Legendre's Theorem.

ELLIPTIC CURVES

Consider the following problems:
A. Find all the pairs of natural numbers m and n such that the sum

of the �rst m positive integers is equal to the sum of squares of the �rst
n positive integers:

1 + 2 + 3 + : : :+m = 12 + 22 + 32 + : : :+ n2:

B. For what values of n, the sum of squares of the �rst n positive
integers is itself the square of an integer?

C. What positive integers are simultaneously the product of two
successive positive integers and the product of three successive positive
integers?

D. (Fermat's last theorem for n = 3). Prove that the equation
X3+Y 3=Z3 has no positive integer solutions.

13



E. When does the sum of the square of a rational number and the
cube of the same number equal the cube of a rational number?

F. When does the sum of the square of a rational number and the
cube of the same number equal the square of a rational number?

All these problems are united by the fact that they can be reduced
to the study of integer or rational solutions of cubic equations in two
variables.

15. Prove that

1+2+ : : :+m=
m(m+1)

2
and 12+22+ : : :+n2=

n(n+1)(2n+1)

6
:

A. This problem is equivalent to �nding the integer solutions of the
equation

m(m+ 1)

2
=

n(n+ 1)(2n+ 1)

6
:

B. While this problem is equivalent to �nding the integer solutions
of the equation

n(n+ 1)(2n+ 1)

6
= m2:

C. Here we must �nd the integer solutions of the equation

m(m+ 1) = (n� 1)n(n+ 1):

D. By the change of variables x = X=Z, y = Y=Z the problem re-
duces to �nding the positive rational solutions of the equation x3+y3 = 1.

E. In this problem, one must �nd the rational solutions of the equa-
tion x2 + x3 = y3.

F. And here x2 + x3 = y2.
Equations in two variables determine a curve on the plane. Since our

curves are given by third degree polynomial equations, they are examples
of curves of third degree or cubic curves (Fig. 5).

Notice that among the curves in Fig. 5, the two curves from problems
E and F di�er from the other ones (A�D): the �rst one has a cusp point
while the second one has a self-intersection point. These points are
examples of singular points1); the curves possessing at least one singular
point are called singular. Curves having no singular points are called
non-singular or smooth � such are the curves from problems A�D.

16. What is the maximal number of singular points of a second degree
curve? a third degree curve? a fourth degree curve?

1) Let us give a precise de�nition: a point (x0; y0) on the curve F (x; y) = 0 is called
nonsingular if there exists at least one line passing through it

x = x0 + at; y = y0 + bt

such that t = 0 is a root of the equation F (x0 + at; y0 + bt) = 0 of multiplicity 1. In
the converse case, the point is called singular.
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17. Can a curve of degree four have exactly �ve singular points?

Let us try to apply the method of secants from the previous sections
to our curves. On each of the curves it is easy to �nd points with integer
coordinates. However, the construction of secants in this situation gets
us nowhere: a typical curve will intersect our curve in three points (and
not in two, as before) and the argument used for second degree curves no
longer works. Nevertheless, we can save the day in the case of singular
curves.

18. Prove that any line passing through a singular point of a third
degree curve can intersect the curve in no more than one other point:

a) for the curves in problems E and F;
b) for any absolutely irreducible singular cubic curve.

Thus, drawing secants through the singular point and applying the
same arguments as for second degree curves, we can �nd the rational
solutions of cubic equations (with rational coe�cients) that determine
singular curves. Note that there is a delicate condition here: in applying
the method of secants, it is necessary for the initial point (in our case,
the singular point) to have rational coordinates.

19. Suppose that on an absolutely irreducible singular cubic curve
given by an equation with rational coe�cients there is at least one
rational point. Prove that in that case the coordinates of the singular
point are also rational.

20*. Give an example of a cubic equation with rational coe�cients
that determines a singular curve all of whose singular points have
irrational coordinates.

21. Give a solution of problems E and F. Prove that the corresponding
curves are rational.

Unfortunately, nonsingular cubic curves are never rational. What
must we do with these curves? The �rst thing that can be done is to
bring them to a simpler form. To do this, we will use projective changes
of coordinates, i.e., changes of the following form:

x0 =
�1x+ �2y + �3

1x+ 
2y + 
3

; y0 =
�1x+ �2y + �3

1x+ 
2y + 
3

; 
21 + 
22 + 
23 6= 0:

Such changes of variables are very convenient, but they have a defect:
they are not everywhere de�ned (what do x0 and y0 equal on the line

1x + 
2y + 
3 = 0?). Note, however, that the line 
1x + 
2y + 
3 = 0
intersects our cubic curve in no more than three points; if we intend to
�nd the rational (or integer, or positive integer) roots of the given cubic
equation, we can �rst consider all the intersection points of the line with
the curve and then perform an appropriate projective change.
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22. a) Under what conditions on the coe�cients �i; �i; 
i, i = 1; 2; 3,
is the projective change invertible, i.e., takes distinct points (x; y) to
distinct points (x0; y0)?

b) Assume that we consider an invertible projective change. The
inverse change (i.e., the change expressing x and y in terms of x0

and y0) is also a projective change of coordinates.
c) The successive application of two invertible projective changes

is equivalent to a certain single such change.

In what follows, we will consider only invertible projective changes
of coordinates.

A cubic curve in the (x; y)-plane is said to be a curve in Weierstrass
form if it is given by an equation of the following form:

y2 = x3 + ax+ b:

23. A curve inWeierstrass form is singular if and only if 4a3+27b2 = 0.

The number � = 4a3 + 27b2 is called the discriminant of a given
cubic curve, as well as the discriminant of the corresponding polynomial
x3 + ax+ b: (The discriminant is zero if and only if the polynomial has
a multiple root.)

24. When is the curve given by y2 = x3 + ax2 + bx+ c singular?

Newton's Theorem. For any nonsingular cubic curve there exists
a projective change of coordinates that brings it to Weierstrass form.
Moreover, if the coe�cients of the equation determining the given curve
are rational and the curve has at least one rational in�exion point1),
there is a projective change with rational �i; �i; 
i, i = 1; 2; 3, that takes
the given curve to a curve in Weierstrass form with rational a and b.

25. Prove this theorem.

Let us illustrate Newton's theorem by problems A�D.
A. After the change m = (y � 9)=18, n = (x � 3)=6, we obtain the

equation
y2 = x3 � 9x+ 81:

B. The change m = y=72, n = (x� 6)=12 brings the equation to the
form

y2 = x3 � 36x:

C. The change m = y � 1
2
, n = x brings the equation to the form

y2 = x3 � x+
1
4
:

1) Recall that the tangent to a nonsingular curve F (x; y) = 0 at a point (x0; y0)
is the line x = x0 + at, y = y0 + bt such that t = 0 is a root of multiplicity no less
than 2 of the equation F (x0 + at; y0 + bt) = 0. The tangent at a nonsingular point
exists and is unique. In the case when the root t = 0 is of multiplicity 3 or more,
then the point (x0; y0) is said to be a in�exion point.
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Fig. 6. Projective changes of variable that bring the curve x3 + y3 = 1 to Weier-
strass form.

a) The curve x3+y3=1. b) The change x=s�t, y=t is a parallel projection of the
(x; y)-plane onto the (s; t)-plane. c) The curve s3�3s2t+3st2=1. d) The change

s=
1

3u
, t=

6v+1

6u
is a central projection of the (s; t)-plane onto the (u; v)-plane.

e) The curve v2=u3� 1

108
(in Weierstrass form).
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D. The case of the Fermat curve x3 + y3 = 1 is the most interesting
one (Fig. 6). First let us perform the change x = s� t, y = t, obtaining

the equation s3 � 3st(s � t) = 1. Now the change s =
1
3u

, t =
6v + 1
6u

brings the equation to the form

v2 = u3 � 1
108

:

Unfortunately, not all cubic curves determined by equations with
rational coe�cients have a rational in�exion point.

26. Check that there are no rational points at all on the curves

x3 + 2y3 = 4 and x3 + 2y3 = 7:

But even if there is a rational point on the curve, all the in�exion
points can turn out to be non rational.

27. Check that all the in�exion points of the curve x3 + 2y3 = 3 are
non rational (note that this curve contains the rational point (1; 1)).

Thus, Newton's theorem is not su�cient for bringing a curve to
Weierstrass from. For that we have the following

Nagell's Theorem. If a nonsingular cubic curve C1 contains a
rational point, then all the other rational points on this curve are in
bijective correspondence with the rational points of a certain curve C2

in Weierstrass form with the exception of no more than three rational
points on C2.

Let us illustrate this theorem in the case of the curve

x3 + 2y3 = 3:

1) Construct the tangent at the rational point (1; 1). It has the
equation x+ 2y = 3 and intersects the curve in one more point, namely
(�5; 4).

2) Introduce new coordinates X = x + 2y � 3, Y = y � 4 (the
point (�5; 4) is now the origin of the new coordinates, and the tangent
is the new Y -axis). Now introduce the variable u = Y=X. In the new
coordinates, the curve is determined by the equation

x3(1� 6u+ 12u2 � 6u3) + x2(�15 + 60u� 36u2) + x(75� 54u) = 0:

Let f1; f2; f3 denote the coe�cients at x, x2, x3, respectively (thus
f1; f2; f3 are polynomials in u of degrees 1, 2, 3, resp.).

3) After cancelling out x and multiplying by 4f3, we arrive at the
equation

4x2f23 + 4xf3f2 + 4f3f1 = 0;
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or bringing out an exact square,

(2xf3 + f2)
2 = f22 � 4f1f3:

A simple calculation shows that

f22 � 4f1f3 = �75 + 216u� 216u2 + 72u3

(note that a magic cancellation of all the terms containing u4 has oc-
curred!). Introduce the variable s1 = 2xf3 + f2. Our equation is then
close to Weierstrass form:

s21 = �75 + 216u� 216u2 + 72u3:

After the change u = u1+1, we obtain s21 = �3+72u31. And, �nally, the
change 9s1 = s, 18u1 = t gives us the following equation in Weierstrass
form:

s2 = t3 � 243:

28. Verify that the rational points on the curve x3 + 2y3 = 3, except
the point (1; 1) correspond to the rational points of the new curve
s2 = t3 � 243: Note that the point (1; 1) �moves away to in�nity� on
the new curve; since the equation f3 = 0 has no rational roots, it
follows that the set of exceptional points from Nagell's Theorem is
empty. What point corresponds to the point (�5; 4)?
29*. Prove that the method described above allows to bring to Weier-
strass form any nonsingular curve containing at least one rational
point which is not necessarily an in�ection point. (We recommend
returning to this problem after reading the next section.)

A third order nonsingular curve is called an elliptic curve. In num-
ber theory problems, it is natural to consider elliptic curves given by
equations with rational coe�cients and containing a rational point, and
this is what we will do in what follows (such curves are usually called
elliptic curves over the �eld of rational numbers).

As we have just explained, such a curve can be transformed to Weier-
strass form by a coordinate change with rational coordinates.

30. If the discriminant � = 4a3 + 27b2 of the curve

y2 = x3 + ax+ b

equals zero, the curve is rational.

The converse is also true: if � 6= 0, then the curve

y2 = x3 + ax+ b

is not rational, but this is already a rather di�cult theorem.
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31*. Under what conditions can the curve given by the equa-
tion y2 = x3 + a1x + b1 be transformed into the curve given by
y2 = x3 + a2x+ b2 by a projective change of coordinates?

Addition of points on an elliptic curve

Thus, problems A�C are equivalent to �nding all the points with in-
teger coordinates on elliptic curves, whereas problem D requires �nding
all the points with rational coordinates on an elliptic curve.

It turns out that for an arbitrary elliptic curve, the problem of �nding
rational points in some sense is easier, than �nding integer points on
the same curve! This is because the method of secants allows us to
introduce a certain structure on the set of rational points of an elliptic
curve. Namely, rational points of an elliptic curve can be �added�.

x

y

P
Q

P+Q

Fig. 7

Suppose that we have found two rational points P = (xP ; yP ) and
Q = (xQ; yQ) on the elliptic curve y2 = x3 + ax + b (Fig. 7). Let us
construct the line PQ and �nd the coordinates of the third intersection
point of the line with our curve1). These coordinates satisfy the system
of equations �

y2 = x3 + ax+ b;

(y � yP )(xQ � xP ) = (x� xP )(yQ � yP ):

If xP 6= xQ and yP 6= yQ, then, expressing x in terms of y from the
second equation, let us substitute the obtained expression into the �rst
equation. As the result, we arrive at a cubic equation in y with rational

1) Generally speaking, not all lines intersect our curve in exactly three points. In
some cases (Fig. 12, a�d), the line intersects the curve in less than three points.
There are di�erent ways of overcoming this di�culty, but we will come to that later.
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coe�cients. Since two roots of this equation are rational (they are yP and
yQ), while the sum of all three roots is rational (by Vieta's Theorem),

it follows that the third root is also rational1). Thus, from two rational
points on an elliptic curve, we have constructed a third rational point
on it. One more rational point is obtained from the constructed one by
symmetry in the x-axis. This symmetric point is called the sum of the
points P and Q and is denoted by P +Q (see Fig. 7).

It is remarkable that the addition of points of an elliptic curve sat-
is�es the properties of the addition of numbers, namely:

a) commutativity (for any points P and Q, we have the identity
P +Q = Q+ P );

b) existence of zero (a point 0 such that P + 0 = P = 0+ P );
c) existence for any point P of the elliptic curve of an opposite point

(a point �P such that P + (�P ) = 0 = (�P ) + P ;
d) associativity (for any points P , Q, and R of the elliptic curve, we

have the identity (P +Q) +R = P + (Q+R)).
Let us check these properties.
Commutativity. To calculate Q+ P , we use the same line as for the

calculation of P +Q.
Existence of zero and of the opposite point. Suppose that the curve

contains a point P (Fig. 8). We intend to �nd a point such that the
line passing through it and the point P intersects the curve at a point
whose re�ection in the X-axis turns out to be the starting point P . Let
us denote by Q the point symmetric to P with respect to the x-axis. It
follows from the above that the line must pass through the points P and
Q, i.e., the line must be vertical. Therefore, the point 0 must lie on both
on the curve and on any vertical line intersecting the curve.

y

x

P

Q

O

Fig. 8

1) If xP 6= xQ and yP = yQ, then the equation of the line PQ is y = yP and,
substituting y = yP into the �rst equation, we obtain a cubic equation in x with
rational coe�cients. Thus everything is all right in this case as well.
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There is no such point on the plane. We need it very badly, so we will
add it to the plane, call it the point at in�nity, and denote it by 1. We
will assume that 1 is the intersection point of all vertical lines. Thus,
although we added the point 0 = 1 formally, we know that any line
passing through 1 and Q is the vertical line passing through Q1).

It is reasonable to consider the point 0 as being rational.
The vertical line passing through the point P goes through the point

0 = 1. Therefore Q, the intersection point of that line with the curve
satis�es the relation P +Q = 0, i.e., is the point opposite to P . There-
fore, any point P has the opposite point Q = �P symmetric to P with
respect to the x-axis. Note that for points P lying on the x-axis, we
have �P = P .

Associativity. Let us choose points P , Q, R on our elliptic curve
(Fig. 9). Construct the intersection points �P �Q and �R �Q of the
lines PQ and RQ with the curve, as well as the points P +Q and R+Q.
To prove the equality (P + Q) + R = P + (Q + R), it su�ces to show
that the intersection point of the line passing through the points P +Q
and R with the line passing through the points P and Q+R lie on our
curve.

x

−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R−Q−R
R

P

Q

Q+R

−P−Q

P+Q

A
PQR

Fig. 9

We obtain a con�guration of six lines l1; l2; l3;m1;m2;m3 that pass
through the points Q and R, �P �Q and P +Q, P and Q+R, P and
Q, �R � Q and R + Q, R and P + Q, respectively. This con�guration
is schematically represented in Fig. 10. Each of these six lines passes
through three points (the line passing through �R �Q and R +Q and
the line passing through �P �Q and P +Q both pass through the point
0 = 1), so there are nine intersection points in the con�guration. We
know that eight of these points lie on the the elliptic curve E given by the

1) Now we already know what to do in the situation shown in Fig. 12a below. The
vertical line has three common points with the curve P , Q, 1.
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equation F (x; y) = 0. We shall prove that the nineth point APQR also
lies on this curve. Suppose the equations of the lines l1; l2; l3;m1;m2;m3

are

L1(x; y) = 0 L2(x; y) = 0 L3(x; y) = 0

M1(x; y) = 0 M2(x; y) = 0 M3(x; y) = 0:

Q −Q−R R

−P−Q 0 P+Q

P Q+R A
PQR

l
3

m
1

l
2

m
2

l
1

m
3

Fig. 10

Let us show that

F (x; y) = �L1(x; y)L2(x; y)L3(x; y) + �M1(x; y)M2(x; y)M3(x; y);

where � and � are some numbers. Consider the di�erence

F � ��L1L2L3 + �M1M2M3): (7)

The above di�erence is a polynomial in x and y of degree no greater than
three. This polynomial vanishes at the points P , �P � Q, and Q. On
the line m1, let us choose one more point S = (s1; s2) that di�ers from
P , �P �Q, and Q. The point S does not lie on any of the lines l1; l2; l3
and, therefore,

L1(s1; s2) 6= 0; L2(s1; s2) 6= 0; L3(s1; s2) 6= 0; but M(s1; s2) = 0:

Let us substitute the coordinates of the point S into the di�erence (7)
and �nd � from the equation

F (s1; s2)� �L1(s1; s2)L2(s1; s2)L3(s1; s2) = 0:

For this choice of �, the di�erence (7) will vanish at four points P , Q,
�P �Q, and S of the line m1.

32. Suppose that a polynomial F1(x; y) of degree no greater than
three vanishes at four points of some line M(x; y) = 0. Then the
polynomial F1 is divisible by the polynomial M .

Thus we have chosen the parameter � so that the di�erence (7) is
divisible by M1. Considering the points Q, �Q � R, and R of the line
l1, let us choose as above the parameter � so that the di�erence (7)
will be divisible by L1. We see that expression (7) can be represented
in the form L1(x; y)M1(x; y)N(x; y), where N(x; y) is a polynomial of
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degree no greater than one. If this degree equals one, then the equation
N(x; y) = 0 determines a certain line n.

Thus we have F � (�L1L2L3 + �M1M2M3) = L1M1N . Let us
substitute the coordinates of the point P +Q into this equality. On the
left-hand side, we get zero. If neither L1 nor M1 vanish, then N = 0,
and this means that the point P + Q lies on the line n. Similarly, we
conclude that the point Q + R lies on n. If 1 were an ordinary point,
we could prove in the same way that it also lies on n.

33. Suppose the lines l1 and m1 are not vertical. Prove that in that
case the line n is vertical.

Obviously, in the general case the fact that the lines l1 and m1 are
not vertical does not imply that the line passing through the points P+Q
and Q+R is vertical. Therefore the polynomial N is of degree zero, i.e.,
is a constant. But N vanishes at the point P +Q, hence it is identically
zero. Thus,

F (x; y) = �L1(x; y)L2(x; y)L3(x; y) + �M1(x; y)M2(x; y)M3(x; y);

And the point APQR whose coordinates are determined from the system
of equations �

L3(x; y) = 0;

M3(x; y) = 0:

lies on the line F (x; y) = 0.
Thus we have proved the associativity of the sum operation for points

of an elliptic curve under certain additional assumptions, namely: none
of the points in Fig. 10 coincide; the lines l1 and m1 do not pass through
the points P +Q and Q+R; the line passing through the points P +Q
and Q + R, as well as the lines l1 and m1, are not vertical. Each of
these cases may be considered separately, but we can argue di�erently:
note that the coordinates of the points (P + Q) + R and P + (Q + R)
depend continuously on the coordinates of the points P , Q, R. We have
established the equality (P +Q) + R = P + (Q + R) for all su�ciently
general collections P , Q, R. By continuity, this implies that the equality
always holds (of course, to make this argument rigorous, we must de�ne
the notions used in it: �continuity� and �su�ciently general collections�,
but here we only give an idea of the proof).

� � �
How can we calculate the point P + P = 2P? When the two points

were distinct, we constructed the line passing through them, and so on.
Since the points have merged, we should construct the tangent (Fig. 11).
And what must we do to calculate 3P? That's very easy, we simply
take the sum of 2P and P . Similarly, we can calculate 4P = 3P + P ,
5P = 4P + P , etc.

26



y

x

P

2P

Fig. 11

34. Let P = (x0; y0) be a point of the curve y
2 = x3+ax+b. Compute

the coordinates of the point 2P .

The time has come to explain what to do in the situations arising
in Fig. 12, b�d (see the footnotes in pages 22 and 24). In the situation
d), when the tangency occurs at an in�ection point, we assume that the
line l also has three intersection points with the curve, but these three
points have merged together. In the situation with �simple� tangency
(b and c), the point P is counted twice, and, in particular, in case c, the
line l passes through 1.

a)

P

Q

b)

P

Q

c)

P

l

d)

P

l

Fig. 12

Thus any line passing through at least one point of an elliptic curve
other than 1, intersects the curve in three points. The sum of these
three points is always equal to 0 (check this!).

In view of these remarks, we see that the sum of any two points of an
elliptic curve is de�ned. It remains to show that now the sum operation
still possesses the properties a)�d) of addition, see p. 23.

Torsion and rank

Let P be a point on an elliptic curve. Starting from it, we can
construct the points : : :, �3P , �2P , �P , 0, P , 2P , 3P , : : : If the
point P was rational, then all these points will be rational. There are
two �models of behaviour� of the point P : either all those points are
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distinct, or among them there are coinciding ones. In the latter case,
suppose that mP = nP , m > n. According to the rules of addition, we
immediately see that (m � n)P = 0, i.e., there exists a positive integer
k1 such that k1P = 0. Let k be the smallest such positive number. The
number k is called the order of the point P , and the point P itself is said
to be a torsion point (or a point of �nite order). Note that according to
this de�nition, the point 0 is a torsion point of order 1. In case of the
�rst �model of behaviour�, we say that P is a point of in�nite order.

35. Let P be a point of order k. Prove that among all the points : : :,
�3P , �2P , �P , 0, P , 2P , 3P , : : : there are exactly k di�erent points.
36. Prove that the sum of two torsion points is also a point of �nite
order.

37. Let P be a point of order k. What is the order of nP , where n is
an integer?

38. Find all the points of order 2 on the elliptic curve y2 = x3+ax+b.
When are these points rational? Find the points of order 2 on the
elliptic curves in problems A�D.

39. Find all the points of order 3 on the elliptic curves in problems
A�D.

40*. What geometric property do the points of order 3 of an elliptic
curve possess? How many points of order 3 (not necessarily rational)
on an elliptic curve may there be?

It is remarkable that any elliptic curve has only a �nite number of
rational torsion points (try to prove this � the authors know no simple
solution!). Moreover, as was established by Barry Mazur, for the number
t of rational points of �nite order, only the following values are possible:
0 � t � 10, t = 12, and t = 16.

Now let us see how two points P and Q of in�nite order can behave.
Here there are also two possible �models of behaviour�: either all the
points mP +nQ, m;n 2 Z, or there are coinciding ones. In the �rst case
we say that the points P and Q are linearly independent, in the latter
case, linearly dependent. This de�nition can be generalised: we say that
points P1; P2; : : : ; Pn are linearly independent if all the points

m1P1 +m2P2 + : : :+mnPn; m1;m2; : : : ;mn 2 Z;
are distinct. The remarkable Mordell Theorem asserts that for any ellip-
tic curve there exists a nonnegative integer n such that any n+1 points
rational points of the curve are linearly dependent. The smallest such
number is called the rank of the elliptic curve.

41. An elliptic curve has in�nitely many rational points if and only
if its rank is positive.
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Mordell's Theorem. Let E be an elliptic curve. Then there exists
a collection of rational points P1; P2; : : : ; Pn on the curve such that any
of its rational points can be expressed in the form

P = a1P1 + a2P2; : : : anPn +Q;

where a1; a2; : : : ; an are integers uniquely determined by the point P ,
while Q is a certain rational torsion point.

In other words, all rational points on an elliptic curve can be obtained
from a �nite number of such points by constructing secant and tangent
lines.

The rank of the curve E is equal to the smallest possible value of n
from Mordell's Theorem.

Let us look at our examples from the point of view of torsion and
rank1).

A. The curve y2 = x3 � 9x + 81 has no torsion (i.e., the point 0 is
the unique rational torsion point on that curve). The rank of the curve
is 2. In the role of the points P1 and P2 from Mordell's theorem, we can
take the points (�3; 9) and (0; 9).

B. The curve y2 = x3� 36x has exactly four rational torsion points:
the point 0 and three other points of order two. Its rank is 1, and for
P1 we can take the point (�2; 8).

C. The curve y2 = x3�x+1=4 has no torsion. Its rank is 1 and for
P1 we can take the point (0; 1=2).

D. Fermat's curve y2 = x3�1=108 has exactly three rational torsion
points: the point 0 and two other points of order three. Its rank is 0.
Obviously, this statement is equivalent to Fermat's Last Theorem with
exponent 3.

E. The curve s2 = t3 � 243 has no torsion. Its rank is 1; for P1 we
can take the point (10; 7).

To show the reader how deeply we have penetrated in the jungle
of contemporary number theory, note that the answer to the following
question is presently unknown to humanity.

The Rank Problem. Can the rank of an elliptic curve be as large
as we wish?

At present there are examples of curves of rank up to 24. The answer
to the above problem is expected to be positive.

Integer points on elliptic curves

Even if we suppose that the results of the previous section are known,
we cannot say that we have solved our original problems A�C. In all of

1) We must admit that �nding torsion points and calculating the rank of our curves
are di�cult and non elementary problems.
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them we have found in�nitely many rational solutions, but in the original
formulations integer solutions were required. How can one distinguish
them among the in�nite set of rational points? In the same article which
contained the theorem from the previous section, Louis Joel Mordell
proved that any elliptic curve contains only a �nite number of integer
points. However that assertion does not help us in actually �nding these
points.

The curve y2 + y = x3 � x from problem C consists of two pieces:
an oval and an in�nite arc (Fig. 13). The point P1 = (0; 0) lies on the
oval. All the integer solutions may be found by solving problem 42.

y

xP
1

Fig. 13

42. a) Find all the integer points on the oval.
b) Prove that points nP1 with odd n lie on the oval, those with

even n, on the arc.
c) Check that if a prime number p divides the denominators of

both coordinates of the point nP1, then p divides the coordinates of
the point 2nP1 (it is assumed that all coordinates are represented by
non cancellable fractions).

d) Find all the integer points on the curve y2 + y = x3 � x.

43. Find all the integer points on the curve y2 = x3 � 36x and solve
problem B.

As we have seen, we were helped by the fact that the curve under
consideration consists of two pieces. This is not the case in problem A.
Nevertheless, in that case it is possible to show that all integer points of
the curve are of the form aP1 + bP2, where jaj; jbj � 13, and then solve
the problem by means of a �nite exhaustive search (accessible to our
computer, but not to the authors). The integer points have the following
abscissas �5;�3; 0; 3; 7; 9; 24; 33; 39; 513; 1099; 5112. Using this, one can
�nd all the pairs (m;n): (1,1), (10,5), (13,6), (645,85). The �rst three of
these can be found by brute force; but to get to the fourth pair without
the help of a computer is outside the possibility of humans.

An even more remarkable example of this kind is that of the curve
y2 = x3+24. After a bit of thinking, we can come up with the following

30



�small� solutions:

P1 = (�2; 4); 42 = (�2)3 + 24

P2 = (1; 5); 52 = 13 + 24

P3 = (10; 32) 322 = 103 + 24

At �rst glance, it seems that there are no other solutions (with y > 0).
But no, there is a fourth one:

P4 = P1 + 2P2 = (8158; 736 844):

Note that P3 = P1�P2 and that the rank of this curve is 2; moreover,
any rational point P of the curve y2 = x3 + 24 may be represented in
the form P = aP1 + bP2, where a and b are integers.

CONGRUENT NUMBERS

Let us return to the very �rst problem in this book. Suppose that
three rational numbers X;Y; Z are the lengths of the sides of a right
triangle. Although we derived formulae (3'�4') only for integer solutions
of the equation X2 + Y 2 = Z2, they are actually valid for all rational
solutions � one must only allow r to run over all rational values.

A rational number s is called congruent if there exists a right triangle
of area s with rational side lengths.

The following natural question arises: how can one �nd out whether
a given number is congruent? The problem of describing all congruent
numbers leads to deep and meaningful algebraic geometry theorems and
conjectures. We know the answer in a way, but at present are unable to
justify it fully. However, for some rational numbers, it is known (and has
been proved) that they are congruent and for some that they are not.

For example, the area of the Egyptian triangle (with sides 3,4,5) is
(3 � 4)=2 = 6, so 6 is a congruent number. It is slightly more di�cult to
prove that 5 is congruent: check that the area of a triangle with sides
3/2, 20/3, 41/6 is equal to 5.

44*. (Euler). Prove that 7 is a congruent number.

Now note that if a number s is congruent, then so is the number sl2

for any rational l, because the triangle of area sl2 is obtained from a tri-
angle of area s by increasing all its sides l times. Sincem=n = mn(1=n2),
in what follows we can restrict our considerations to integers. For the
same reason we will consider only square free integers.

Fermat's Theorem. The integer 1 is not a congruent number.

Proof. Assume the converse � let 1 be a congruent number. This
means that there is a right triangle with integer sides a; b; x (x is the
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length of the hypothenuse) whose area is ab=2 = y2, y being an integer
(clearly, one can choose a and b so that only one of them is even). Let
us transform the expression x4 � 16y4 as follows

x4 � 16y4 = (x2 � 4y2)(x2 + 4y2) = (x2 � 2ab)(x2 + 2ab)

= (a2 + b2 � 2ab)(a2 + b2 + 2ab) = (a� b)2(a+ b)2:

Thus, if 1 is a congruent number, then the equation x4 � (2y)4 = u2

has a positive integer solution (the number u being odd). Among all the
nonzero solutions with odd u, let us choose the solution (x0; y0; u0) for
which juj is minimal.

The numbers x0, y0, and u0 are pairwise coprime: if two of them
had a common prime divisor p, then the third one would be divisible by
p (actually the number u0 would even be divisible by p2), and then for
the solution (x0=p; y0=p; u0=p

2) the value of juj would be less.
Applying formula (4) to the equality x40 = (2y0)

4 + u20, we obtain

x20 = m2 + n2; (2y0)
2 = 2mn

(in our case, the numbers x20, (2y0)
2, and u0 are pairwise coprime and

(2y0)
2 is even); here m and n are pairwise coprime and we may as-

sume that one of them (say n) is even. It follows from the equality
(2y0)

2 = 2mn that m = m2
1 and n = 2n21. Further, the equality

x20 = m2 + n2 implies

x0 = m2
2 + n22; n = 2m2n2 = 2n21; m = m2

2 � n22 = m2
1;

where m2 and n2 are also pairwise coprime and we may assume that one
of them is even; it follows from the last equality that n2 is even. We
obtain:

m2 = m2
3; n2 = n23; m4

3 � n43 = m2
1:

But since n3 is even, it follows that (m3; n3=2;m1) is an integer solution
of the equation x4 � (2y)2 = u2 with a value of juj smaller than ju0j:

ju0j = jm2 � n2j � 2m� 1 = 2m2
1 � 1

and

jm1j �
r

ju0j+ 1

2
< ju0j for ju0j > 1:

The case ju0j = 1 is trivial.
The theorem is proved.

The argument used above is known as the method of in�nite descent
and helps solving many number theory problems.

45. (Fermat's Last Theorem with exponent equal to 4). The equation
x4 + y4 = z4 has no positive integer solutions.
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Congruent numbers and elliptic curves

It is remarkable that the problem of establishing the congruence
numbers is equivalent to the problem of �nding the rank of certain elliptic
curves. Let s be a congruent number, i.e., let s be the area of a right
triangle with sides a, b and hypotenuse c, c2 = a2 + b2, s = ab=2 (we
assume that s is a square-free integer). To the number s, let us assign
the elliptic curve Es given by the equation

y2 = x3 � s2x = (x� s)x(x+ s):

Let us substitute x = (c=2)2 into that equation:

y2 =
�
(c=2)2 � ab=2

�
(c=2)2

�
(c=2)2 + ab=2

�
=
�
(c2 � 2ab)=4

�
(c=2)2

�
(c2 + 2ab)=4

�
=
�
(a� b)=2

�2
(c=2)2

�
(a+ b)=2

�2
Thus

P = (x; y) =
�
c2

4
;
a� b

2
� c
2
� a+ b

2

�
is a rational point.

P
1

P
2

P
3 x

y

Fig. 14

The rational points P1 = (�s; 0), P2 = (0; 0), and P3 = (s; 0) also
lie on the curve Es. These three points are all of order 2, because the
tangents at these points are vertical (Fig. 14). It turns out that the
following theorem holds:

Theorem I. There are exactly four rational points of �nite order on
the curve Es: the point 0 and three points of order 2.

This is a very di�cult theorem. In its proof, which we present in
Supplement 1, we use the arithmetic of residues modulo p and an im-
portant theorem due to Dirichlet about prime numbers in arithmetical
progressions, which we do not prove.
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Note that the curve E6 coincides with the curve in problem B. Thus,
we have calculated the torsion on that curve as well.

Theorem I implies that the point P that we have found is of in�nite
order. Moreover, we have the following

Theorem II. A number s is congruent if and only if the curve Es
contains a rational point of in�nite order.

Proof. We already know that if s is congruent, then the curve Es
contains a point P of in�nite order. However, that point is very special:
its coordinate x is the square of a rational number. Thus, in order to
prove Theorem II, we must learn to construct, starting from an arbitrary
point Q of in�nite order on Es, a right triangle of area s.

At �rst we will work �backwards�: given a right triangle of area s,
sides a, b, and hypotenuse c, we will construct one more point on the
curve Es. As we have shown previously, there exists a rational number
t such that

a

c
=

2t
1 + t2

;
b

c
=

1� t2

1 + t2

Since s = ab=2, it follows that

s

c2
=

ab

2c2
=

t(1� t2)

(1 + t2)2

Therefore, �
s2(1 + t2)

c

�2

= s3t(1� t2) = st(s� st)(s+ st)

so that the rational point Q = (�st; s2(1 + t2)=c) lies on the curve
Es. According to Theorem I, this point is of in�nite order (since its
y-coordinate is nonzero).

Conversely, let Q = (x; y) be a rational point of in�nite order on our
curve. Then y 6= 0 (otherwise it would be one of the points of order 2),
hence x 6= 0 and x 6= �s. Let us put:

t = �x

s
; c =

����s2(1 + t2)

y

���� ; a =
��� 2t
1 + t2

c
��� ; b = ����1� t2

1 + t2
c

���� :
46. Show that the numbers a; b; c are positive, rational, and satisfy
the equations a2 + b2 = c2 and ab=2 = s.

Theorem II is proved.
� � �

It is interesting to �nd out how the points P and Q are related. The
next problem gives the answer.

47. Prove that 2Q = �P .
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Note that Theorem II, together with the Fermat theorem proved in
the previous section, implies that the rank of the curve E1 given by the
equation y2 = x3 � x is zero.

Congruent numbers: the answer

The problem of describing congruent numbers was known to the
ancient Greeks, but the answer to this problem was stated only in the
20th century. Indeed, only in 1980s a surprising criterion for �nding out
if a given arbitrary integer is congruent or not was discovered.

Tunnell's Criterion. An odd positive square-free integer n is con-
gruent if and only if the number of integer solutions of the equation

n = 2x2 + y2 + 32z2

is equal to half of the number of integer solutions of the equation

n = 2x2 + y2 + 8z2:

An even positive square-free integer n is congruent if and only if the
number of integer solutions of the equation

n

2
= 4x2 + y2 + 32z2

is equal to half of the number of integer solutions of the equation

n

2
= 4x2 + y2 + 8z2:

Note that for a given n, the number of solutions of each of these
equations is easy to �nd, e.g. by exhaustive search.

Let us consider some examples. For n = 1, both of the corres-
ponding equations have two solutions (0;�1; 0). Therefore, the number
1 is not congruent. For n = 2, both of the corresponding equations also
have two solutions each, so the number 2 is not congruent either. The
number n = 34 behaves di�erently. The equation 17 = 4x2 + y2 + 32z2

has four solutions (�2;�1; 0), while the equation 17 = 4x2+y2+8z2 has
eight (0;�3;�1), (�2;�1; 0). In that case, Tunnell's Criterion asserts
that there exists a right triangle of area 34 with rational sides. This is
indeed true: the lengths of the sides of one such triangle are 136/15,
15/2, and 353/30.

Unfortunately, Tunnell's Criterion has not been completely proved.
At present, we only know that if a number n is congruent, then the cor-
responding conditions about the number of solutions hold. The converse
statement follows from a general conjecture concerning elliptic curves
due to Birch and Swinnerton-Dyer. This conjecture relates the rank of
an elliptic curve with the number modulo p of its rational points for all
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prime p. (Computations have shown that if n � 10 000 and n satis�es
Tunnell's conditions, then it is indeed congruent.) In order to appreciate
the Birch and Swinnerton-Dyer conjecture (and the non proved part of
Tunnell's Criterion that follows from it), consider an example.

48. Verify that the number 157 satis�es Tunnell's conditions.

Thus we can assume that the number 157 is congruent. This is
indeed the case, however the hypothenuse of the simplest right triangle
of the area with rational sides is expressed by a fraction with a numerator
that has 48 digits! (Fig. 15)!

6
8
0
3
2
9
8
4
8
7
8
2
6
4
3
5
0
5
1
2
1
7
5
4
0

4
1
1
3
4
0
5
1
9
2
2
7
7
1
6
1
4
9
3
8
3
2
0
3

411340519227716149383203

21666555693714761309610

224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830

s=157

Fig. 15

49. Prove that all square-free integers that have remainders 5, 6, or 7
when they are divided by 8 satisfy Tunnell's conditions.

On the contrary, it has been proved that prime numbers that have
the remainder 3 when divided by 8 do not satisfy Tunnell's conditions
and therefore cannot be congruent.

50*. Split the numbers from 1 to 100 into those that do not satisfy
Tunnell's conditions (and so are not congruent) and those that do
(and so are conjecturally congruent). For the latter, try to �nd the
corresponding right triangles.

ADD ENDUM 1

PROOF OF THEOREM I

Assume that the curve Es possesses, besides the points 0, P1, P2,
P3, some other rational points.

51. Prove that in this case the curve Es has either a rational point
of odd prime order r or a rational point of order 4.
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52. Points of order 3 and 4 on the curves Es have irrational coordi-
nates.

Thus we can assume that the curve Es has a point of odd prime
order r 6= 3.

Now let us choose a prime number p such that the denominators
of the coordinates of the point P and of the number s are not divisible
by p. Consider the set eEs(p) of pairs (x; y) of remainders under division
by p such that y2 � x3 + s2x is divisible by p. Add the point 0 to the
set eEs(p) and denote

Es(p) = eEs(p) [ f0g:
The key observation is that the set Es(p) also possesses a sum operation.
This is because the sum operation for rational points on the curve Es
is given my means of certain algebraic formulae that express the coor-
dinates of the sum in terms of the coordinates of the summands. We
did not write out these formulae, they are fairly complicated; what is
important at this stage is that such formulae exist. These same formulae
are valid for the arithmetic of remainders modulo p: in that arithmetic,
we also know how to add, subtract, multiply and divide! The properties
of addition � commutativity, associativity � reduce to certain algebra-
ic identities and so remain valid for the addition of points �modulo p�.
Thus there is a sum operation on Es(p) possessing all the properties of
ordinary addition. With respect to that operation, all the elements of
Es(p) are torsion points because the set Es(p) itself is �nite. Note that
this construction does not work in the case when s is divisible by p,
for the same reason as that there is no addition on singular third order
curves: the singular point (0; 0) interferes.

Consider the point P �modulo p�: let us replace the numerators and
denominators of its coordinates by their remainders modulo p and carry
out the division in the arithmetic modulo p. We obtain an element P of
the set Es(p).

Note that rP = 0. Indeed, the fact that rP = 0 on the curve Es is
expressed by certain algebraic identities relating the coordinates of the
point P . Obviously, the same algebraic identities are valid modulo p
for the coordinates of the point P . But according to our de�nition of
addition on the set Es(p) this means precisely that rP = 0.

53. Prove that the order of the point P is r.

Thus we have constructed the set Es(p) supplied with a sum op-

eration1) and a point P of order r lying on it. The next important
observation is that the number of elements of Es(p) is divisible by r.

1) The set Es(p) with the addition operation de�ned above is an example of a
�nite Abelian group. An Abelian group is a set with an addition operation possessing
properties a)�d), see p. 23.

37



Indeed, let us split the set Es(p) into equivalence classes in the follow-
ing way: we will say that two points Q1; Q2 2 Es(p) are equivalent if

Q1 �Q2 = mP for some integer m.

54. Check that if Q1 is equivalent to Q2 and Q2 is equivalent to Q3,
then Q1 is equivalent to Q3 and Q2 is equivalent to Q1.

55. Prove that each equivalence class contains exactly r elements
of Es(p).

If q is the number of equivalence classes, then the number of elements
in Es(p) is qr and, in particular, is divisible by r. In order to come to
a contradiction, it is expedient to learn how to calculate the number of
elements of Es(p). It turns out that this is easy to do for �about one
half� of all prime numbers.

56*. Let the remainder of the division of p by 4 be 3. Show that the
number of elements in Es(p) is p+ 1.

Thus we have shown that r divides any number p + 1, where p is
a prime of the form 4k + 3 that does not divide s or any denominator
of the coordinates of P . This already seems highly unlikely, since there
are in�nitely many prime numbers of the form 4k + 3 and it would be
surprising if all of them, except a �nite number, would become divisible
by a �xed prime after the addition of 1. However, in order to give a
rigorous proof of the impossibility of such a phenomenon, we will have
to use the following remarkable theorem due to Dirichlet.

Dirichlet's Theorem. Every arithmetical progression whose initial
term and di�erence are coprime integers contains in�nitely many prime
numbers.

57. Prove that there exist in�nitely many primes of the form a) 4k+3,
b) 6k + 5, c)* 4k + 1, d)* 6k + 1.

In particular, since r 6= 3, there are in�nitely many primes of the
form p = 4kr + 3, where k is an integer. But p + 1 = 4rk + 4, which is
obviously not divisible by r. This contradiction proves Theorem I.

ADD ENDUM 2

FERMAT’S LAST THEOREM AND EULER’S PROBLEM

At the beginning of this book, we described all the positive integer
solutions of the equation X2 + Y 2 = Z2. That problem was studied
by mathematicians since antiquity. In the 17th century, Pierre Fermat
claimed that the equation

Xn + Y n = Zn
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has no solution for n 6= 31). What is more, Fermat believed that he
could prove this. For more than three centuries, many scientists tried to
prove that claim, which became known as Fermat's Last Theorem. These
attempts turned out to be extremely bene�cial, thanks to them a large
part of contemporary number theory came into being. But Fermat's
theorem continued to resist. The bastion fell under the united e�orts of
numerous outstanding mathematicians from the whole world. Recently,
the problem obtained its �nal solution in the work of Andrew Wiles.
The proof uses some very very deep results � from the same theory of
elliptic curves.

The proof begins something like this: let An + Bn = Cn; construct
the elliptic curve

y2 = x3 + (AnBn �AnCn �BnCn)x+AnBnCn:

Further, the properties of this curve is studied, and they turn out to be
so amazing that no such curves exist.

The great 18th century mathematician Leonard Euler was the �rst
to prove that no positive integer solutions of the equation X3+Y 3 = Z3

exist (the three cubes problem) and conjectured that the equations

X4 + Y 4 + Z4 = T 4; X5 + Y 5 + Z3 + U5 = V 5; etc:;

also have no positive integer solutions (the problems of the four fourth
degrees, of the �ve �fth degrees, etc.) These problems staunchly resisted
all e�orts of solution until computers came to the rescue. At the dawn
of the computer era, a counterexample to the �ve �fth degrees problem
was found:

275 + 845 + 1105 + 1335 = 1445:

The four fourth degrees problem turned out to be much more di�cult.
The victory was obtained by cleverly combining methods of study of
rational and elliptic curves with computer calculations. Noam Elkies
obtained a counterexample:

2 682 4404 + 15 365 6394 + 18 796 7604 = 20 615 6734:

Soon afterwards, a smaller counterexample was found on a more powerful
computer:

95 8004 + 217 5194 + 414 5604 = 422 4814:

The idea is, before we study the surface F given by x4+y4+z4 = 1,
to consider the simpler surface F 0 = x4+y4+ t2 = 1. If F has a rational
point (x; y; z), then there is a rational point on F 0, namely (x; y; t), where
t = z2. It turns out that the surface F 0 can be presented as the union

1) Fermat's theorem for exponent 3 was stated already in the 10th century by the
Arab mathematician al-Khojandi, a century later Omar Khayyam noted that the
problem remains unsolved.

39



of rational curves, i.e., of plane second order curves. We can do this as
follows: we consider the surface F 00 given by the equation

(u2 + 2)v2 = �(3u2 � 8u+ 6)w2 � 2(u2 � 2)w � 2u:

For a �xed u, this determines a rational curve that we denote by F 00

u .
The replacement

x = w + v; y = w � v; t = u(x2 + xy + y2 + x+ y) + 1� (x+ y)2

transforms the surface F 0 into the surface F 00. Legendre's Theorem
(in a somewhat modi�ed form, it is valid for any nonsingular second
order rational curve) gives us a necessary and su�cient condition for the
existence of a rational point on the curve F 00

u . Now let us consider a
curve C 0 that has a rational point. The inverse image C of the curve C 0

on the surface F is an elliptic curve. We must search for the required
points on C. We verify the solvability of the equation determining the
curve C in remainders under division by not very large primes. And
only if there are solutions for all these prime numbers, we search for
the rational solution on the computer. This considerably diminishes the
exhaustive search.

It is interesting that the equation x4+y4+z4 = 1 has many rational
solutions � for any real solution there is a rational one as near to it as
we wish.

ADD ENDUM 3

PYTHAGOREAN BRICKS

The problem about Pythagorean triangles can be formulated some-
what di�erently. Let us call a rectangle Pythagorean if the lengths X
and Y of its sides, as well as the length Z of its diagonal, are positive
integers (Fig. 16).

In this formulation, the problem has a natural generalisation. Let us
say that a rectangular parallelepiped is a Pythagorean brick if its edges
X, Y , Z, the diagonals U , V , W of its faces, and its main diagonal T
are positive integers (Fig. 17). If T is not necessarily integer, then we
say that the parallelepiped is a weakly Pythagorean brick.

X

Y

Z

Fig. 16

X

Y
Z

U
W

V

T

Fig. 17
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Here is an example of a weakly Pythagorean brick: X = 44, Y = 117,
Z = 240; for it we have U = 125, V = 244, W = 267.

Does there exist at least one Pythagorean brick? How can one de-
scribe all weakly Pythagorean bricks? The answer to these questions are
at present unknown to humanity.

58. Reformulate these problems in the language of equations. What
geometric object corresponds to these equations?

59. Describe all parallelepipeds with integer X;Y; Z, and T .

60. (Euler). Check that for any positive integer n � 2 the brick with
sides

X = n6 � 15n5 + 15n2 � 1; Y = 6n5 � 20n3 + 6n; Z = 8n5 � 8n

is weakly Pythagorean.

ADD ENDUM 4

HOW DIOPHANTUS SOLVED ARITHMETIC PROBLEMS

We are used to solving problems by using equations in which the
unknowns are denoted by letters, and the arithmetical operations by
symbols. We should, however, remember that modern notation appeared
fairly late, only in the 16th�17th centuries. Ancient mathematicians
used words only. This is how Diophantus describes the solution of the
equation x3 + ax2 = y2 (in the column on the right-hand side, the same
things are written by using letters and symbols):

�Find a cubic number such that if we add to it Find the (integer)
solutions of the
equation
x3 + ax2 = y2.

a square number with the same side taken several
times, we obtain a square number.

Assume that the cube has for its side one
thing, i.e., there is one cube; assume that the num-
ber of times is ten and add to this cube ten times Take, for example,

a = 10.the square of the edge of the cube, which is a
square, i.e., we have a cube plus ten squares equal
to the square. Assume that this square has for side In order to havex3 >

0, it is necessary
that y2 > 10x2.

a thing whose square is more than ten squares
so as to make a decrease possible. Assume that
its side is four things, the square is then sixteen Take y=4x,

then y2=16x2.things. The cube plus ten squares is then sixteen
squares. Subtract ten common squares, six squares We obtain 6x2=x3.
remain that equal the cube. Divide it by the We �nd x = 6.
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square, obtaining one thing equal to six units. The Indeed,
63 = 216;
62 = 36;

10 � 62 = 360;
63 + 10 � 62 =

= 576 = 242.

cube is two hundred sixteen, the square of its side
is thirty six; ten times that last quantity is three
hundred sixty. Adding that to the cube, we ob-
tain �ve hundred seventy six, this being a square
whose side is twenty four.

Thus we have found a cubic number such that
if to it we add ten times the square of its edge, the
result of addition will be a square number; that
is two hundred sixteen, i.e., its side is six. Which
was required to �nd.�.

Now let us try to reconstruct the general method that was used by
Diophantus, which he tried to teach his reader.

Put y = tx, where t is an integer. The equation can be rewritten
as x3 + ax2 = t2x2, i.e, x + a = t2, x = t2 � a, y = t3 � at for any t
(Diophantus would have additionally required that x > 0, y > 0, i.e.,
t2 > a.)

As far as we know, Diophantus did not understand that the equa-
tion determines a curve on which we must �nd integer points. For that
one needs the notion of coordinate, which �rst appeared in the work of
Descartes in the 17-th century. But in Diophantus' solution, we immedi-
ately discern the construction of lines passing through the singular (0,0)
point of curve y2 = x3 + ax.

ANSWERS, HINTS, SOLUTIONS

3. Answer:

(3, 4, 5), (18,24,30), (24,45,51), (39,52,65), (13,84,85),
(6, 8,10), (16,30,34), (20,48,52), (32,60,68), (36,77,85),
(5,12,13), (21,28,35), (28,45,53), (42,56,70), (40,75,85),
(9,12,15), (12,35,37), (33,44,55), (48,55,73), (51,68,85),
(8,15,17), (15,36,39), (40,42,58), (24,70,74), (60,63,87),
(12,16,20), (24,32,40), (36,48,60), (21,72,75), (39,80,89),
(7,24,25), (9,40,41), (11,60,61), (45,60,75), (54,72,90),
(15,20,25), (27,36,45), (16,63,65), (30,72,78), (35,84,91),
(10,24,26), (14,48,50), (25,60,65), (48,64,80), (57,76,95),
(20,21,29), (30,40,50), (33,56,65), (18,80,82), (65,72,97).

5. Answer: à) X = (15m2 + n2)r, Y = 2mnr, Z = (15m2 � n2)r;
b) X = 9mnr, Y = 9(9n2�m2)r, Z = m2r; in items a) and b), n and m
are integers, while r is an appropriate rational number (these formulae
are just one of the possible ways of expressing the answer).
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c) The unique solution with Z = 0 is X = Y = Z = 0. Now
let Z 6= 0. Suppose that (X;Y; Z) is a solution of the equation
X2 + 3Y 2 = 5Z2 and the numbers X;Y; Z have no common prime
divisors. Consider this equation �modulo 5�: when divided by 5 the
number X2 can have the remainders 0, 1, or 4, while the number 3Y 2,
the remainders 0, 2, or 3. Therefore, since X2 + 3Y 2 is divisible by 5,
then both X and Y are divisible by 5, and it follows that Z is divisible
by 5. This contradicts the assumption that the numbers X;Y; Z have
no common prime divisors.

6. Let (x0; y0) be a rational point on the curve

ax2 + bxy + cy2 + dx+ ey + f = 0:

Let us draw a line through (x0; y0) with angular coe�cient t:

y = tx+ (y0 � tx0);

and substitute y into the equation of the curve. We obtain an equation
of degree no greater that two

A(t)x2 +B(t)x+ C(t) = 0

whose coe�cients are, as is easy to see, polynomials t with rational
coe�cients (because x0; y0; a; b; c; d; e; f are rational numbers). Note
that for any t0, the numbers A(t); B(t); C(t) cannot be simultaneously
equal to zero, because that would mean that under the substitution
y = t0x+ (y0 � t0x0) the polynomial

ax2 + bxy + cy2 + dx+ ey + f

becomes identically equal to zero. Introduce a new coordinate system
(x0y0) in which the line y = t0x + (y0 � t0x0) is given by the equation
y0 = 0. In this system, our curve has the equation F (x0; y0) = 0, where
F is a polynomial of degree no greater that two, and F (x0; 0) � 0.
Therefore, F (x0; y0) is divisible by y0, so that F (x0; y0) = y0 � G(x0; y0),
whereG(x0; y0) is some polynomial. Returning to the previous coordinate
system, we see that the polynomial ax2+bxy+cy2+dx+ey+f is divisible
by the polynomial y � tx � (y0 � tx0), which contradicts the absolute
irreducibility of our curve.

If A(t) = a+ bt+ ct2 = 0, then the equation

A(t)x2 +B(t)x+ C(t) = 0

is of degree 1, but there are no more than two such values of t. For the
other vaiues of t, the equation is quadratic. One of its roots is x0, and
by Vieta's Theorem, the other root is �(B(t)=A(t))� x0. Thus

x = �B(t)

A(t)
� x0; y = t

�
�B(t)

A(t)
� x0

�
+ (y0 � tx0)
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and the above are the desired rational functions with rational coe�cients.
It remains to show that at least one of them is not a constant.

Assume that both are constant functions,

�B(t)

A(t)
� h1; t

�
�B(t)

A(t)
� 2x0

�
� h2:

Then t(h1 � 2x0) � h2, hence

h1 = 2x0; �B(t)=A(t) = 2x0;

A(t)x2 +B(t)x+ C(t) = A(t)x2 � 2x0A(t)x+ C(t):

The number x0 is always a root of this polynomial, and so we have
C(t) = x20A(t). Let t0 be a root of the equation A(t) = 0 (possibly
complex). Then A(t0) = B(t0) = C(t0) = 0, which, as we showed above,
is impossible. Contradiction.

7. Answer: if and only if all the odd primes entering in the decom-
position of the integer c into a product of primes in odd degrees have
remainder 1 under division by 4.

In the solution of this problem, we use the results of problems 8 and
10�12.

We can assume that c is square free. If c = x2+y2, then by problem
8, the number �1 must be a quadratic residue modulo c. Therefore, all
the prime divisors of c must be of the form 4k + 1 (see problem 12).

Conversely, let all the prime divisors of the square-free integer c be
of the form 4k+1 or p = 2 (the case c = 1 is trivial). Since the equalities
c1 = x21 + y21 and c2 = x22 + y22 imply

c1c2 = (x1x2 + y1y2)
2 + (x1y2 � x2y1)

2;

it su�ces to prove that any prime of the form p = 4k+1 can be presented
as the sum of squares of two rational numbers (for p = 2, we have
2 = 12 + 12).

The proof will be by induction. Our statement holds for p = 5: we
have 5 = 22+12; assume that it holds for all primes p0 = 4k0+1, p0 < p.
Let us prove it for p. According to problem 12, we can �nd an integer
m such that m2 + 1 = np. If n = 1, then everything is proved. In the
converse case, we can assume that jmj � p=2 (to see this, �rst replace m
by its remainder under division by p, and then, if necessary, by p�m);
naturally, 1 � p=2. Thus n � p=2 � p. All the prime divisors of np of
the form 4k+3 enter into np (and so into n as well) in even degrees. Let
n = nsq.free~n, where nsq.free is square free. Then nsq.free � n < p; all the
odd prime divisors p0 of of the number nsq.free are less than p and are of
the form 4k + 1. By the induction hypothesis, they are representable in
the form of the sum of squares of two rational numbers, and hence so are
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nsq.free and n. Let n = a2 + b2. The next identity completes the proof:

p =
m2 + 1
a2 + b2

=
(m2 + 1)(a2 + b2)

(a2 + b2)2
=

(ma+ b)2 + (mb� a)2

(a2 + b2)2

=
�
ma+ b

a2 + b2

�2
+
�
mb� a

a2 + b2

�2
:

A somewhat more delicate argument shows that in this case c is
actually the sum of squares of two integers.

10. Let x be an integer. The remainder of x2 when divided by a
prime p depends only on the remainder of x when divided by p. There-
fore, in order to �nd all the quadratic residues, it su�ces to �nd the
remainder of x2 when divided by p of the numbers x2, x = 0; 1; : : : ; p�1.
Note that the integers x2 and (p � x)2 give the same remainders when
divided by p. Among the numbers 0; 1; : : : ; p � 1, we can distinguish
(p � 1)=2 pairs (x; p � x), and this leaves the number 0. Therefore, the
number of quadratic residues is no more than (p + 1)=2. On the other
hand, if x2 and y2 give the same remainder when divided by p, then
x2�y2 = (x�y)(x+y) is divisible by p, i.e., x�y or x+y is divisible by
p. This means that either x and y, or x and p� y give the same remain-
der when divided by p. Therefore, the number of quadratic residues is
(p+ 1)=2.

11. The solution of this problem is based on the following statement.
Chinese Remainder Theorem. Let M and N be coprime inte-

gers. Then for any integers x and y, there exists an integer z such that
x and z give the same remainder when divided by M , while y and z give
the same remainder when divided by N .

Let �(N) be the number of remainders modulo N which are quadrat-
ic residues modulo N . Let us prove that if N1 and N2 are coprime
integers, then �(N1N2) = �(N1)�(N2). To this end, let us construct a
one-to-one mapping that to each pair

(quadratic residue modulo N1, quadratic residue modulo N2)

assigns the quadratic residue modulo N1N2 (here we consider only re-
mainders under division by each of the numbers N1 and N2). Let

a � u2 (mod N1); 0 � a < N1; and b � v2 (mod N2); 0 � b < N2:

Then, by the Chinese Remainder Theorem, there is an integer z such
that

z � a (mod N1); z � b (mod N2):

Assign to the pair (a; b) the remainder c under the division of z by
N1N2. This remainder does not depend on the choice of z, since any two
numbers z and z0 such that

z � z0 � a (mod N1); and z � z0 � b (mod N2)
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di�er by a multiple of N1N2. This easily follows from the fact that N1

and N2 are coprime. Let us prove that the remainder c is a quadratic
residue modulo N1N2. Indeed, by the Chinese Remainder Theorem,
there is an integer w such that

w � u (mod N1); and w � v (mod N2):

Then
c � w2 (mod N1); and c � w2 (mod N2);

and so, by virtue of the fact that N1 and N2 are coprime, we easily
conclude that c � w2 (mod N1N2). Let us show that the constructed
mapping is one-to-one.

Indeed, since by construction c � a (mod N1) and c � b (mod N2),
to di�erent pairs (a; b) correspond di�erent residues c. Now if c is a
quadratic residue modulo N1N2, then to the pair (a; b), in which a is
the remainder of c when divided by N1 and b is the remainder of c when
divided by N2, will indeed correspond precisely the remainder c.

Thus, �(N1N2)=�(N1)�(N2), and therefore �(M)=�(p1)�: : :��(pn).
We know (see problem 10) that for odd primes p, we have

�(p) =
p+ 1

2
=
h
p

2

i
+ 1:

For the number 2, we have a similar equality �(2) = 2 = [2=2] + 1,
which can be easily veri�ed. It remains to write out the �nal answer:
the number of quadratic residue modulo M equals

�(M) =
�h

p1
2

i
+ 1

�
� : : : �

�h
pn
2

i
+ 1

�
;

the remaining M � �(M) remainders are quadratic nonresidues.
Try to solve this problem for an arbitrary integer M .
12. To solve this problem we will need
Fermat's Little Theorem. Let p be a prime, a be an arbitrary

integer not divisible by p. Then ap�1 is divisible by p.
Let p be an odd prime. By Fermat's Little Theorem, it follows that

either a(p�1)=2 � 1 or a(p�1)=2 + 1 is divisible by p.
If a is a nonzero quadratic residue modulo p, i.e., the remainder of a

when divided by p is equal to the remainder of x2 when divided by p, then
the remainder of a(p�1)=2 when divided by p is equal to the remainder
of (x2)(p�1)=2 when divided by p, i.e., equals 1. Hence, a(p�1)=2 � 1 is
divisible by p. In other words, the nonzero quadratic residues under
consideration are roots of the �equation modulo p� x(p�1)=2 � 1 = 0.
Since the number of nonzero quadratic residue modulo p is equal to
(p�1)=2, this equation has no other roots. Therefore, if a is a quadratic

nonresidue modulo p, then a(p�1)=2 + 1 is divisible by p.
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Now let a = p� 1. Then

a(p�1)=2 = (p� 1)(p�1)=2 � (�1)(p�1)=2 =
n

1; if p = 4k + 1,
�1; if p = 4k + 3.

13. Answer: a) no; b) yes, for instance (1=2; 1=2) is a solution.
14. Hints: a) if a and b are divisible by q, then we have

ax2 + by2 � cz2 = 0

if and only if
a

q
(qx)2 +

b

q
(qy)2 � qcz2 = 0:

b) For example, suppose p divides b. Then n2 � ac (mod p) (recall
that ac is a nonzero quadratic residue modulo b and so modulo p as well).
Then

ax2 � cy2 � a
�
x� n

a
y
��

x+
n

a
y
�
(mod p):

c) Apply the Chinese Remainder Theorem.
d) Consider all the triples of integers (x; y; z) such that

0 � x <
p
bc; 0 � y <

p
ca; 0 � z <

p
ab:

The number of such triples is strictly greater that abc (except for the
case a = b = c = 1). So we can �nd triples (x0; y0; z0) and (x00; y00; z00)
such that

L(x0; y0; z0) = L(x00; y00; z00):

Then the triple (x0 � x00; y0 � y00; z0 � z00) will be a nonzero solution of
the equation

ax2 + by2 � cz2 � 0 (mod abc)

and this triple will satisfy the required inequalities.
e) From the inequalities we easily obtain

�abc < ax2 + by2 � cz2 < 2abc:

16. Suppose that a line intersects a second order curve at a singular
point and at one other point. Let us prove that in that case the equation
of the curve is divisible by the equation of the line.

Suppose, for instance, that the line is given by the equation y = 0,
and the curve by F (x; y) = 0. The polynomial F (x; 0) in the variable x
has a root of multiplicity 2 (at the singular point) and one more root.
But it is a polynomial of degree no greater than 2. Therefore, F (x; 0) = 0
for all x and F (x; y) is divisible by y.

From the proved auxilliary statement, we deduce that if a second
order curve F (x; y) = 0 has a singular point, then

F (x; y) = l1(x; y) � l2(x; y);
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where l1(x; y) and l2(x; y) are linear functions. (Attention: their coe�-
cients can be complex numbers.)

Thus, a second order curve with a singular point is the union of two
lines, and the singular point is the intersection of these lines. Similar
arguments can be applied to third and fourth order curves.

Answer: on a second order curve there is no more than one singular
point, on a third order curve, no more than three, on a fourth order
curve, no more than six (for the proof in the latter case, you may use
the following fact: there exists a second order curve passing through
any �ve points). In all the cases considered, a curve with the maximal
number of singular points is the union of several lines.

17. Answer: yes, it is possible. For example, the union of four lines,
two of which are parallel.

20. Answer: for example, y3+3xy2� x3� 3x2� 3xy� 3y2+3 = 0.
Check that this equation is that of the union of three lines passing
through the points (x1; x2), (x2; x3), and (x3; x1), where (x1; x2; x3)
are the roots of the polynomial equation x3 � 3x + 1 = 0 (which are
irrational). The singular points of this curve� are the points (x1; x2),
(x2; x3), and (x3; x1).

22. Answer: for������
�1 �2 �3
�1 �2 �3

1 
2 
3

������ = �1�2
3+�2�3
1+�3�1
2��1�3
2��2�1
3��3�2
1 6= 0:

23. Let (x0; y0) be the singular point. For the vertical line
x = x0, y = t, the multiplicity of the root t = y0 of the equation
t2 � x30 � ax0 � b = 0 can be equal to 2 only if y0 = 0. In this case, x0
is a root of the equation x3 + ax + b = 0. Now let us consider the line
x = x0 + t, y = 0. The equation (x0 + t)3 + a(x0 + t) + b = 0, together
with x30 + ax0 + b = 0, can be rewritten as t3 + 3x0t

2 + (3x20 + a)t = 0.
The multiplicity of the root t must be greater than 1, hence a = �3x20.
Substituting x = x0 into the equation x3 � 3x20x + b = 0, we obtain
b = 2x30. Therefore, � = 4a3 + 27b2 = 0.

Conversely, let � = 0. Then (as can be proved by using the Vieta
Theorem), the equation x3+ax+b = 0 has a multiple root x0. Substitute
x = x0 + t into this equation; t = 0 is a multiple root of the obtained
equation in t, hence a = �3x20 and so we have b = 2x30. Let us show that
(x0; 0) is a singular point of the curve y

2 = x3�3x20x+2x30. Substituting
x = x0 + ut, y = vt, we obtain v2t2 = 3x0u

2t2 + u3t3, hence t = 0 is a
root of multiplicity no less than 2.

24. Answer: for

4
�
b� a2

3

�3
+ 27

�
c� ab

3
+

2a3

27

�2
= 0:

25. Hint: for 
1 take the coe�cient of the tangent line at the in�ec-
tion point.
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31. Answer: if and only if

4a31
4a3

1
+ 27b2

1

=
4a32

4a3
2
+ 27b2

2

:

32. Let us introduce a new system of coordinates in which the line
M(x; y) = 0 will be the x-axis, and so will be de�ned by the equation
y0 = 0. In the new variables, the polynomial F (x; y) will becomeG(x0; y0)
(the degree of the polynomial G will also be no greater than 3). The
polynomial G(x0; 0) of degree no greater than 3 has four distinct roots,
and therefore is identically zero. In other words, G(x0; y0) is divisible by
y0. Returning to the old system of coordinates, we obtain the assertion
of the problem.

33. Hint: with respect to the variable y, the di�erence (7) is of
degree no greater than two.

40. The condition 3P = 0 is equivalent to 2P = �P . By the
de�nition of the point 2P , this means that the third intersection point
with the tangent to the curve drawn through the point P coincides with
the point P itself (see Fig. 12, d). Such points are called in�ection points.
The in�ection points of the curve y2 = x3 + ax + b are precisely those
points where the second derivative of the function y(x) =

p
x3 + ax+ b

vanishes.
An elliptic curve in Weierstrass form always contains eight in�ex-

ion points in complex coordinates, but only two of them can have real
coordinates.

41. Let the rank of the curve be more than zero. Then it has a
rational point P of in�nite order (linearly independent with itself) and,
therefore, there are in�nitely many rational points : : :, �3P , �2P , �P ,
P , 2P , 3P , : : : Let the rank of the curve be zero. This means that any
rational point is not linearly independent, i.e., is a point of �nite order.
However, there is only a �nite number of rational torsion points on an
elliptic curve.

42. Answer: P1 = (0; 0), �P1 = (0;�1), 3P1 = (�1;�1), �3P1 =
(�1; 0) (Fig. 18).

y

xP
1

−P
1

−3P
1

3P
1

Fig. 18

49. Hint: both equations from Tunnell's criterion have no solutions.
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50. In Table 1, each of the numbers from 1 to 100 that are square-
free is followed by the number of solutions to the equations of Tunnell's
criterion, separated by a hyphen, while the nonsquarefree numbers are
followed by their squarefree parts. The numbers satisfying Tunnell's cri-
terion (which are conjecturally congruent) are shown in boldface. Table 2
presents the lengths of the sides of the corresponding triangles.

52. Let us �nd the in�ection points of the curve y2 = x3�s2x (they
are precisely the required points of order 3, see problem 40). To this
end, let us di�erentiate the equation of the curve twice:

2yy0 = 3x2 � s2; 2(y0)2 + 2yy00 = 6x:

If y00 = 0, then (y0)2 = 3x. We have:

4y2(y0)2=(3x2�s2)2 (taking the square of 2yy0=3x2�s2),
4(x3�s2x) �3x=(3x2�s2)2 (substituting y2=x3�s2x, (y0)2=2x),

12x4�12s2x2=9x4�6x2s2+s4;

3x4�6x2s2�s4=0:

The discriminant of this biquadratic equation is

36s4 + 12s4 = 48s4 = 3(4s2)2:

Therefore, x2 is an irrational number.
Now let us consider points of order 4. Assume that s 6= 1. We will

need the formula for doubling points on the curve Es. Namely, if we put
Q = (x0; y0) and 2Q = (x1; y1), then

x1 =

�
x20 + s2

2x0y0

�2

:

If R is a fourth order point, then 2R is a point of order 2. Therefore,
its abcissa x1 is 0, or s, or �s, and since x1 is positive, it follows that
x1 = s. Thus we immediately obtain a contradiction with the fact that
the point (x0; y0) is rational. The case s = 1 is left to the reader.

53. Hint: �rst prove that the order of the point P divides the inte-
ger r.

56. Hint: �1 is a quadratic nonresidue modulo p.

58. Answer: for the Pythagorean brick, we have:8><>:
X2 + Y 2 = U2;
Y 2 + Z2 = V 2;
Z2 +X2 = W 2;
X2 + Y 2 + Z2 = T 2;
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Ta b l e 1

1 2 � 2
2 2 � 2
3 4 � 4
4 see 1
5 0 � 0
6 0 � 0
7 0 � 0
8 see 2
9 see 1
10 4 � 4
11 4 � 12
12 see 3
13 0 � 0
14 0 � 0
15 0 � 0
16 see 1
17 4 � 16
18 see 2
19 4 � 12
20 see 5

21 0 � 0
22 0 � 0
23 0 � 0
24 see 6

25 see 1
26 4 � 12
27 see 3
28 see 7

29 0 � 0
30 0 � 0
31 0 � 0
32 see 2
33 12 � 16
34 4 � 8
35 8 � 24
36 see 1
37 0 � 0
38 0 � 0
39 0 � 0
40 see 10

41 16 � 32
42 0 � 8
43 12 � 12
44 see 11
45 see 5

46 0 � 0
47 0 � 0
48 see 3
49 see 1
50 see 2
51 16 � 24
52 see 13

53 0 � 0
54 see 6

55 0 � 0
56 see 14

57 12 � 16
58 4 � 4
59 20 � 36
60 see 15

61 0 � 0
62 0 � 0
63 see 7

64 see 1
65 16 � 32
66 4 � 16
67 4 � 12
68 see 17
69 0 � 0
70 0 � 0
71 0 � 0
72 see 2
73 12 � 16
74 12 � 20
75 see 3
76 see 19
77 0 � 0
78 0 � 0
79 0 � 0
80 see 5

81 see 1
82 8 � 8
83 20 � 36
84 see 21

85 0 � 0
86 0 � 0
87 0 � 0
88 see 22

89 20 � 48
90 see 10
91 8 � 24
92 see 23

93 0 � 0
94 0 � 0
95 0 � 0
96 see 6

97 4 � 16
98 see 2
99 see 11
100 see 1

Ta b l e 2

5
3

2
,
20

3
,
41

6

6 3, 4, 5

7
24

5
,
35

12
,
337

60

13
780

323
,
323

30
,
106921

9690

14
21

2
,
8

3
,
65

6

15
15

2
, 4,

17

2

21 12,
7

2
,
25

2

22
140

3
,
33

35
,
4901

105

23

41496

3485
,

80155

20748
,

905141617

72306780

29
52780
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for the weak Pythagorean brick:(
X2 + Y 2 = U2;
Y 2 + Z2 = V 2;
Z2 +X2 = W 2:

Dividing all the variables by one of them, say U , we obtain a system of
four equations with six variables (respectively, of three equations with
�ve variables). The corresponding geometric objects are algebraic sur-
faces. These surfaces lie in multidimensional spaces and have a �nite
number of singular points (count them!).

59. Hint: To describe all parallelepipeds with integer sides X, Y ,
Z and T is equivalent to �nding the integer solutions of the equation
X2 + Y 2 + Z2 = T 2. The only solution of this equation for T = 0
is X = Y = Z = T = 0. For all other solutions with T 6= 0, the
equation can be divided by T 2. Thus the problem reduces to �nding all
the rational solutions of the equation

x2 + y2 + z2 = 1; where x = X=T; y = Y=T ; z = Z=T:

This equation de�nes the unit sphere in the space Oxyz (Fig. 19).
Choose a rational point, say A(0; 0; 1) on the sphere. It is easy to ver-
ify that any line AB, where B(x; y; z) is another rational point on the
sphere, intersects the plane Oxy at a rational point C(a; b; 0) and, con-
versely, any line AC intersects the sphere at a rational point B. Thus
there are �as many� rational points on the sphere, as on the plane. The
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x 2+y 2+z 2=1

Fig. 19
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numbers x; y; z can be expressed in terms of a; b; c as follows

x =
2a

a2 + b2 + 1
; y =

2b
a2 + b2 + 1

;

z =
a2 + b2 � 1
a2 + b2 + 1

:

Using this and setting a = k=l, b = m=n. we obtain the �nal answer:

X = 2kln2r; Y = 2l2mnr;

Z = (k2n2 + l2m2 � l2n2)r;

T = (k2n2 + l2m2 + l2n2)r:

Here k; l;m; n are integers, r is an appropriate rational number, i.e., a
rational number such that the numbers X;Y; Z; T are integers.

60. Let us show that the polynomials X2 + Y 2, Y 2 + Z2, Z2 +X2

are exact squares of polynomials with integer coe�cients. Then, for any
integer value n, the numbers U , V and W will also be integers. Thus,

X2+Y 2=(n6�15n4+15n2�1)2+(6n5�20n3+6n)2=

=(n12�30n10+255n8�452n6+255n4�30n2+1)+

+(36n10�240n8+472n6�240n4+36n2)=

=n12+6n10+15n8+20n6+15n4+6n2+1=(n6+3n4+3n2+1)2;

Y 2+Z2=(6n5�20n3+6n)2+(8n5�8n)2=
=(36n10�240n8+472n6�240n4+36n2)+(64n10�128n6+64n2)=

=100n10�240n8+344n6�240n4+100n2=(10n5�12n3+10n)2;

Z2+X2=(8n5�8n)2+(n6�15n4+15n2�1)2=
=(64n10�128n6+64n2)+(n12�30n10+255n8�452n6+255n4�30n2+1)=

=n12+34n10+255n8�580n6+255n4+34n2+1=(n6+17n4�17n2�1)2:
Thus U=n6+3n4+3n2+1, V=10n5�12n3+10n,W=n6+17n4�17n2�1.
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