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Preface

In presenting the course “Divisibility and prime num-
bers”, there are two main approaches. The first approach
focuses on the logic of the presentation: all statements are
proved, and those that are not proved are not used. See,
for example, [1]. The second approach focuses on problems:
the fundamental theorem of arithmetic is stated at the be-
ginning and is given without proof, which makes it possible
to avoid theoretical subtleties, and immediately proceed to
solving meaningful problems. See, for example, [5].

The author tried to use the middle way. It seemed to him
fundamentally important in a mathematical course to prove
all the statements sooner or later. However, without support
by problems, proofs of theorems often turn into formal texts.
For example, what is the following statement worth to an
unprepared student:

“For any coprime a and b, there exists an x and a y such
that ax + by = 1”!

Therefore, the different stages of the proofs are spread
through several lessons in which the appropriate ideas and
constructions are motivated and used in problems. In ad-
dition, the author sometimes “borrowed” extra statements,
sacrificing the consistency of presentation to make it more
lively1. As a result (in the author’s view), the stages of
proofs have become more understandable, and interesting
problems are solved along the way. True, the exposition in

1For example, in Lesson 2, the coprime divisor theorem is stated and
used to solve problems involving divisibility tests; in Lesson 6, the prime
factor cancellation theorem, needed to solve inhomogeneous Diophantine
equations, is presented.
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several stages of the proof of the fundamental theorem of
arithmetic obscures its logical structure to some extent.

Here is a brief outline for teachers and trained students1:

1. The notion of prime number is introduced, and we prove
that any number can be factored into primes; however,
the question of uniqueness of this factorization is stud-
ied later (Lesson 4).

2. Euclid’s algorithm is introduced (Lesson 5).

3. Euclid’s algorithm is used to prove the fundamental
lemma (Lesson 6).

4. The prime divisor theorem is deduced from the funda-
mental lemma (Lesson 7).

5. The prime divisor theorem is used to prove the unique-
ness of factoring into primes (Lesson 8).

Also, in Lesson 6, the fundamental lemma is used to de-
duce the theorems on coprime divisors and factor cancella-
tion (but they are optional in a minimal logical scheme).

Divisibility theorems are given names to make them eas-
ier for students to “recognize by sight”. In order to grasp
the underlying ideas, these theorems must be actively used
to solve problems; after their solutions, the author tried to
give comments, control questions, counterexamples, and ad-
ditional problems for the same ideas.

When solving problems from the first lessons, students
may be tempted to refer to the properties of prime numbers
that have not been proved yet, such as the uniqueness of fac-
toring into primes, etc. However, all these problems can be
solved on the basis of the material proved within the frame-
work of the lesson in which they are given. It is useful to
urge students to do this and teach them to find “rigorous”
solutions.

1Appendix 3 provides an alternative outline for the course.
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The vast majority of problems was not invented by the au-
thor, but taken from the literature (often with some changes
in the formulation). The book [1] influenced the logical struc-
ture of the course (proof of the fundamental theorem of arith-
metic). The book [5] gave many ideas for problems and se-
quences of problems. A lot of striking formulations was
taken from the book [4] (especially problems on Diophantine
equations). Attention was paid to problems involving geo-
metric interpretations.

The author is grateful to A. D. Blinkov, A. S. Vorontsov,
E. A. Ermakova, A. V. Zabelin, I. B. Pisarenko, A. B. Sko-
penkov, and also to his students. The author expresses spe-
cial gratitude to A. V. Shapovalov, whose help considerably
exceeded the usual amount of an editor’s work.

Please send feedback and comments to the e-mail address
sgibnev@mccme.ru.

Lessons 1–4 are intended for students of intermediate forms, and
Lessons 5–8 for students of upper forms.

The most important problems are marked with the “+” sign, and the
most difficult problems are marked with the “∗” sign. Unless stated oth-
erwise, “numbers” are understood as “integers”.
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Lesson 1

Divisibility of Numbers

Definition. A number a is called divisible by a number b
(or a is a multiple of b, or b is a divisor of a) if there is
an integer q such that a = b · q. Notation: a ... b.
Visual interpretation: if a coins can be laid out into b identical stacks,

then a is a multiple of b. Another interpretation: if a coins can be laid
out into several stacks of b coins each, then a is a multiple of b. It follows
that only an even number can be divided into pairs.

Note that if a ... b, then a ... (−b) (prove this!). Therefore,
unless stated otherwise, we will only search for positive divi-
sors of numbers.

Problem 1.1. Find all the divisors of the number 36.
Solution. We will successively check the numbers 1, 2, 3,

4, and so on: if their product by some number gives 36, we
write this out:

36=1 ·36=2 ·18=3 ·12=4 ·9=6 ·6=9 ·4=12 ·3=18 ·2=36 ·1.

Note that, in the expression a = bq, both b and q are divisors
of a. Therefore, the search can be stopped at the product of
6 · 6.

This method is useful when orally finding the integer roots of reduced
quadratic equations x2 + mx + n = 0 with integer coefficients m and n by
using Vieta’s inverse theorem: decompose n into two factors and check
whether their sum is equal to (−m).

Problem 1.2+. In the table below, the topmost row indi-
cates what is given. The left column, what is asked. Fill in
the empty cells: if “yes”, then write “+”, if “no”, write “−”,
and if there is not enough data, write “?”. Justify your an-
swers.
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a ... m and b ... m a ... m and b6 ... m a6 ... m and b6 ... m

a + b ... m?

a− b ... m?

a · b ... m?

Solution. Consider the first row of the table. Since a =
km and b = lm, it follows that a+b = (k+l)m, that is, a+b is
divisible by m. In the cell below (the difference), everything
is similar. The following reasoning is also possible: since
b ... m, then −b ... m, and hence the sum a + (−b) is divisible
by m.

Now consider the third cell in the first row. 5 6 ... 3 and
1 6 ... 3, but 5 + 1 ... 3. However, 5 6 ... 3 and 2 6 ... 3 and also
5 + 2 6 ... 3. Therefore, the data is insufficient for an answer.
Similar examples can also be given for the difference.

Consider the second cell in the first row. Suppose that
c = a + b ... m. Then b = c − a must also be divisible by m,
since it is the difference of two numbers divisible by m. The
resulting contradiction shows that a + b is not divisible by
m. The same applies to the difference.

Now consider the divisibility of the product (the third
line). Since a = km, then ab = (kb)m ... m regardless of the
divisibility of b by m.

In the last cell of the third row, it is possible that ab is
not divisible by m (for example, a = b = 1, m = 2), but it
may also be divisible (for example, a = b = 2, m = 4). This
means that there is not enough data.

A visual interpretation of most of the answers can be given: if each
one of the two stacks of coins is laid out in stacks of m coins, then the
combined stack can also be laid out, and so on.

It is beneficial to remember the results of the above problem:

a
... m and b

... m a
... m and b 6 ... m a 6 ... m and b 6 ... m

a + b
... m? + − ?

a− b
... m? + − ?

a · b
... m? + + ?
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Draw the students’ attention to the fact that the answers in the first
and second rows are the same (in this sense, sum and difference are indis-
tinguishable from the point of view of divisibility). In Lesson 7, we will
understand what determines the divisibility of the numbers in the third
column.

If, in the filled in table, instead of “a is divisible by m”, we write “a is
rational”, and, instead of “a is not divisible by m”, that “a is irrational”,
and the same with b, then we will get a correct table for the rationality
of the sum and difference of numbers. The logic of the proof is the same
as for divisibility: for the first column we use definitions, the second
is “by contradiction”, and the third is where we give two examples with
different results.

Problem 1.3. Find out, without performing the divisions,
whether a) 182 − 72 is divisible by 11; b) 453 + 553 by 2500;
c) 13 + 23 + … + 823 by 83.

Solution. a) Is divisible:

182 − 72 = (18− 7)(18 + 7) = 11 · 25 ... 11.

b) Is divisible:

453 + 553 = (45 + 55)(452 − 45 · 55 + 552).

The first bracket is 100, the second is divisible by 52 = 25.
c) Is divisible: divide the summands into pairs and prove

that the sum in each pair is divisible by 83. For example,
13 + 823 ... 83, 23 + 813 ... 83.

Using the formula for the sum of the cubes of a positive integers, we
can prove that this sum is divisible even by 832.

Problem 1.4. Peter believes that if a2 is divisible by a−b,
then b2 is divisible by a− b. Is he right?

Solution. Consider the difference between Peter’s two ex-
pressions:

a2 − b2 = (a− b)(a + b) ... (a− b).

Since the minuend and the difference are divisible by a − b,
then, according to Problem 1.2, the subtrahend must also be
divisible by a− b. So Peter is right.

The following wording may be useful: if the sum (difference) of two
numbers is divisible by m, then either both numbers are divisible by m or
both are not divisible.
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Problem 1.5. a) Find the number of divisors of the inte-
gers 4, 9, 16, 36, 81. Do the results lead you to make a
general conjecture? b) Is the statement converse to the con-
jecture valid?

Solution. a) We will find the divisors in the same way as
in Problem 1.1; the results can be presented in the following
table:

Number Divisors Number of divisors
4 1, 2, 4 3
9 1, 3, 9 3
16 1, 2, 4, 8, 16 5
36 1, 2, 3, 4, 6, 9, 12, 18, 36 9
64 1, 2, 4, 8, 16, 32, 64 7

We put forward the following conjecture: “The square of a
positive integer has an odd number of divisors”.

Let us group together the divisors of n = m2: if d is a
divisor of the number n, then n/d is also a divisor; let’s pair
them. Only m will be paired with itself, while all the other
divisors of n will form pairs. Therefore, the square of an
integer has an odd number of divisors.

b) If the number of divisors is odd, then there is a pair
of identical divisors. Therefore, the number is a square, and
the converse of our conjecture also holds.

Problem 1.6. Prove that: a) the product of two consecu-
tive numbers is divisible by 2; b) the number (n2 +n)/2 is an
integer.

Solution. a) Note that, among two consecutive numbers,
at least one is divisible by 2. In Problem 1.2, the product is
also divisible by 2.

b) Let us factor the numerator: n2 + n = n(n + 1).

We obtain the product of two consecutive numbers, which
is even by item a).

A similar result for three numbers is proved in Problem 2.12.
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Problems for individual solution
Problem 1.7. For what numbers a and b is a divisible by b

and b is divisible by a? (The numbers can also be negative!)
Problem 1.8+. a) Is it true that if a ... m and b ... n, then

ab ... mn? b) Is it true that if a ... b and b ... c, then a ... c?
Problem 1.9. Paul believes that if ab + cd is divisible by

a− c, then ad + bc is also divisible by a− c. Is he right?
Problem 1.10. In the Triple Kingdom, only coins of 9 and

15 ducats are in circulation. Is it possible to assemble such
coins to obtain a) 48 ducats, b) 50 ducats?

Problem 1.11. a) Mary demonstartes the following trick:
given any three-digit number, she writes the given number
twice, obtaining a six-digit number, and then, in a second,
mentally divides this six-digit number by 1001. How does
she do it?

b) Alex noticed that all of Mary’s six-digit numbers are
divisible by 7. How? By what other numbers are they divis-
ible?

Problem 1.12. In an ancient kingdom,
there was a prison with one inmate in
each of its hundred cells. The prison
cells are numbered from 1 to 100 and the
locks in them were arranged so that the
door opens when the key was turned once,
but, at the next turn of the key, the door
closes, and so on. At that time, the king
was at war with the neighboring kinddom
and, at some point, it seemed to him that
he was winning.

Filled with joy, the king sent a messenger with instruc-
tions to unlock all the cell doors, but then the luck turned,
and the king sent another messenger after the first, instruct-
ing him to turn the key in the lock in every second cell; then
the next messenger was sent to turn the key in the lock of
every third cell, and so on. In this way, 100 messengers ar-
rived at the prison one after another and turned the locks
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in the cells in succession. How many prisoners were, as a
result, set free and from what cells?

Answers and solutions

Problem 1.7. Since a is divisible by b, we see that |a| > |b|.
The fact that b is divisible by a implies that |b| > |a|. The
two inequalities together give |a| = |b|, that is, the numbers
can only differ in sign.

Problem 1.8. a) True: since a = lm and b = kn, it follows
that ab = (kl)(mn), and hence, by definition, ab is divisible
by mn.

b) True: since a = kb, b = lc, it follows that a = (kl)c,
and hence, by definition, a is divisible by c.

These exercises are fairly simple, but it is important for the students
get used to giving correct proofs by referring to definitions. For example,
in the previous exercise, it is more useful to say “the product is a multiple
of mn” than “the quotient will be an integer”.

Problem 1.9. Arguing just as Problem 1.4, we find the
difference between the two expressions:

(ab + cd)− (ad + bc) = a(b− d)− c(b− d) = (a− c)(b− d).

The first expression is divisible by a− c, hence so is the sec-
ond expression.

Problem 1.10. a) It is possible: 48 = 9+9+15+15. b) Note
that 9 and 15 are divisible by 3, so any sum composed of such
coins is also divisible by 3. However, 50 is not divisible by 3.

It will be shown in Lesson 6 that if you and I have an unlimited
amount of 9- and 15-unit coins, then I can pay you any sum divisible
by 3, provided you are allowed to give me change.

Problem 1.11. a) Note that abcabc = 1001abc. So the
quotient is simply equal to the original number.

b) 1001 = 7 · 11 · 13, so numbers of the form abcabc are
divisible by 7, by 11, by 13, and by their pairwise products.

Problem 1.12. Note that the prisoners were released from
those cells in which the key was turned an odd number of
times, that is, from the cells whose numbers have an odd
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number of divisors. Referring to Problem 1.5, we see that
the numbers of such cells are exact squares, i.e., 1, 4, 9,
16, …, 100. There are ten of them in all.

The topic of this lesson also covers Problems 1–8 from the section
“Additional problems”.
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Lesson 2

Divisibility Tests

Sometimes we need to quickly determine whether one number is di-
visible by another without performing the division itself. In such cases,
it is useful to use divisibility tests.

It is suitable to start the lesson with the following trick. The teacher
asks each student to pick a three-digit number, then subtract its first
digit from it, then subtract the second and, finally, the third digit. If
the student obtains a two-digit number, then he or she must add zero to
its beginning. All the students do the calculations at the same time, and
then the teacher asks each of the students in turn to name any two of
their three digits and guesses the third. The key to the trick will appear
during the lesson.

Problem 2.1. a) Prove that a number is divisible by 2 if
and only if its last digit is divisible by 2. b) Derive a divisi-
bility test by 4 associated with the last two digits.

Solution. a) Let’s imagine that a saleswoman has N eggs,
which she puts in boxes of ten, one hundred, one thousand,
and so on. The number of eggs equal to the last digit d of N
remains outside the boxes. In each box, the number of eggs
is divisible by 2, so if d is even, then N is even, and if d is
odd, then N is odd. In short, d and N are divisible or not
divisible by 2 at the same time.

b) Put N eggs into boxes of one hundred, one thousand,
etc. The number t of eggs equal to the two-digit number com-
posed of the last two digits of N remains outside the boxes.
In each box, the number of eggs is divisible by 4, so t and N
are divisible or not divisible by 4 simultaneously.

Here is an algebraic solution of item b) for students familiar with
algebraic techniques. Consider the number abcd = 1000a+100b+10c+d.
Note that all the summands, except the last two, are obviously divisible
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by 4. Therefore, the sum is divisible by 4 if and only if the number cd is
divisible by 4.

Divisibility tests by 8, 16, and so on, can be derived in a similar way.

Problem 2.2. Peter noticed that if one subtracts the sum
of its digits from a number, then one gets a number which is
a multiple of 9. a) Prove this fact. b) On its basis, formulate
divisibility tests by 9 and by 3.

Solution. a) Let’s carry out the proof using a three-digit
number N as an example. We will put N eggs in boxes of
one hundred, ten, and one. After that, we will take one egg
from each box and put them together in a basket: one from
each box of one hundred, one from each box of ten, and one
from each one-egg box. Note that the number of eggs in the
basket is exactly equal to the sum of the digits of the number
N. In each of the largest boxes 99 eggs will remain, in the
medium boxes, 9 eggs, and, in the smallest boxes, nothing.
This means that the total number of eggs in the large and
medium cells is a multiple of 9.

b) Thus, a number N is divisible by 9 if and only if the
sum of its digits is divisible by 9. For divisibility by 3, the
test can be stated similarily (since the difference is also a
multiple of 3).

For students familiar with algebraic techniques, we can give the fol-
lowing proof. Consider the number abc = 100a + 10b + c. Subtract the
sum of its digits from it: abc − (a + b + c) = 99a + 9b. The difference
is a multiple of 9, so the minuend is a multiple of 9 if and only if the
subtrahend is a multiple of 9.

The logic of divisibility by n tests is seen from the examples given
above: we replace the given number N by a“part” of it (for example, by
the number d composed of the last digits or the sum of the digits), and
the part d will be divisible (or not divisible) by n simultaneously with the
original number N.

Now we can explain our trick: the students subtracted the sum of its
digits from the given number and hence the result was a multiple of 9.
From any two digits of the result, the teacher chose a third one so that
the sum is divisible by 9. This can be done in a unique way, except in the
case where the sum of the two reported digits is itself a multiple of 9. In
this case, the teacher says: “0 or 9”.
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Problem 2.3. Johnny found the number

100! = 1 · 2 · 3 · … · 99 · 100.

He added all its digits, obtaining a new number, in which he
again added all the digits, and so on until he got a one-digit
number. What was it?

Solution. Note that 100! ... 9, so the sum of the digits of
this number is also divisible by 9. Since the new number is
divisible by 9, then its sum of digits is divisible by 9, and so
on. Therefore, the desired single digit number must also be
divisible by 9, that is, it is equal to 9 (it cannot be 0, because
the sum of the digits must be positive).

Note the fact that the statement of this problem does not indicate that
it can be solved by a divisibility test; hence the students themselves must
figure out that a divisibility test should be applied here.

Problem 2.4. a) The digits of a positive integer are num-
bered from right to left (the first being the 1’s digit, the
second the 10’s digit, and so on). After that, the sum of dig-
its located at even places is added to the given number and,
after that, the sum of the digits at the odd places is sub-
tracted. Prove that the resulting number is divisible by 11.

b) State a divisibility by 11 test.
Solution. a) Let’s prove it using a four-digit number N as

an example. Let the saleswoman put N eggs in boxes of one
thousand, one hundred, ten, and one. After that, she takes
out one egg from each one-egg box and from each 100-egg
box and puts in one egg into each 10-egg box and into each
1000-egg box. (Note that this is equivalent to adding the
sum of the digits at the even places to N and subtracting the
sum of the digits at the odd places.) Now there are 1001, 99,
and 11 eggs in the boxes. All these numbers are divisible by
11. So, the resulting number is divisible by 11.

b) Let us assign to the given number the alternating sum
of its digits: we put a plus or a minus in front of the digits so
that they alternate and there is a plus in front of the right-
most digit. For example, the alternating sum of the digits
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of the number 2011 is −2+0−1+1 = −2. Then it turns out
that, in item a), we actually subtracted the alternating sum
of its digits from the number. Since the difference found in
this case is always a multiple of 11, we obtain

Divisibility by 11 test.
A number is a multiple of 11 if and only if its alternating
sum of digits is a multiple of 11.
Let’s prove that this test also applies to numbers of arbitrary length.

To do this, note that 102n − 1 for any n is divisible by 11 as a positive
integer made up of an even number of identical digits. Now let us prove
that 102n+1 + 1 for any n is divisible by 11. Add these two numbers:

(102n − 1) + (102n+1 + 1) = 11 · 102n.

Since the sum and one of its summands are divisible by 11, then the other
summand is also divisible by 11.

Problem 2.5. Is it true that if a number n is divisible by
two other numbers, then it is also divisible by their prod-
uct? Check this by dividing the number n by the following
numbers: a) 6 and 4, b) 3 and 2, c) 9 and 4.

Solution. a) Incorrect: 12 ... 6, 12 ... 4, but 12 6 ... (6 · 4).
b) True. By assumption n = 2k = 3l. Note that we have

3n = 3 · 2k = 6k ... 6, 2n = 2 · 3l = 6l ... 6 ⇒ n = 3n− 2n ... 6.
c) True. By assumption, n = 4k = 9l. Note that we have

9n = 9 · 4k ... 36, 4n = 4 · 9l ... 36 ⇒ n = 9n− 2 · 4n ... 36.
It is useful to give students time to try to prove assertion b) on their

own. Then analyze the errors in their proofs (as a rule, this will be the
use of statements that have not yet been proved) and show the proof given
above. Then ask to independently prove assertion c) by analogy.

The following theorem shows when the assertion of 2.5 is valid.

Definition. Two numbers are said to be relatively prime,
or coprime, if their only common divisor is 1.

Theorem on coprime divisors. If the number n is divisible
by each of two coprime numbers a and b, then it is divisible
by their product ab.

We will give the proof in Lesson 6. On the basis of this
theorem, it is possible to state new divisibility tests by com-
bining the already familiar ones. For example, 18 = 9 · 2,
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9 and 2 are coprime numbers, so a number is divisible by 18
if it is divisible by 9 and by 2.

Problem 2.6. In the number 65432789, cross out the least
number of digits so that the remaining number is divisible
by 36.

Answer: 5328, four crossed-out digits.
Solution. We must obtain a number which is a multiple

of 4 and 9. We must cross out the digit 9; otherwise, the
result will be an odd number and, therefore, not a multiple
of 4. We must also cross out 7; otherwise, the result will end
in 7 or 78 and hence is not a multiple of 4. Thus, we obtain
the number 654328. The sum of its digits is 28, which is not
a multiple of 9, and this means that the obtained number
(654328) is not a multiple of 9, and at least one more digit
must be crossed out. After any crossing out, the sum of the
digits will be less than 27, but it must be a multiple of 9,
that is, it must be equal to 18 or 9.

In all cases, we must reduce the sum 28 by at least 10,
that is, delete at least two digits in 654328. So, it is impos-
sible to cross out less than 4 digits. And exactly 4 is possible:
consider the number 5328. It is a multiple of 4 and 9, and
since 4 and 9 are coprime, this number is a multiple of 36,
and so 5328 is the answer to our problem.

Problems for individual solution

Problem 2.7. a) Prove the divisibility by 5 test.
b) Derive a divisibility by 25 test.
Problem 2.8. A machine prints the digit “4” one by one on

a strip of paper. Is it be possible to stop it so that a multiple
of 8 is printed?

Problem 2.9. Several digits in a number were interchanged,
which resulted a number three times greater than the origi-
nal one. Prove that the resulting number is divisible by 27.

Problem 2.10. Find the smallest natural number that con-
tains only the digits 1 and 0 and is divisible by 225.
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Problem 2.11. Professor Snape wrote a prescription con-
taining the numbers

EVILLIVE and LEVICORPUS
(the same letters are replaced by the same digits and differ-
ent letters by different digits). Professor McGonagall claims
that both of these numbers are composite. Is the professor
right?

Problem 2.12. a) Prove that the product of three consec-
utive numbers is divisible by 6. b) Prove that the number
(n3 − n)/6 is an integer.

Answers and solutions

Problem 2.7. a) Let’s put N eggs into boxes of 10, 100,
1000, and so on. There will remain d eggs, d being equal to
the last digit of the number N. Since the number of eggs in
all boxes is divisible by 5, the number d is divisible or not
divisible by 5 at the same time as N.

b) Let’s put N eggs into boxes of 100, 1000 and so on.
Arguing in the same way as in item a), we see that the num-
ber N is divisible or not divisible by 25 simultaneously with
the number composed of its last two digits.

Problem 2.8. Answer: It’s impossible.
The number 4 will be printed first, then 44, then 444.

These numbers are not divisible by 8. The further addition
of digits can be represented as adding a multiple of 1000 to
444. Thus, we keep obtaining a number which is the sum of
a number which is a multiple of 8 and a number which is not
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a multiple of eight (444). Such a sum cannot be a multiple
of 8.

Problem 2.9. Let 3A be obtained by interchanging digits
in the number A. But the sum of the digits of 3A is a mul-
tiple of 3, which applies to A as well, because the sums of
the digits of these two numbers are the same. Hence A is a
multiple of 3. Therefore, 3A is a multiple of 9. Thus, the
sum of the digits of both A and 3A is a multiple of 9. It
follows that A is a multiple of 9, and hence 3A is a multiple
of 27.

Here it is useful to ask the students why is it impossible to prove
divisibility by 81 and so on in the same way?

Numbers specified in the condition exist, for example, A = 1035;
3A = 3105.

Problem 2.10. Let us decompose 225 into coprime factors:
225 = 25 · 9. Therefore, the required number must be divis-
ible by 25 and by 9. In order for a number to be divisible
by 25, the last two digits must be 00, 25, 50, or 75. In our
case, only 00 is possible.

Further, for a number to be divisible by 9, it is necessary
that the sum of its digits be divisible by 9. This means that
the sum of the digits is at least 9, and there are at least nine
1’s in the number.

The smallest number with nine 1’s and 00 at the end, is
11111111100. This suits us.

Problem 2.11. Answer: The professor is right.
The first number is divisible by 11, since the alternating

sum of its digits is zero because of the symmetry.
The second number contains 10 different digits, each of

them appearing once, so its sum of digits is

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45.

But this sum is divisible by 3, hence the number itself is
divisible by 3.
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Problem 2.12. a) Among any three consecutive numbers,
at least one is divisible by 2 and one by 3. Hence the product
of these three numbers is divisible by 2 and by 3. But 2
and 3 are coprime, so, by the coprime divisor theorem, this
product is divisible by 2 · 3 = 6.

b) Note that n3 − n = (n − 1)n(n + 1) is the product of
three consecutive numbers, that is, it is a multiple of 6.

The subject of this lesson also includes problems 9–23 from the section
“Additional problems”.
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Lesson 3

Division with Remainder

Imagine an automatic machine that changes the given
sum of money into 5-ruble coins and gives the remainder of
less than 5 rubles in one-ruble coins. For example, 33 =
5 · 6 + 3; the machine gives six 5-ruble coins and the remain-
der in three 1-ruble coins. From the mathematical point of
view, the machine performs a division by 5 with a remainder.

Let’s recall the definition of division of positive integers
with remainder.

Definition. If a number a can be written as a = b · q + r,
where 0 6 r < b, then it is said that a gives, when divided
by b, the (incomplete) quotient q and the remainder r.

It is useful to discuss with students that, according to this definition,
it is impossible to divide the number b = 0 with remainder. In addition,
it is important to understand that a division producing a whole number
as a quotient is a special case of division with remainder (the remainder
is 0).

Let’s extend this definition by allowing the dividend to
be negative. Note that numbers with the same remainder
are located on the numerical line at equal intervals. For ex-
ample, on a straight line, let us mark off natural numbers
that, when divided by 7, give the remainder 2.
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The adjacent marked numbers are at a distance of 7 from
each other: 2, 9, 16, and so on. Let’s extend this picture to
the left without breaking the pattern: mark −5, −12, −19,
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and so on. It will be convenient to define division with re-
mainders of negative numbers in such a way that −5, −12,
−19, and so on, also have a remainder of 2 when divided
by 7, that is, so that the expressions −5 = 7 · (−1) + 2,
−12 = 7 · (−2) + 2, −19 = 7 · (−3) + 2, and so on, can be
regarded as division with remainder. To this end, it suffices
to take the same definition for any integer a, allowing the
incomplete quotient q to be negative! But the remainder r
must still be non-negative.

It is important to emphasize that the definitions in the case of positive
integers and in the case of arbitrary integers are the same. It follows from
our picture that the difference of two numbers with equal remainders
when divided by b is a multiple of b.

Problem 3.1+. Mary was absent from the lesson due to ill-
ness and worked out examples of division with remainder as
follows: a) 20 = 3 ·4+8; b) 19 = 3 ·5+4; c) −11 = 2 ·(−5)−1.
Explain her mistakes.

Solution. a) This is incorrect, because 4 < 8, that is, the
divisor is less than the remainder.

b) In this form, this is incorrect, because 3 < 4. But if
we interchange the factors: 19 = 5 · 3 + 4, then the assertion
is correct.

c) This is incorrect, because the remainder cannot be neg-
ative.

We can divide with remainder in different ways. The
first way is to use ordinary long division (with a corner).
Positive numbers are divided directly. Instead of negative
numbers, we can divide the corresponding positive numbers
and then perform the operation described in the solution of
Problem 3.12.

Another way is the graphic one. On the coordinate axis,
let’s mark off the numbers 0, ±b, ±2b, and so on. Now let’s
put the number a on this marked axis. It will fall either on
one of the marked numbers (and then it is divisible by b) or
inside the segment between two adjacent marked numbers.
Then the multiplier of b in the left number is the quotient
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and the distance from the left number to a is the remainder
(why will it be less than b?).

But how do we know whether different division methods
always give the same result? The answer is given by the
following theorem.

Uniqueness theorem for division with remainder. Divi-
sion with remainder is carried out in a unique way. In
other words, if a number a is written in two ways in the
required form:

a = bq1 + r1, 0 6 r1 < b,

a = bq2 + r2, 0 6 r2 < b,

then both expressions must coincide (that is q1 = q2 and
r1 = r2).

Proof. Subtract the second equality from the first, ob-
taining b(q1 − q2) + r1 − r2 = 0, that is, b(q1 − q2) = r2 − r1.
Note that, by the definition of remainder, −b < r2 − r1 < b,
or −b < b(q1 − q2) < b; hence −1 < q1 − q2 < 1. But this
means that q1 = q2. Substituting the last relation into the
first equality of this paragraph, we see that r1 = r2 as well.

Problem 3.2. What remainder will the number 123321
give when divided by 999?

Solution.

123321 = 1000 · 123 + 321 = 999 · 123 + (123 + 321)

= 999 · 123 + 444

The remainder is 444.
Problem 3.3. The divisor and the dividend are increased

threefold. How will the quotient and remainder change?
Solution. First, we will give a visual solution, and then a

rigorous one, using the definition.
Let’s imagine that we put nuts in equal piles and put the

remainder in a smaller pile. And now we have three times
as many nuts, but we have been ordered to make the piles
three times bigger. Obviously, the number of piles will not
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change, but, in the smaller pile, there will be three times as
many nuts.

Let a = bq + r, where r < b. Multiply both parts of the
equality by 3, obtaining 3a = (3b) · q + 3r, where 3r < 3b.
Consequently, the quotient has not changed, and the remain-
der has increased threefold.

This problem shows that, in some cases, it is more convenient to write
division with remainder as a product (as in the definition) rather than as
a quotient.

Problem 3.4. A number a is a multiple of 3. Can the re-
mainder in the division of the number a by 12 be equal to 2?

Solution. Let’s assume that it can. Then the number a
can be written as 3x and as 12y+2. Equating these quantities
and moving the unknowns to the left, we get 3x − 12y = 2.
Note that the left side of the equality is divisible by 3, but
the right is not. Thus, equality is impossible. Therefore, the
remainder from the division of the number a by 12 is not
equal to 2.

The following incorrect solution to this problem is often given: “Sup-
pose it can. Then a is not divisible by 12. So it cannot be divisible by 3.
A contradiction.” Find the error in this argument.

Problem 3.5. a) Find the least integer (greater than one)
that gives the remainder 1 under division by 2, by 3, by 5,
and by 7.

b) Find all such integers.
Solution. a) Note that if the desired number is reduced by

1, then we get a number that is divisible by 2, 3, 5, and 7.
Since 2 and 3 are coprime, such a number is divisible by their
product 6, since 6 and 5 are coprime, the desired number is
divisible by 6 · 5 = 30, and since the numbers 30 and 7 are
coprime, the desired number is divisible by 30 · 7 = 210.
Therefore, the smallest such number will be 210, and the
desired number 211.

b) In view of the above, the answer consists of all the num-
bers of the form 210k + 1, where k is an arbitrary integer.
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Problem 3.6+. Back to Problem 1.2. Fill in the table using
the remainders: “0” if the number is divisible by m without
remainder, and “not 0” if it is divisible with remainder.

Solution. The problem reduces to the following equalities:
0+0 = 0, 0+“not 0” = “not 0”, “not 0”+“not 0” =?, 0·x = 0,
“not 0” · “not 0” =?.

Almost all the equalities are obvious, which shows the strength of
the remainder method. The last equality is unusual for students; it will
become more understandable after Lesson 7.

Problem 3.7. Each of the numbers from 1 to 1000000 is
replaced by the sum of its digits. Each of the resulting num-
bers is again replaced by the sum of its digits. We proceed in
his way until one million single digits remain. Which num-
bers prevail: 1’s or 2’s?

Solution. Note that by replacing a number by the sum of
its digits, we reduce it by a multiple of nine (see Problem
2.2). This means that under this operation, the remainder
does not change! Thus, it suffices to compare the quantity of
numbers from 1 to 1000000 that give the remainders 1 and 2
in the division by 9. The remainders 1 and 2 are repeated in
pairs, starting from the first number. Since the last number
gives the remainder 1, it follows that there are more 1’s.

Thus, in the course of solving the problem, we have generalized the
divisibility test: the remainder in the division of a number by 9 is equal
to the remainder in the division of the sum of its digits by 9. By analogy
with divisibility tests, the last assertion can be called an “equal remain-
der” test. If the remainder is 0, then we obtain a divisibility test.

Problems for individual solution

Problem 3.8. Divide with remainder
a) 239 by 6;
b) −239 by 6;
c) −99 by 10;
d) −101 by 100.

It is necessary to solve a number of simple examples so that the stu-
dents can firmly grasp the definition. To make it interesting, the teacher
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can ask the students to solve the problems orally, competing for the quick-
est solution.

Problem 3.9. When the Miserly Knight puts his coins in
stacks of nine, he has eight coins left. How many coins will
there be left when he puts the coins in stacks of 18?

Problem 3.10. The number a gives the remainder 6 when
divided by 12. Can it give the remainder 12 when divided
by 20?

Problem 3.11. Find the smallest positive integer that gives
the remainder 1 when divided by 2, the remainder 2 when di-
vided by 3, the remainder 3 when divided by 4, the remain-
der 4 when divided by 5, and the remainder 5 when divided
by 6.

Problem 3.12. A number a, when divided by b, gives the
quotient q and the remainder r. What quotient and remain-
der will the number −a give when divided by b?

Problem 3.13. The number 2 is written on the blackboard.
Every second the sum of its digits is added to the number on
the board. Can the number 123456 appear on the board after
a while?

Answers and solutions

Problem 3.8. a) 239 = 6 · 39 + 5;
b) −239 = 6 · (−40) + 1;
c) −99 = 10 · (−10) + 1;
d) −101 = 100 · (−2) + 99.
Problem 3.9. Answer: 8 or 17.
We will combine stacks of 9 coins into pairs. If there

were an even number of stacks, then there would be 8 coins
left. If the number of stacks were odd, then there would be
8 coins and another stack of 9 coins, making a total of 17
coins.

Problem 3.10. If the second assertion were true, then a
would be a multiple of 4. However, it follows from the first
assertion that the remainder in the division of a by 4 is 2.
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The resulting contradiction shows that a cannot have the re-
mainder 12 when divided by 20.

The same solution can be written in algebraic terms; see the solution
of Problem 3.4.

Problem 3.11. Answer: 59.
The statement of the problem is equivalent to the asser-

tion that the number increased by 1 must be divisible by 2,
3, 4, 5, and 6. Since 5 and 6 are coprime, it follows that this
number is divisible by 30. But 30 is not suitable, since it is
not divisible by 4. However, 2 · 30 = 60 is already suitable.
So the desired number is 60− 1 = 59.

Problem 3.12. Answer: if r = 0, the quotient is −q, and
the remainder is 0. Otherwise, the quotient is (−q− 1), and
the remainder is b− r.

If r = 0, then both a and −a are divisible by b, which
means that the remainder is 0. If r 6= 0, we multiply both
sides of the equality a = bq + r by −1, obtaining

−a = b(−q) + (−r) = b(−q− 1) + (b− r).

Since 0 < r < b, we have 0 < b − r < b. In this case, the
remainder is b− r.

Problem 3.13. Since the number and the sum of its dig-
its differ by a multiple of 9, they yield the same remainders
when divided by 3. It is not difficult to check that the sum
of a number which is not a multiple of 3 and the sum of its
digits cannot be a multiple of 3. Indeed, when adding two
numbers with remainder 1, we get a number with remain-
der 2 and when adding two numbers with remainder 2, we
get a number with remainder 1. Since the number 123456 is
a multiple of 3, it cannot be obtained.

The subject of this lesson also includes problems 24–39 from the sec-
tion “Additional problems”.
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Lesson 4

Prime Numbers

Problem 4.1. a) A rectangle on square-lined paper consists
of 31 squares of side 1. What is its perimeter equal to?

b) A rectangle on square-lined paper consists of n squares
of side 1. What property must n have so that the rectangle’s
perimeter can be uniquely determined?

Solution. a) 31 = 1 · 31, and there are no other divisors,
so the length is 31 and the width is 1. Hence the perimeter
is (31 + 1) · 2 = 64.

b) If n is decomposable into the product of exactly two
factors, then the perimeter is uniquely determined. Since
the number n is always divisible by 1 and by n, these factors
can only be 1 and n.

Suppose there is another decomposition: n = km, where
2 6 k 6 m. Then, in addition to the 1 × n rectangle with
perimeter 2(n+1), there is also a k×m rectangle with perime-
ter 2(k + m). However, k 6 m = n/k 6 n/2, that is, the
second perimeter does not exceed 2n and is not equal to the
first.

Definition. A number p > 1 is said to be prime if it has
no other divisors besides 1 and p. A number is called
composite if it has a divisor greater than 1, but less than
the number itself.
It follows from the definition that a prime has exactly two divisors,

while a composite number has more than two.

Problem 4.2. Find the largest a) two-digit; b) three-digit
prime.

Answer: a) 97; b) 997.
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Solution. a) We will argue “from top to bottom”. The
number 99 is divisible by 3, 98 is divisible by 2. Let’s check
the number 97. It is not divisible by 2, 3, 4, 5, 6, 7, 8, or 9.
This means that if 97 has any divisors (other than 1), then
they are all greater than or equal to 10. However, 10·10>97.
So there is no need to check any further.

b) The nearest candidate is 997. Divisibility must be
checked up to 31, since 312 < 997, and 322 > 997. Note
that each number n > 1 has a prime divisor. Such is, for
example, the smallest of the divisors greater than 1. Indeed,
if it were not a prime, then any of its divisors would even
be smaller and would divide n. Therefore, if the number 997
has a divisor not exceeding 31, then, by taking a prime di-
visor of that divisor, we will find a prime divisor of 997 not
exceeding 31. Thus, we can reduce the amount of search by
checking only that 997 is not divisible by primes 2, 3, 5, …,
29, 31.

Problem 4.3. a) Give an example of three numbers that
are not divisible by each other and such that the product of
any two of them is divisible by the third.

b) The same question for numbers greater than one hun-
dred.

Solution. a) 6, 10, and 15.
b) Let p, q, r be three distinct primes greater than 10.

Consider their pairwise products pq, pr, qr. They are not
divisible by each other (if, for example, pq were divisible by
pr, then pq = kpr ⇔ q = kr, that is, the prime q would be
divisible by another prime, namely r). However, the product
of any two of these numbers is divisible by the third, for
example (pr) · (qr)/(pq) = r2.

Before the next problem, the teacher can play the following game with
the students: each student picks a prime greater than 3. The teacher asks
each student to divide this number by 6 and tell him the remainder. As
the result, columns of 1’s and 5’s appear on the blackboard. (If one of the
students makes a mistake in calculations, then we can immediately do the
calculations on the blackboard over again.)
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Problem 4.4+. Prove that a prime greater than 3 can be
expressed either in the form 6n + 1 or in the form 6n + 5,
where n is a natural number or 0.

Solution. What remainders can a prime greater than 3
have when divided by 6? There are six possible options, let’s
consider them.

A remainder of 0 is impossible, since the number will
then be divisible by 6.

A remainder of 1 is possible.
A remainder of 2 is impossible, since the number will

then be divisible by 2, and there is only one such prime,
namely, 2.

A remainder of 3 is impossible, since the number will
then be divisible by 3, and there is only one such prime,
namely, 3.

A remainder of 4 is impossible, since the number will
then be greater than 2 and be divisible by 2.

The remaining number 5 is possible.
Problem 4.5. Can the positive integers n − 2012, n, and

n + 2012 be primes at the same time?
Answer: They cannot.
Solution. Consider the remainder in the division of these

three numbers by 3. Since 2012, when divided by 3, gives a
remainder of 2, then the numbers n− 2012, n, and n + 2012
give three different remainders when divided by 3. This
means that one of these numbers is obviously divisible by
3. If it is not 3, then it is a composite number and the prob-
lem is solved. Let it be 3. Then n = 2015 is a composite
number.

Problem 4.6+. Two boys play the following game: Peter
dictates to John a number (this is where his role ends), and
John writes that number on the blackboard. Next, John
represents the number as the product of two factors other
than 1, and replaces it by the product of these two factors.
Then John does the same with one of the factors, and so
on.
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Can Peter choose the original number so that John a) can-
not even make the first move; b) John will perform the moves
endlessly?

Solution. a) He can, if he chooses a prime.
b) He can’t. Note that if, at some point, John writes out

a prime, then it remains on the blackboard. If John writes
out a composite number, then he will decompose it sooner or
later into the product of two factors other than 1 and replace
it by that product. Thus, at each step, the new numbers writ-
ten out decrease. Since the factors cannot become less than
1, the process will eventually stop and, on the blackboard,
a product of primes will appear. This product is called the
decomposition of a number into prime factors.

Thus, it was proved in the previous problem that any number can be
decomposed into prime factors in finitely many operations. The question
of the uniqueness of such a decomposition (can John obtain two different
decompositions of the same number) will be discussed in Lesson 8.

Problem 4.7+. Consider the set of all primes. Denote them
by p1, p2, …, pn. Let’s construct the number p1 · p2 · … · pn + 1.
Obviously, this number is not divisible by any prime. So it’s
also a prime. However, it is not included in our set of all
primes, because it is greater than each of them. We arrived
at a contradiction. Where is the mistake?

Solution. The whole argument appears flawless, except
for one point, namely the assumption that the set of primes
is finite. Since we have come to a contradiction, it follows
that there are infinitely many primes (and our argument is
actually a proof of this fact by contradiction).

The statement about the infinity of the set of primes is one of the
most ancient theorems of arithmetic. The above proof is the one given by
Euclid. Note that, in the proof, we can also take the number p1p2…pn − 1
or even p1p2…pk ± pk+1…pn (why?). See also the additional problem D47.

Problems for individual solution

Problem 4.8. a) Let m and n be positive integers, and let
m2 − n2 be a prime. Find m− n.
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b) A smaller square in a large square on square-lined pa-
per was painted green, and 79 unpainted cells remained. Can
all the corners of the large square remain unpainted?

Problem 4.9. Is there a hundred consecutive composite
numbers?

Problem 4.10. Let us call a number simplified if it is the
product of exactly two primes (not necessarily different).
What is the largest number of consecutive simplified num-
bers?

Problem 4.11. Can the remainder in the division of a prime
by 30 be composite?

Problem 4.12. a) Find five primes such that the distance
between any two adjacent primes is 6.

b) Are there six such primes?

Answers and solutions

Problem 4.8. a) m2 − n2 = (m + n)(m − n). The prime p
can only be expressed as p · 1. Since m− n < m + n, we have
m− n = 1.

b) Let the side of the larger square be contained in m cells
(i.e., little squares of side 1), and that of the smaller one, in
n cells. Then m2 − n2 = 79 is a prime. Therefore, by item
a), m − n = 1. This means that the sides of the two squares
differ by 1, and so the smaller square necessarily contains
one of the corners of the larger one.

Problem 4.9. Let’s try to construct a number N such that
the numbers N + 2, N + 3, …, N + 101 are composite (one
hundred numbers, in all). The easiest way is to require that
N + 2 be divisible by 2, N + 3 be divisible by 3, and so on,
N +101 be divisible by 101. This will happen if N is divisible
by 2, 3, …, 101. And it’s easy to construct such a number:
simply take N = 101!. Thus, the numbers 101! + 2, 101! + 3,
…, 101! + 101 are the required composite numbers.

Note that, in this way, we can obtain an arbitrary amount of consec-
utive composite numbers!
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Problem 4.10. Since there is only one even prime, namely,
2, it follows that simplified numbers cannot be divisible by 4.
The exception is the number 4 = 2·2, but the numbers 3 and 5
adjacent to 4 are not simplified. This means that there are no
more than three consecutive simplified numbers. Examples
of triples of simplified numbers exist:

33 = 3 · 11, 34 = 2 · 17, 35 = 5 · 7.

Problem 4.11. Experiments yield only prime remainders
or 1. Let’s try to prove that it will always be so. Let p =
30k + r, where p is a prime and 0 6 r < 30. Assume that r
is composite. Then r is divisible by 2, 3, or 5 (why?). Since
30 is divisible by each of these numbers, it follows that p
must also be divisible by one of them. However, if p = 2,
3, or 5, then r is a prime. While if p > 5, then p itself is
composite. In both cases, we come to a contradiction.

In this problem, the number 30 can be replaced by any of the numbers
3, 4, 6 (see problem 4.4), 8, 12, 18, 24.

Problem 4.12. a) 5, 11, 17, 23, 29.
b) Note that if the numbers differ by 6, then their re-

mainders from the division by 5 differ by 1. In addition,
among all primes, only the number 5 has the remainder 0
in the division by 5. Therefore, the five primes must begin
with 5 (that is, the example from item a) is unique), and six
consecutive primes do not exist.

The subject of this lesson also includes problems 40–52 from the sec-
tion “Additional problems”.
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Lesson 5

Common Divisors and Common Multiples.
Euclid’s Algorithm

The following two problems aim to give a visual representation of
common divisors and common multiples.

Problem 5.1. Let’s draw a rectangle of 8× 12 little 1× 1
squares on square-lined paper. What equal squares can the
rectangle be partitioned into?

Solution. It is clear that it is possible to divide the rect-
angle into 1 × 1 squares. The width of the rectangle can be
divided into segments of length 1, 2, 4, or 8, and its length
into segments of length 1, 2, 3, 4, 6, or 12. Thus, squares
of size 1, 2, and 4 will work.

Mathematically, the problem is reduced to finding the com-
mon divisors of the numbers 8 and 12. Note that if we are
partitioning the rectangle into squares of the largest size,
then we should take 4 × 4 squares, i.e., we would use the
greatest common divisor.

Problem 5.2. What squares can be constructed by putting
together 4×6 rectangles (with the long sides of all rectangles
being parallel)?
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Solution. We can obtain rectangles of length 6, 12, 18,
24, 30, 36 and, and so on, and of width 4, 8, 12, 16, 20, 24,
28, 32, 36, and so on. Thus, squares of size 12, 24, 36, and
so on, can be obtained by the construction indicated.

Mathematically, the problem is reduced to finding common
multiples of the numbers 4 and 6. The smallest square is of
size 12, which is equal to the least common multiple of the
numbers 4 and 6.

The greatest common divisor of two numbers a and b will
be denoted by (a, b) and the least common multiple by [a, b].

The model proposed in these problems clearly explains the fact that
the greatest common divisor of two numbers can be divided by all of their
other common divisors, and all common multiples can be divided by the
least common multiple. The following formulas are also obvious from
this model:

(a, a) = [a, a] = a, (ca, cb) = c(a, b), [ca, cb] = c[a, b].

Problem 5.3+. Find the common divisors of the numbers n
and n + 1.
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Solution. Let d be a common divisor of the numbers n
and n + 1. Then their difference (n + 1)−n = 1 must also be
divisible by d. Therefore, d = ±1.

Recall that if (m, n) = 1, then the numbers m and n are
called coprime (see Lesson 2). The previous problem shows
us that consecutive numbers n and n + 1 are always coprime.

The same problem implies the following statement.

Lemma. Let a = bq+ r . Then the greatest common divisor
of the numbers a and b is equal to the greatest common
divisor of the numbers b and r, that is, (a, b) = (b, r).

Proof. Let c be a common divisor of the numbers a and b.
It follows from the equality r = a− bq that r is also divisible
by c, that is, c is a common divisor of the numbers b and r.

Conversely, let c′ be a common divisor of the numbers b
and r. Then the number a=bq+r is also divisible by c′, that is,
c′ is a common divisor of a and b. Thus, the numbers a and b
have the same common divisors as the numbers b and r. Thus,
the greatest common divisor of the numbers a and b coincides
with the greatest common divisor of the numbers b and r.

Corollary. Let a and b be positive integers (where b < a),
and let r be the remainder in the division of a by b. Then
(a, b) = (b, r).

Applying the Corollary several times, we obtain a method
for quickly finding the greatest common divisor of two num-
bers.

Euclid’s algorithm. First, divide a by b. If there is no re-
mainder, then (a, b) = b. If there is a nonzero remainder
r, then we divide b by this remainder, obtaining a new re-
mainder r1. Next we divide r by r1. And so we continue
and stop when the last remainder divides the previous one
with zero remainder (why does this necessarily happen?).
This last nonzero remainder will be the greatest divisor of
all the numbers appearing in the calculations, including
the two original ones.
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In our illustrative model, Euclid’s algorithm is as follows: from the
rectangle of sides a and b (where b < a), we cut off several squares of side
b until we get a rectangle whose one side is less than b. From the resulting
rectangle, as long as it is possible, we cut off squares whose sides are equal
to its smaller side, and so on. When the last rectangle is cut entirely into
squares, the problem is solved, because the side of these squares is (a, b).
See Problem 5.9 and the additional problem D61. An interactive model is
available on the website: http://www.etudes.ru/ru/etudes/nod/.

Problem 5.4. Find (846, 246).
Answer: 6.
Solution.

846 = 246 · 3 + 108, 246 = 108 · 2 + 30,

108 = 30 · 3 + 18, 30 = 18 · 1 + 12,

18 = 12 · 1 + 6 , 12 = 6 · 2 + 0.

Of course, somewhere around the numbers 30 and 18, it is already
possible to figure out what the answer will be and not carry out the cal-
culations to their logical end.

If the numbers a and b are coprime (that is, (a, b) = 1),
then, by the theorem on coprime divisors (Lesson 2), any of
their multiples must be divisible by ab, and hence [a, b] = ab.
That is, in this case, (a, b) · [a, b] = ab. It turns out that this
is also true in the general case.

Problem 5.5+. Prove that, for any two positive integers a
and b, the following equality (a, b) · [a, b] = ab holds.

Proof. Let d be the greatest common divisor of the num-
bers a and b. Then these numbers must have the form a = dl,
b = dm, where l and m are coprime. Their least common mul-
tiple c must be divisible by d. Consider the quotient c/d. It
must be divisible by l and m, which are coprime. By the the-
orem on coprime divisors, c/d ... lm, that is, c = dlm. There-
fore, d · c = d · (dlm) = dl · dm = ab, which gives the required
equality.

Using this relation, it is not difficult to find [a, b] by
calculating ab directly and (a, b) by Euclid’s algorithm (see
Problem 5.8).
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Problem 5.6. Solve each of the following systems:

a)

{
(x, y) = 5,

[x, y] = 10
; b)

{
(x, y) = 1,

[x, y] = 4
; c)

{
(x, y) = 5,

[x, y] = 31.

Solution. a) Note that the numbers x and y are both mul-
tiples of 5 and divisors of 10. Also, they are not equal
(why?). There are only two such numbers, namely 5 and 10.
Hence x = 5, y = 10, or vice versa, x = 10, y = 5.

b) Note that the numbers x and y are coprime and both
are divisors of 4. Decompose 4 into two factors in all possible
ways 4 = 1 · 4 = 2 · 2 and choose the coprime pairs: the pairs
(1, 4) and (4, 1) suit us.

c) A common multiple of two numbers must be divisible
by any common divisor of these numbers, but 31 6 ... 5. There-
fore, the system has no solutions.

Problems for individual solution

Problem 5.7. Is it true that the following numbers are
coprime:

a) two adjacent odd numbers;

b) an odd number and half the even number following it?

Problem 5.8. Find: a) (1960, 588); b) [1960, 588] by us-
ing Euclid’s algorithm.

Problem 5.9. An automaton can cut off from any rectan-
gle a square with a side equal to the smaller side of the rect-
angle. Find some pair of numbers a and b such that when
cutting the a×b rectangle, the automaton obtains squares of
six different sizes.

Problem 5.10. Find all values of m for which the fraction
11m + 3
13m + 4

is cancellable.

Problem 5.11. Solve each of the two following systems:

a)

{
(x, y) = 5,

[x, y] = 30
; b)

{
(x, y) = 1,

[x, y] = 30.
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Problem 5.12. The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13,
21, 34, … are defined by the equalities ϕn+2 = ϕn+1 + ϕn (the
next number is equal to the sum of the previous two) and
ϕ1 = ϕ2 = 1. Find (ϕ100, ϕ101).

Answers and solutions

Problem 5.7. By Euclid’s algorithm a) (2n − 1, 2n + 1) =
(2, 2n− 1) = 1 is true; b) (n, 2n− 1) = (n, n− 1) = 1 is true.

Note that by using Euclid’s algorithm, the problem is solved by con-
sidering two simple equalities.

Problem 5.8. a) 1960 = 588 · 3 + 196 , 588 = 3 · 196 + 0
b) [1960, 588]=1960 ·588:(1960, 588)=1960 ·588:196=

10 · 588 = 5880.
Problem 5.9. In other words, we need to find numbers

a and b so that Euclid’s algorithm stops after 6 steps. It is
convenient to start from the end. Suppose, for example, that
there were two squares of side 1 at the end (for simplicity,
we take figures of the smallest size). Then, before this, there
was a square of side 2, in front of it a square of side 3, in
front of it a square of side 5, then 8, then 13 (see the figure).
Thus, the original rectangle can have the dimensions 21×13.

Problem 5.10. (13m + 4, 11m + 3) = (11m + 3, 2m + 1) =
(2m + 1, m − 2) = (m − 2, 5) 6= 1 if and only if (m − 2) ... 5,
that is, m = 5k + 2, where k is an integer.
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Problem 5.11. a) xy = (x, y) · [x, y] = 150. We can decom-
pose 150 into two factors that are multiples of 5 as follows:
150 = 5 · 30 = 10 · 15. Both options are correct answers.

b) xy = (x, y)[x, y] = 30, where x and y are coprime.
Decompose 30 into two coprime factors as follows:

30 = 1 · 30 = 2 · 15 = 3 · 10 = 5 · 6.

All four options are correct answers.
Problem 5.12. By Euclid’s algorithm,

(ϕ100, ϕ101) = (ϕ100, ϕ101 − ϕ100).

But, by the definition of Fibonacci numbers,we can write
ϕ101−ϕ100 = ϕ99. Therefore, (ϕ100, ϕ101) = (ϕ99, ϕ100). Note
that both subscripts have decreased by 1. Repeatedly apply-
ing Euclid’s algorithm, we obtain

(ϕ100, ϕ101) = (ϕ99, ϕ100) = (ϕ98, ϕ99) = … = (ϕ1, ϕ2) = 1.

Thus, we have proved that neighboring Fibonacci numbers are co-
prime. Note that, in solving Problem 5.9, we actually constructed a Fi-
bonacci sequence!

Another solution is based on the fact that the sum of two coprimes is
coprime to each summand.

The subject of this lesson also includes problems 53–65 from the sec-
tion “Additional problems”.
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Lesson 6

Diophantine Equations

Problem 6.1. A grasshopper jumps along the number line.
First, it takes one or more jumps of length 3 inches in one di-
rection (right or left), and then one or more jumps of length 5
in the other direction. How can he get from point 0 to point 7?
Find all the options.

Solution. It is easy to find one of the solutions: one jump
of length 3 to the left and two jumps of length 5 to the right.
To get the other options, note that, to the solution found, we
can “add” additional jumps as a result of which the grasshop-
per will remain at the same place.

The grasshopper can take 5, 10, 15, … jumps to the left
of length 3, and, after that, 3, 6, 9, … jumps of length 5 to
the right. It may, on the contrary, take 5, 10, 15, … jumps
of length 3 to the right and then 3, 6, 9, … jumps of length 5
to the left.
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In fact, the previous paragraph shows all of the jump op-
tions. To explain this in rigorous terms, we will use algebra.
Let’s denote the number of jumps of length 3 by x and that
of jumps of length 5 by y. Let’s agree that if x > 0, then the
jumps were to the right, and if x < 0, then they were to the
left. Similarly, for y. (Then the equality

3 · (−6) + 5 · (+5) = 7

can be “read” as follows: the grasshopper takes jumps of
length three 6 times to the left and jumps of length five
5 times to the right, arriving at the point located 7 inches
away from the origin.) Thus, we obtain the equation

3x + 5y = 7.

It is easy to guess a particular solution (i.e., one of the
solutions): x0 = −1, y0 = 2. Let us subtract the equality
3x0 + 5y0 = 7 from the equation displayed above. We obtain
the new equation 3(x−x0)+5(y−y0) = 0. Denote x−x0 = s,
y − y0 = t. We have 3s + 5t = 0. Hence it can be seen that
3s ... 5, 5t ... 3. Since 3 and 5 are coprime, it follows that s ... 5,
t ... 3 (see the theorem on the cancellation of a factor at the
end of this lesson). Let’s put s = 5n, t = −3n, where n may
be any integer. Then, x − x0 = 5n, y − y0 = −3n, that is,
x = −1 + 5n, y = 2 − 3n, where n is any integer. There are
no other solutions.

Problem 6.2. A seller and a buyer have an unlimited num-
ber of coins of two denominations. The seller can give change.
The buyer was able to pay 7 doublons. Can the buyer pay

a) 14 doublons;
b) 35 doublons;
c) 36 doublons?
Solution. a), b) He can. The buyer and the seller simply

repeat the operations involved in paying 7 doublons twice or
five times, respectively.
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c) It is not be possible to do this by repeating the opera-
tions as explained above, since 36 is not a multiple of 7. If
there were coins of one doublon, then it would, of course,
be possible to pay both 7 and 36 doublons. And if there
were coins of 7 and 14 doublons, then, even if change may
be given, only sums that are multiples of 7 doublons can be
paid, and hence 36 doublons cannot be paid.

In Problem 6.1, it was easy to guess a particular solution. But what if
the numbers are large? Or how can one teach a computer to find particular
solutions?

Problem 6.3+. Find an integer solution of the equation
a) 15x + 17y = 1; b) 15x + 17y = 9.

Solution. a) To find a particular solution, let us find
(15, 17) by using Euclid’s algorithm:

17 = 15 · 1 + 2, 15 = 2 · 7 + 1 .

Now let’s express 1 from the second equality, then 2 from

the first: 1 = 15−2 ·7 = 15−(17−15)·7 = 8 ·15−7 ·17. We
see that the pair of numbers x0 = 8, y0 = −7 is a particular
solution of the equation.

b) From item a) we know integer values of x0 and y0 such
that 15x0 + 17y0 = 1. Multiply both sides of this equality by
9. This gives 15 · (9x0) + 17 · (9y0) = 9. Therefore, the pair
(9x0; 9y0) = (72;−63) is a solution of equation b).

Problems 6.1 and 6.3 can be reduced to equations of the
form

ax + by = c, (1)

where a, b, c are given integers, and a and b are nonzero (for
example, in the last problem, a = 15, b = 17, c = 1, or 9)
and x, y are unknown integers.

Such equations in integers are called Diophantine in
honor of the Ancient Greek mathematician Diophantus.
If c 6= 0, the equation is called inhomogeneous and if
c = 0, then it referred to as homogeneous.
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In the previous problems, we obtained the following scheme
for solving Diophantine equations.

1. Find a partial solution of the inhomogeneous equation
(guessing or using Euclid’s algorithm).
2. Find the general solution of the homogeneous equa-
tion.
3. Add these solutions.

Note that this is a general idea which is used when solving systems
of linear algebraic equations, linear differential equations, and also, in
general, in linear problems.

Problem 6.4. Using a blue felt-tip pen, a craftsman puts
marks spaced 34 cm apart on a long ribbon starting from its
beginning, while another craftsman puts marks on it with a
red felt-tip pen every 27 cm. Can any blue mark be at the
distance of 2 cm from any red one?

Answer: Yes, it can.
Solution. Let the first craftsman put x marks, and the

second y marks. If the equation 34x − 27y = 2 has positive
solutions, then the blue mark with number x is 2 cm away
from the red mark with number y. We will look for a partic-
ular solution using Euclid’s algorithm:

34 = 27 · 1 + 7, 27 = 7 · 3 + 6, 7 = 6 · 1 + 1 .

Now “in reverse” we express 1 :

1 = 7− 6 = 7− (27− 7 · 3) = 7 · 4− 27

= (34− 27) · 4− 27 = 34 · 4− 27 · 5.

Multiplying the equality by 2, we obtain 34·8−27·10 = 2,
which means, in particular, that the eighth blue mark is 2 cm
away from the tenth red one.

In all of the previous equations, a solution existed. The
question whether equation (1) is always solvable arises. We
will now prove that, for coprime a and b, the equation
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ax + by = 1 is always solvable. Hence the solvability of the
equation ax+by = c will follow (simply multiply the solution
by c).

Fundamental lemma. If the numbers a and b are coprime,
then there exist two numbers x0 and y0 that satisfy the
equality ax0 + by0 = 1.

Proof. Let us find (a, b) by applying Euclid’s algorithm.
Since the numbers a and b are coprime, we will finally ob-
tain 1. Finding 1 sequentially by working through a chain
of residues from end to beginning (just as in the previous
two problems), we will express 1 in terms of a and b with
some coefficients, that is, we necessarily obtain the numbers
x0 and y0.

Corollary. If the numbers a and b are coprime, then, for
any integer c, there exist two numbers x0 and y0 such that
ax0 + by0 = c.

On the basis of these statements, it is possible to prove a
number of important theorems on primes and coprime num-
bers (see Problems 6.6, 6.11 and also the next lesson).

Problem 6.5. Do the following Diophantine equations have
a solution:

a) 6x+8y = 9; b) 5x+10y = 17; c) 25x+10y = 55;
d) 12x + 15y = 22; e) 24x + 18y = 2010?

Solution. a) No, there is no solution. For integers x
and y, the left side is even, while the right side is odd.

b) No, there is no solution. Both terms on the left side are
multiples of 5, and hence the right side must be a multiple
of 5.

c) Yes, there is a solution. It is possible to guess one:
for example, x = 3, y = −2. One can also divide both sides
of the equation by 5, obtaining the equation 5x + 2y = 11
with coprime coefficients, which is solvable by the corollary
of the fundamental lemma.
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d) No, there is no solution. The left side is a multiple
of 3, while the right side is not.

e) Yes, there is a solution. The left and right sides are
multiples of 6. Dividing them by 6 gives us the equation
4x + 3y = 335 with coprime coefficients. By the corollary of
the fundamental lemma, it has solutions.

Problem 6.6. Prove the theorem on coprime divisors (Les-
son 2). If a number n is divisible by each of two coprime
numbers a and b, then it is divisible by their product ab.

Proof. Let’s recall the solution of Problem 2.5 b), c) and
generalize it. Note that the numbers an and bn are both
multiples of ab. Thus, x · an + y · bn is a multiple of ab for
any x and y. If there exist numbers x0 and y0 such that
x0 · an + y0 · bn = n, then n is a multiple of ab. Cancelling n
from both sides of the last equality, we see that such num-
bers x0 and y0 can be found by the fundamental lemma.

Homework problems

Problem 6.7. Use arguments similar to Problem 6.5 in
general form and prove the following statement:

Theorem (criterion for the solvability of Diophantine
equations). a) If c is divisible by (a, b), then equation (1)
has infinitely many solutions. b) If c is not divisible by
(a, b), then equation (1) has no solutions.

Problem 6.8. n points are marked on the circle at equal
distances from one another (as in the dial of a clock). One
of these points is the starting point. It is connected by a
segment to a point which is d arcs away from it clockwise.

We also connect this new point by a segment to a point
which is d arcs away from it. We continue in this way until
the last point coincides with the starting point. Thus, we will
obtain a closed polygonal line (possibly, a self-intersecting
one).

a) For what values of d will all of the n points turn out
to be vertices of a polygonal line?
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b) How many revolutions will the polygonal line perform
before closing?

It is useful to the draw polygonal lines first, for example for: n = 5,
d = 3; n = 6, d = 4.

Problem 6.9. It is required to lay a gas pipeline on a 450 m
long plot of land. There are pipes of length 9 and 13 m at
the disposal of the builders. How many pipes of these lengths
must be taken to lay the route so that the number of welds
is minimal? The pipes must not be cut.

Problem 6.10. a) Prove that amounts of 8, 9, and 10
francs can be paid out in three and five-franc bills.

b) What are the largest amounts that can be paid in three-
and five-franc bills?

Problem 6.11. Arguing as in Problem 6.6, prove the fol-
lowing statement, which we used when solving homogeneous
Diophantine equations.

Theorem on the cancellation of a factor. If the product of
ac is divisible by b and the numbers a and b are coprime,
then the number c is divisible by b.

Problem 6.12.
Forty grey mice ran with forty grains of rice,
Two thinner ones strained, with a load of two grains,
A few ran all smiles, without any rice,
The big ones were serving, carrying seven,
Small mice, through the door, ran carrying four.
How many grey mice ran without any rice?

(A. Akulich. “Quantum”, №4, 1995, transl. by A. Sossinsky)

48



Answers and solutions

Problem 6.7. a) Divide both sides of equation (1) by (a, b).
We obtain the equation a1x + b1y = c1 with coprime coeffi-
cients a1 and b1. By the fundamental lemma, it has a solu-
tion (x0; y0). Adding to this particular solution the solution
(b1n;−a1n) of the homogeneous equation, we obtain an infi-
nite series of solutions (here n is an arbitrary integer).

b) Let x0 and y0 be numbers such that ax0 +by0 = c. Then
the left side of this equality is divisible by (a, b), while the
right side is not. The resulting contradiction shows that the
equation is unsolvable.

Problem 6.8. Let us number the points clockwise, starting
with 0. Then, after x steps, we will be at the point with
number dx. More precisely, if y revolutions around the circle
are performed, then we will be at the point with number dx−
ny.

a) The question can be restated as follows: For what val-
ues of d and n can any number be obtained?

The answer is given by the criterion for the solvability of
Diophantine equations: for coprime d and n.

b) Since the polygonal line is closed, we have again reached
the point with number 0. Therefore, we need to find the first
positive solution of the Diophantine equation dx − ny = 0.
Cancelling (d, n) from both sides of the equation, we ob-
tain the equation d1x − n1y = 0, where d1 = d/(d, n) and
n1 = n/(d, n) are coprime. Since the number d1x must be di-
visible by n1, according to the theorem on the cancellation of
a factor, it follows that the number x must also be divisible
by n1 . The smallest value is x = n1, y = d1 = d/(d, n).

Answer: d
(d, n)

.

In Lesson 8 (see Problems 8.6, 8.13), we will be able to answer the
following question: How many closed polygonal lines with equal links and
vertices at all n points are there?

Problem 6.9. Since we want to use as few pipes as pos-
sible, we must use as many pipes of length 13 as possible.
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The number of such pipes is divisible by 9 (prove this!). It is
impossible to take 36 of them, because 13 · 36 > 450. Thus,
only 27 long pipes can be used and the number of short pipes
will then be (450− 13 · 27) : 9 = 11.

Answer: 11 short pipes and 27 long ones.
Problem 6.10. a) 8 = 5 + 3, 9 = 3 · 3, 10 = 5 · 2.
b) One can pay out any amount greater than the given

ones: the required number of three franc bills must be added
to one of these three amounts.

Thus, it is proved that any amount greater than 7 can be paid out
using three and five franc notes.

In other words, the equation 3x+5y = c has solutions in non-negative
numbers for all c > 8.

Problem 6.11. Since the numbers a and b are coprime, by
the fundamental lemma, there exist integers x0 and y0 such
that ax0 + by0 = 1. Multiply this equality by c:

c = acx0 + bcy0.

Both terms on the right side are divisible by b (why?)
and, therefore, their sum c is divisible by b.

Problem 6.12. Answer: 32 mice.
Let’s denote the number of mice that carried no rice by

n, the number of big mice by b, and the number of the other
mice by s. We obtain the equation 2 + n + b + s = 40 for the
total number of mice and the equation

40 = 2 · 2 + n · 0 + b · 7 + s · 4

for the amount of grains of rice. Simplifying this equation
gives the Diophantine equation 7b + 4s = 36. Hence b = 4k,
s = 9 − 7k, where k is an integer. Choosing the positive
solutions, we obtain the unique solution b = 4, s = 2. Now
we can find n from the first equation: n = 38− b− s = 32.

The subject of this lesson also includes problems 66–78 from the sec-
tion “Additional problems”.
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Lesson 7

Prime Divisor Theorem

Now we will prove an important theorem concerning
primes.

Prime divisor theorem. If the product ab is divisible by a
prime p, then a or b is divisible by p.

Proof. If a is divisible by p, then no further proof is
needed. Suppose that a is not divisible by p; then a and p are
coprime (why?). In this case, by the fundamental lemma,
there exist integers x0, y0 such that ax0 + py0 = 1. Multiply
this equality by b:

b = abx0 + bpy0.

Both terms on the right side are divisible by p (why?)
and, therefore, their sum b, is divisible by p.

Thus, a or b are obviously divisible by p.

Note that this theorem is also easily deduced from the factor cancel-
lation theorem.

It is useful to discuss with the students the fact that in this theorem
the condition that the divisor be prime is essential, that is, if it is omitted,
then the theorem will be incorrect (for example, 4 · 3 is divisible by 6, but
neither 4 nor 3 is divisible by 6).

Corollary. If the product of several numbers is divisible by
a prime p, then at least one of these numbers is divisible
by p.

Proof. Let a1a2…an
... p. Let us express this product as

a1a2…an = (a1a2…ak) · (ak+1…an). By the prime divisor the-
orem, one of the two products is divisible by p. Let’s repeat
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this argument for that product, and keep doing that until
there is only one number left, ai.

Problem 7.1. Does the rebus AB · CD = EEFF have a solu-
tion?

Solution. Note that the number on the right is a multiple
of 11 by the divisibility criterion. Therefore, by the prime
divisor theorem, one of the factors on the left must also be
a multiple of 11. But this is not so; hence the rebus has no
solutions.

Problem 7.2. Prove that if an exact square is divisible by
a prime p, then it is divisible by p2.

Proof. Let a2 be a multiple of p, then, by the prime divi-
sor theorem, a is a multiple of p, a = pb. But then a2 = p2b2,
that is, a2 is divisible by p2.

Problem 7.3. Nick boasts that he can solve any problem.
The teacher gives him one hundred cards with 0 written on
it, one hundred cards with 1 on it, and one hundred cards
with 2 on it, and asks him to use all these cards to compose
a number which is a complete square. Will Nick be able to
solve this problem?

Solution. Note that the sum of the digits of this number
is 300, that is, it is a multiple of 3, but not a multiple of 9.
Therefore, the number is divisible by 3, but not by 9. How-
ever, in view of the previous problem, a square divisible by 3
must also be divisible by 9. Therefore, Nick will not be able
to cope with this problem.

Problem 7.4. Let p be a prime. Prove that if the product
of several numbers is divisible by p2, then one of the factors
is divisible by p2 or there are at least two factors, each of
which is divisible by p.

Solution. Let ab…h = kp2. Then ab…h is also divisible
by p. By the prime divisor theorem, one of the factors is
divisible by p; let it be a = pa′. Cancel p from both sides of
the equality, obtaining a′b…h = kp. Repeating the argument,
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we see that either a′ is a multiple of p, that is, a is a multiple
of p2, or some other factor is a multiple of p.

Problem 7.5. Three numbers have the same remainder
when divided by 3. Prove that their product either is not
divisible by 3 or is a multiple of 27.

Proof. Under division by 3, the remainders 0, 1, and 2
can be obtained. If the remainder is 0, then all three num-
bers are divisible by 3 and the product is divisible by 27.
But if the remainders are 1 or 2, then all three numbers are
not divisible by 3. Hence their product is not divisible by 3;
otherwise, we would obtain a contradiction due to the prime
divisor theorem.

In the course of solving the problem, we obtained a useful reformula-
tion of the prime divisor theorem: if some numbers are not multiples of a
prime p, then their product is not a multiple of p. See Problem 3.6.

Problem 7.6. For what values of n is the number (n− 1)!
divisible by n without remainder?

Answer: If n is a composite number greater than 5.

Solution. If n is a prime and divides (n − 1)!, then, by
the prime divisor theorem, n also divides one of the factors.
However, this is impossible, since all the factors are less than
n. So (n− 1)! is not divisible by the prime n.

Now let n be a composite number. Then either n can be
expressed as n = ab, where a > 1, b > 1, a 6= b, or n = p2,
where p is prime.

Consider the first case. Since the numbers a and b are
both less than n − 1 and different, they are both among the
factors 1 · 2 · … · (n − 1) = (n − 1)!. Therefore, (n − 1)! is
divisible by ab.

Consider the second case. If n > 5, then (n− 1)! contains
the factors p and 2p (since 2p < p2 = n), that is, it is divisible
by n. It remains to check the number 4, which is the only
composite number less than 5. This number is not a solution,
since 3! = 6 is not divisible by 4.
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Problems for individual solution

Problem 7.7. Can a number whose digits are one 1, two
2’s, three 3’s, ..., nine 9’s be an exact square?

Problem 7.8. A prime was squared to give a ten-digit
number. Can all the digits of the resulting number be dif-
ferent?

Problem 7.9. What is the smallest natural number n for
which n! is divisible by 100?

Problem 7.10. Let p1, p2, p3, p4 be different primes. Find
prime common divisors of the numbers: a) p1p2 and p3p4,
b) p1p2 and p2p4.

Problem 7.11. a) Write positive integers at the vertices
of a square so that, at every pair of adjacent vertices, the in-
tegers will not be coprime, but, at every pair of non-adjacent
vertices, they will be coprime.

b) The same problem for a cube (if the vertices are con-
nected by an edge, then the integers must not be coprime,
and if they are not connected by an edge, then they must be
coprime).

Problem 7.12. The integers x, y, and z satisfy

(x− y)(y− z)(z− x) = x + y + z.

Prove that the number x + y + z is divisible by 27.

Answers and solutions

Problem 7.7. The sum of the digits of such a number is
1 ·1+2 ·2+…+9 ·9; it is a multiple of 3, but not a multiple of
9. According to Problem 7.2, a complete square is either not
divisible by 3 or divisible by 9. This means that the number
in question cannot be a complete square.

Problem 7.8. Answer: No, they cannot.
If all the digits were different, then their sum would be

45 and the square of the given number would be divisible
by 9. Hence, by Problem 7.4, the number itself would be
divisible either by 9 or by 3. This is impossible, since the
number is prime and, obviously, greater than 3.
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Problem 7.9. Answer: 10.
Since the number n! must be divisible by 100, then among

its factors there are two 2’s and two 5’s. Looking at the
initial factors of n!, let us write out the needed factors 2, 4,
5, 10.

Problem 7.10. a) Let p be a prime common divisor of the
numbers p1p2 and p3p4. Then, by the prime divisor theorem,
one of the factors in both products must be divisible by p.
Since all of the factors are prime, this factor must be equal
to p. But this is impossible, since all the numbers p1, p2,
p3, p4 are different by assumption. Therefore, the products
have no common divisors, except 1.

b) Arguing in a similar way, we obtain p = p2.
Problem 7.11. a) Near the sides of a square we write the

numbers 2, 3, 5, 7, and, at each vertex, we write the product
of the numbers indicated on the sides that are incident to
it. Then the numbers at adjacent vertices are divisible by
the number indicated on their common side, and they are
not coprime. The numbers in non-adjacent vertices are equal
to the product of different primes, and hence they cannot
simultaneously be divisible by any prime.

If the problem remains unsolved for a long time, then, the teacher
can write, for example, the sequence of numbers 6, 14, 35, and 15 at the
vertices, and let the students guess how to obtain them.

b) Let us repeat the same construction: we write various
primes on the edges and, at each vertex, we write the product
of the numbers written on the edges incident to this vertex.
The proof is similar to item a).

Problem 7.12. Consider the remainders in dividing x, y,
and z by 3. There are three possible cases.

1. All three remainders are the same. Then each of the
three brackets on the left side is divisible by 3, which means
that their product is also divisible by 27.

2. Two remainders are the same. Then one of the brackets
is divisible by 3; therefore, x + y + z is divisible by 3, and

55



hence the third remainder is equal to the first two, and we
return to case 1.

3. All three remainders are different (0, 1, and 2). Then
x + y + z is a multiple of 3. However, the left side is not a
multiple of 3, since it is the product of three numbers that
are not multiples of 3. So this is impossible.

An example of such numbers: 15, 18, 21.

The subject of this lesson also includes problems 79–85 from the sec-
tion “Additional problems”.
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Lesson 8

Factorization into Primes.
The Fundamental Theorem of Arithmetic

We know from Lesson 4 that any number can be factored
into primes. Is this factorization unique?

The answer is given by the following theorem (for com-
pleteness, we will also repeat the proof of item A).

The fundamental theorem of arithmetic.
A. Every natural number, greater than 1, can be factored
into primes.
B. Any two factorizations of the same number may differ
only by the order of the factors.

Proof. A. If the number itself is prime, then there is
nothing left to prove. If the number is composite, then, by
definition, it factors into the product of two smaller num-
bers. If they are both prime, then everything is proved. If
either one the products is composite, then it must be factored
further. Since we are dealing with positive integers and the
products decrease at each step, the process will stop sooner
or later, and only prime factors will remain.

B. Suppose we have two different prime number factor-
izations:

p1p2 · … · pn = q1q2 · … · qm.

Since the first expression is divisible by p1, it follows that
the second one must also be divisible by p1. As a consequence
of the prime divisor theorem, one of the numbers q1, q2, …,
qm must be divisible by p1, and since they are all prime, that
number must be equal to p1. Let qs = p1. Let’s cancel p1 = qs
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from both sides and repeat the whole argument with respect
to p2, p3, and so on. By cancelling all the factors, we will
come to the equality 1 = 1. Therefore, the factorizations
must coincide.

Usually the prime factorization of a number is written
in the form pα1

1 pα2
2 …pαn

n , where p1 < p2 < … < pn. Such an
expression is called the canonical factorization into primes
of a number.

Problem 8.1. Four natural numbers are written at the ver-
tices of a square. On each side, the product of the numbers
at its ends is written. The sum of these products is 77. Find
the sum of the numbers written at the vertices.

Solution. Let the numbers a, b, c, and d be written at the
vertices. Then the numbers ab, bc, cd, and da are written at
the sides. Their sum is ab+bc+cd+da = (a+c)(b+d) = 77.
Factor the number 77 as: 77 = 7 · 11 = 1 · 77. There are no
other factorizations, since 7 and 11 are prime. The option
1·77 is not suitable, since the sum of positive integers cannot
equal 1. Therefore, a + c = 7, b + d = 11, or vice versa. In
both cases, a + b + c + d = 7 + 11 = 18.

Problem 8.2. Prove that, in the factorization into primes
of an exact cube, all the exponents are multiples of 3.

Proof. Let’s write out the factorization into primes for
the base of the cube and raise the resulting equality to the
third power. Then, in the factorization, all the exponents
will be tripled. By uniqueness, the factorization of the cube
is canonical.

Problem 8.3+. Find the number of divisors of the following
numbers: a) pk; b) pkqs, where p and q are primes. c) Gener-
alise the results obtained.

Solution. a) Let us enumerate all the divisors: 1, p, p2,
…, pk. They are k + 1 in all. There are no other divisors,
since pk is not divisible by greater powers of p nor by any
other primes.
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b) The easiest way to enumerate divisors is via their fac-
torization into primes: the divisors are all numbers of the
form paqb, where 0 6 a 6 k, 0 6 b 6 s (in particular,
1, p, p2, …, pk, q, q2, …, qs). They are suitable because we have
the equality pkqs = paqb · pk−aqs−b.

Why can’t there be divisors of any other kind? Suppose
pkqs = m · n. Replace m and n by their factorizations into
primes and multiply by adding the exponents. Due to the
uniqueness of factorization into primes, we must obtain the
expression pkqs. This means that there are no other prime
divisors in the factorization of m and n, and since all the
exponents are non-negative, p appears with an exponent not
exceeding k and q appears with an exponent not exceeding s.
Thus, the number of divisors is equal to the number of pairs
of exponents, that is, it equals (k + 1)(s + 1).

c) Arguing in a similar way for three or more prime divi-
sors, we see that we must multiply the exponents increased
by 1 of each number.

We can say that prime numbers are “bricks” from which a number is
built. At the same time, “bricks” of one type cannot be replaced by those
of another.

Problem 8.4. Let the factorizations into primes of the
numbers a and b contain the prime factor p to the mth and
nth power, respectively, and let m > n. Prove that p appears
in the factorization into primes of the number [a, b] raised
to the mth power, and in the factorization into primes of the
number (a, b) raised to the nth power.

Proof. Note that divisibility by a prime p (or its power)
does not depend on the divisibility by other primes. There-
fore, the smallest common multiple must include the small-
est power of the number p divisible by pm and pn, that is,
by pm. Similarly, the greatest common divisor must include
the greatest power of the number p that divides both pm

and pn, that is, p to the nth power.
Problem 8.5+. A even positive integer is said to be evenly-

prime if it cannot be represented as a product of two smaller
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even numbers. (For example, the numbers 2, 6, 10 are evenly-
prime, and 4 = 2 · 2, 8 = 4 · 2 are not.) State the analogue of
the fundamental theorem of arithmetic for even numbers, re-
placing the words “natural” by “even”, and “prime” by “even-
ly-prime”. Check both parts of the resulting statement.

Solution. A. Every even number can be factored into
evenly-prime factors. B. Any two factorizations of the same
even number may differ only by the order of their factors.

Part A is correct (you can repeat the proof of the fun-
damental theorem of arithmetic, appropriately replacing the
corresponding words). But part B is wrong! The numbers 2,
6, 10 and 30 are evenly-prime, but 60 = 30 · 2 = 10 · 6 can be
factored in two ways. (The reason is that for evenly-prime
numbers the prime divisor theorem does not hold.)

Usually, students take the fundamental theorem of arithmetic for
granted. The given example shows that, in some other arithmetics, that
theorem can no longer be correct.

In Lesson 6, we dealt with a problem related to counting
numbers smaller than a given n and coprime to it (Problem
6.8). This quantity plays an important role in number the-
ory, and it has a special name and notation.

Definition. The quantity of numbers from 1 to n that are
coprime to n is called the Euler function and is denoted
by ϕ(n).

Problem 8.6. Find a) ϕ(p); b) ϕ(p2); c) ϕ(pk), where p is
prime.

Solution. Any prime p has common divisors different
from 1 only with multiples of p. Therefore,

a) ϕ(p) = p− 1;
b) ϕ(p2) = p2 − p (we throw out the numbers p, 2p, …,

(p− 1)p, that is, we throw out p− 1 numbers in all);
c) ϕ(pk) = pk − pk−1 (we throw out the numbers p, 2p, 3p,

…, (pk−1 − 1)p, that is, we throw out pk−1 − 1 numbers in
all).

60



Problems for individual solution

Problem 8.7. Is there an integer whose product of digits
is a) 1990; b) 2000; c) 2010?

Problem 8.8. We are given two rectangular pieces of card-
board of dimensions 49 × 51 and 99 × 101. They are cut
into identical rectangular, but not square, parts with inte-
ger sides. Find the dimensions of these parts.

Problem 8.9. Is there a set of a) two; b) ten natural num-
bers such that none of them is divisible by any of the others,
and the square of each of them is divisible by each of the
others?

Problem 8.10. Is there a positive integer whose product
by 2 is a square, by 3 is a cube, and by 5 a fifth power?

Problem 8.11. Can a number having exactly 15 divisors
be divisible by a) 100; b) 1000?

Problem 8.12. Your friend has chosen several arbitrary
positive integers, and you want to guess all of them exactly
in the order in which he chose those numbers. You are al-
lowed to ask your friend to make an arbitrary calculation
related to his numbers, for example, to find the product or
sum of some of them, or a more complex combination and
tell you the result. Let’s call each such calculation a move.
What is the smallest number of moves needed for you to be
able to determine those numbers?

Problem 8.13. For coprime numbers a and b, consider the
following table:

1, 2, 3, …, b;
b + 1, b + 2, b + 3, …, 2b;

… … … … …
(a− 1)b + 1, (a− 1)b + 2, (a− 1)b + 3, …, ab.

a) Prove that there are exactly ϕ(b) columns in which all
numbers are coprime to b.

b) Prove that, in each column, all the remainders in the
division by a are different.
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c) Prove that, in each column, there are exactly ϕ(a)
numbers coprime to a.

d) Find ϕ(ab) from ϕ(a) and ϕ(b).

Answers and Solutions

Problem 8.7. Factor these numbers into primes. If fac-
tors greater than 9 appear in the factorization, then num-
bers with such digits do not exist, and if all the factors are
smaller than 9, then we have:

a) 1990 = 2 · 5 · 199 — no;

b) 2000 = 24 · 53 — yes, for example, 2222555;

c) 2010 = 2 · 3 · 5 · 67 — no.

Problem 8.8. The area of the rectangular parts must di-
vide the area of each of the given cardboard rectangles. Since
49 · 51 = 3 · 72 · 17, while 99 · 101 = 32 · 11 · 101, by Problem
8.4, we obtain (49 · 51, 99 · 101) = 3. Therefore, the area of
a rectancular part must be is 1 or 3. Since rectangular parts
are not squares, only dimensions 1× 3 are suitable.

Problem 8.9. a) Yes, there is: 12 and 18.

b) The number a is divisible by b if each prime factor
appears in the factorization of a to a power not less than
that in the factorization of b. This suggests the following
construction. Let’s take ten different primes p1, p2, …, p10

and construct the numbers

a1 = p2
1p2…p10, a2 = p1p2

2…p10, a10 = p1p2…p2
10.

It is easy to verify that they suit us.

Problem 8.10. For a number to be a square, it is necessary
and sufficient that the exponents of all of its prime factors
be divisible by 2; for a number to be a cube, to be divisible by
3; to be a fifth power, to be divisible by 5. Let the number
be of the form 2a3b5c. Then the numbers a+1, b, and c must
be divisible by 2; the numbers a, b + 1, and c, by 3; and the
numbers a, b, and c + 1, by 5. For example, a = 15, b = 20,
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and c = 24 are suitable. Therefore, the number 215320524

satisfies the condition.
Problem 8.11. a) 15 = 15 · 1 = 3 · 5. Therefore, just as

in Problem 8.3, a number having 15 divisors has the form
either p14 or p2q4, where p and q are primes. In turn, we
have 100 = 22 · 52. It is clear that, for example, the number
24 · 52 = 800 is suitable.

b) The number 1000 = 23 · 53 has (3 + 1)(3 + 1) = 16 di-
visors. If N is divisible by 1000, then N has at least 16
divisors. Therefore, it is not divisible by 1000.

Problem 8.12. One move is enough! Suppose, for example,
the numbers a, b, and c are chosen. Let’s ask the friend to
calculate 2a3b5c. By the fundamental theorem of arithmetic,
we can uniquely recover the exponents.

This solution can be beautifully demonstrated: the students call the
results of their calculations, and the teacher determines the chosen num-
ber by using a computer program or an online factorization into primes.

Problem 8.13. a) The differences of numbers in each col-
umn are multiples of b. Therefore, all the numbers in the
same column are either coprime to b or not, and this is de-
termined by the very first number in the column. Among
the first numbers there are ϕ(b) numbers that are coprime
to b, and hence there are as many columns.

b) The differences of numbers in a column is a multiple
of b. If the remainders are the same, then the difference is
also divisible by a and since a and b are coprime, this differ-
ence is also divisible by ab. But this is impossible, since the
difference is greater than 0, but less than ab.

c) A number is coprime to a if and only if its remainder
in the division by a is coprime to a.

d) If a number is coprime to a and b, then it is coprime
to ab (why?). We have ϕ(b) columns in which the numbers
are coprime to b. In each of them, ϕ(a) numbers are coprime
to a. Thus, there is a total of ϕ(a)ϕ(b) numbers that are
coprime to ab.
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Therefore, if a and b are coprime, then ϕ(ab) = ϕ(a)ϕ(b). This prop-
erty of the Euler function is called multiplicativity. Note that the number
of divisors of a given number has the same property (Problem 8.3). It is
not difficult to prove this property for the sum of divisors. Therefore, it
is possible to simplify problems associated with these functions by solv-
ing them separately for each prime factor. Also see Problem 8.4 and the
additional problems D90, D96, D97, D98.

The subject of this lesson also includes problems 86–100 from the
section “Additional problems”.
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Additional Problems

D1. Peter divided the numbers a, b, and a + b by some
number c. Two of the numbers were divided without remain-
der, and one number was not. Wasn’t Peter mistaken?

D2. a) Nancy noticed that 555 ... 37 and 777 ... 37. State
and prove a more general statement. b) Find, without using
a calculator, whether the numbers 718718, 539539, 174173
are divisible by 77?

D3. Are there nonzero numbers a and b such that one of
them is divisible by their sum and the other by their differ-
ence?

D4∗. In the Decimal Kingdom, the following coins are in
circulation: 1 ducat, 10 ducats, 100 ducats, 1000 ducats. Is
it possible to pay off one million ducats using exactly half a
million coins?

D5. There are three heaps of stones: 51 stones in the
first, 49 stones in the second, and 5 stones in the third. We
are allowed to combine heaps into one as well as to divide a
heap consisting of an even number of stones into two equal
ones. Can we obtain 105 heaps of one stone each?

D6. There are pears, plums, and apples in six baskets.
The number of plums in each basket is equal to the total
number of apples in all the other baskets, and the number of
apples in each basket is equal to the total number of pears in
all the other baskets. Prove that the total number of pears,
plums, and apples is divisible by 31.

D7. A regular triangle and a regular n-gon are inscribed
in equal circles. For what values of n will the triangle be
covered by the n-gon?
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D8. Each of the numbers a, b, c, d is divisible by ab− cd.
Prove that either ab− cd = 1 or ab− cd = −1.

D9. Alex thought up two divisibility tests by 27:
a) if a number is divisible by 3 and 9, then it is also di-

visible by 27;
b) if the sum of the digits of a number is divisible by 27,

then the number itself is divisible by 27.
Verify the validity of Alex’s tests.

D10. How many four-digit numbers with the two middle
digits 97 are divisible by 45?

D11. Is there a digit (the same one) such that if this digit
is written next to the number 97 on the left and on the right,
then the resulting four-digit number will be divisible by 27?

D12. The following number was written on the blackboard:

35! = 10333147966386144929∗66651337523200000000.

But the digit marked with the asterisk was erased by mis-
take. Can it be recovered?

D13. To open the safe, a code consisting of seven digits:
2’s and 3’s is needed. The safe will open if there are more
2’s than 3’s and the code is divisible by 12. Devise a code
that opens the safe.

D14. The last digit of the square of a positive integer is
6. Prove that its last-but-one digit is odd.

D15. Is 7 · 102011 + 8 a) divisible by 3; b) by 9?

D16. Is the number a) 111…1 (nine 1’s) divisible by 9?
b) 111…1 (twenty seven 1’s) by 27?
c) Generalise the statements obtained and prove the gen-

eral statement.

D17. The sum of its digits is subtracted from a positive
integer, and then one digit from the resulting difference is
crossed out. The sum of the remaining digits of the differ-
ence equals 131. What digit was crossed out?

66



D18. Prove that the number abcd is divisible by 99 if and
only if the number ab + cd is divisible by 99.

D19. Prove that if abc is divisible by 37, then bca + cab
is also divisible by 37.

D20∗. Find, without direct calculations, whether
a) 256905940884 is divisible by 4930496;
b) 140359156002848 is divisible by 4206377084.

D21∗. a) Replace the same letters in the word REACHIVE-
MENT by the same digits and different letters by different
digits. Will the resulting number be a prime?

b) The same problem for the word SUPERREGENERA-
TOR.

D22∗. A numerical sequence is constructed: its first term
is equal to 32010 and each subsequent term, beginning with
the second one, is equal to the sum of the digits of the pre-
vious term. Find the tenth term of this sequence.

D23∗. Find the largest positive integer from which it is
impossible to get a number divisible by 11 by crossing out
some digits.

D24. Find all the numbers whose division by 7 yields a
quotient equal to the remainder.

D25. Mom sent Alex to the store to buy bottles of yoghurt
for 22 rubles each, as many as possible. Using the change,
Alex wants to buy lollipops that cost 5 rubles apiece for him-
self. What is the largest number of lollipops that he can
buy?

D26. Alan noticed that when dividing a number a by a
number b with remainder: a = b · q + r, one can swap b and
q. Therefore, he believes that when dividing a by q, the quo-
tient is b, and the remainder is r. When does this method
work?

D27. When dividing a number m by 13 and 15, Peter ob-
tained the same quotients, but with different remainders 8
and 0, respectively. Find the number m.
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D28. If one subtracts 6 from a certain three-digit number,
then the resulting number will be divisible by 7, if one sub-
tracts 7, then it will be divisible by 8, and if one subtracts 8,
then it will be divisible by 9. Find this number.

D29. a) Peter claims that when he puts nuts in heaps of
9 there remain 2 nuts and when he puts nuts in heaps of 6,
1 nut is left. Is Peter mistaken?

b) Mary puts nuts first in heaps of 3, then in heaps of 6,
and then in heaps of 9. The sum of the leftovers turns out to
be 15. Peter claims that he can use these data to find each
leftover. Is Peter mistaken?

D30. When laying out books in stacks of 2 books, there
remains one book, but when the books are laid out in stacks
of 3, two books remain. How many books will be left if we
arrange them in stacks of six?

D31∗. Find a four-digit number that under division by 131
gives the remainder 112 and when divided by 132 gives the
remainder 98.

D32. In a certain year, no month had a certain day as
Sunday. What is the number of that day?

D33. Is there a power of 2 from which it is possible to get
another power of 2 by interchanging its digits?

D34. Piglet and Pooh were given identical boxes of choco-
lates and instructed to put them on plates. Piglet spread out
his box on 6 plates in equal amounts and took the rest, which
was less than 6, for himself. Pooh did the same with 7 plates.

After Pooh persuaded Piglet to give him all the chocolates
from one plate, he had 16 chocolates. How many chocolates
does Piglet have?

D35. Prove that the rebus

POLYGRAM−ROPMALYG = 2013 · 2014

has no solution.

D36. Find all the values of the digits x and y for which
the number 84x5y is divisible by 198.

68



D37. Using the uniqueness theorem for division with re-
mainder, prove that any positive integer can be written in
any positional number system and, moreover, in a unique
way.

D38. Find the smallest natural number that gives the re-
mainder 22 when divided by the sum of its digits.

D39. Is it possible to obtain the square of a positive inte-
ger using only the digits 2, 3, 7, 8 (possibly, several times)?

D40. Is each of the following numbers prime or compos-
ite:

a) 3999991?
b) 1000027?
c) 910 + 610 + 49?

D41. In the Guinness Book of Records, it is written that
the largest known prime is 23021377 − 1. Is this a typo?

D42. Find all primes p for which p + 10 and p + 14 are
primes.

D43. The Sieve of Eratosthenes. Eratosthenes begins by
writing out the numbers of the natural sequence from 2 to
some large N and selects the value of the variable p = 2.
He then crosses out all the numbers in the list which are
multiples of p, but greater than p itself. Next, he selects the
first uncrossed number greater than p, puts the variable p
equal to this number, and repeats his crossing-out procedure.
a) What numbers remain at the end? b) At what number can
the crossing-out procedure be stopped? See the presentation
in the Wikipedia article “Sieve of Eratosthenes”.

D44. For what values of n can the sum of n consecutive
natural numbers be a prime?

D45. Let us call a number primary if it is a power of a
prime (for example, 71 or 134). Find the longest chain of
consecutive primary numbers.

D46. Four odd numbers are such that, in any pair, the
larger number is divisible by the smaller one and all quo-
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tients are different. Prove that there is at least one number
among them greater than 100.

D47. Is it true that all numbers of the form 2 · 3 ± 1,
2 · 3 · 5 ± 1, 2 · 3 · 5 · 7 ± 1, …, p1 · p2 · … · pk ± 1 are prime?
Here p1 = 2 < p2 < p3 < … < pk are consecutive primes in
increasing order.

D48. Are there ten consecutive positive integers, the first
of which is a multiple of 3, the second, a multiple of 5, the
third, a multiple of 7, the fourth, a multiple of 9, …, the
tenth, a multiple of 21?

D49. Are there 50 natural numbers none of which is di-
visible by the other, and the product of any two of them is
divisible by any one of the remaining numbers?

D50. For what positive integers n is the number a) n2+n,
b) |n2−4|, c) (the Sophie Germain problem) n4+4, d) 24n+2+1
prime, and for what positive integers is it composite?

D51. Can the polynomial 1 + x + x2 + … + xp−1, where p is
a prime, be decomposed into the product of two polynomials
with integer non-negative coefficients?

D52. The roots of the equation x2 +ax+1 = b are nonzero
integers. Prove that the number a2 + b2 is composite.

D53. Devise a three-dimensional geometric interpretation
for the greatest common divisor and the least common mul-
tiple of three numbers a, b, c.

D54. What may (n, n + 12) be equal to?

D55. The programmer Alex wrote a program that finds
the LCM of all numbers from 1 to 100. But the hacker Pe-
ter erased the numbers from 1 to 50, and now the program
counts the LCM of all numbers from 51 to 100. How will the
answer change?

D56. What may [n, n + 1, n + 2] be equal to?

D57. Find formulas that give all possible pairs of coprime
numbers with difference a) 2; b) 3.
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D58. Reduce the fraction 377/261 by first calculating the
GCD by means of Euclid’s algorithm.

D59. Prove that for any positive n, the fraction 10n + 2
6n + 1

is irreducible.

D60. Find the obviously equal quantities among (a, b),
(a, a), (a, a + b), (a, a− b), (b, b).

D61. An automatic device can cut off a square from any
rectangle with a side equal to the smaller side of the rect-
angle. Peter cut the rectangle into two large squares, three
smaller ones, and five smallest ones with a 10 cm side. Find
the dimensions of the original rectangle.

D62∗. a) Prove that (a, b) = (13a + 8b, 5a + 3b).
b) Continue the above equality into a chain.

D63. Find
a) (2100 − 1, 2120 − 1);
b∗) (2a − 1, 2b − 1).

D64. a) Find (111…11︸ ︷︷ ︸
100 ones

, 111…11︸ ︷︷ ︸
90 ones

).

b∗) Generalise the result.

D65∗. There is a chocolate bar in the shape of a regular
triangle of side n; it is divided by grooves into small equal
triangles of side 1 (each side is divided into n equal parts, the
dividing points on each pair of sides being connected by lines
parallel to the third side). There are two players moving in
turn. In each move, the player can break off a triangular
piece from the chocolate bar (along some groove), eat it, and
pass the rest to the opponent. Whoever gets the last piece, a
triangle with side 1, is the winner. The one who can’t make
a move loses ahead of time.

For each n, find out which of the players can always win
no matter how the opponent plays?

D66. The bad boy Peter cut out the sheet with the mark
“very poor” from his school diary and cut it up into 3 or 5
parts (pieces). He took some of the resulting parts again and
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cut them up into 3 or 5 parts, and so on until he got bored.
Can Peter obtain exactly a) 60 parts, b) 61 parts?

D67. Devise a Diophantine equation in non-negative inte-
gers that has exactly

a) one solution;
b) two solutions;
c) n solutions.

D68. Solve the equation 65x−43y = 2 in positive integers
x and y.

D69. a) Find at least one solution in positive integers of
the system {

x + y + z = 12,

28x + 30y + 31z = 365.

b) Find all the solutions of this system.

D70. Find all positive integers lying between 1 and 100000
that are divisible by 73 and give the remainder 1 when di-
vided by 1000.

D71. A floor of width 3 m must be covered with boards
whose width is 11 cm and 13 cm without gaps between them.
How many boards of each size are needed?

D72. Solve the equation 2x + 3y + 5z = 11.

D73. The Fibonacci problem. William bought 30 birds for
30 coins. In this purchase, 1 coin was paid for each of three
sparrows, also 1 coin for each of two turtledoves and, finally,
2 coins for each pigeon. How many birds of each breed did
he buy?

D74. An amount of $500 is in the bank. Two operations
are allowed: take $300 from the bank or put in $198. These
operations can be performed many times; however, there is
no spare money, except the amount initially in the bank.
What is the maximal amount that can be taken from the bank
and how does one get it?

72



D75∗. Find the smallest natural number that can be rep-
resented in exactly two ways as 3x + 4y, where x and y are
positive integers.

D76. It is known that 56a = 65b. Can the number a + b
be prime?

D77. Solve the following equations in integers:
a) x2 − y2 = 17;
b) x2 = y2 + 2010.

D78. Three automata print pairs of integers on cards. Af-
ter reading any card, each automaton issues a new card: af-
ter reading a card with the pair {m, n}, the first machine pro-
duces the card with {m−n; n}, the second one, the card with
{m + n; n}, and the third one, the card with {n, m}. Suppose
the initial card contained the pair of numbers {20; 11}. Is it
possible to get a card with a) {12; 21}; b) {31; 13} by using
the automata in any order?

D79. The sum and product of two integers are multiples
of p. Is it true that each of these numbers is a multiple of p
if a) p is prime? b) p is composite?

D80. We know that a rectangle on square-lined paper con-
sisting of n unit squares must have dimensions 1×n if n is a
prime (see Problem 4.1). Let us generalize this problem. We
draw several figures (polyominos, not necessarily congruent)
consisting of n unit squares each such that they can be made
into a rectangle without spaces and overlaps. Is it true that
such a rectangle can be cut into 1 × n rectangles if a) n is
prime, b) n is composite?

D81. Find the smallest natural number which is not a di-
visor of 50!.

D82. Determine the form of a number n (prime or com-
posite) if it is known that (n− 1)! + 1 is divisible by n.

D83∗. Find all numbers n such that the number (n− 1)! is
not divisible by n2.

D84. Are there five two-digit composite numbers any two
of which are coprime?
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D85. a) Tom and Paul found a pack of eleven ruble bank-
notes each lying on the sidewalk. In a cafe, Thomas drank
three glasses of tea, ate four rolls, and five bagels. Paul
drank nine glasses of tea, ate one roll and four bagels. A
cup of tea, a roll, and a bagel cost an integer number of
dollars. It turned out that Paul could pay with eleven dollar
banknotes without change. Show that so can Tom.

b) The integers t, c, and b are such that 9t + c + 4b is a
multiple of 11. Is it true that 3t+4c+5b is a multiple of 11?

D86. The sum of the house numbers on one side of the
block is 247. (Note that houses on one side of the street
have odd numbers, while those on the other side are even-
numbered.) What is the number of the seventh house from
the corner?

D87. At the end of the spring term, Eddie wrote out his
current marks for singing in a row and put the multiplica-
tion sign between some of them. The product of the result-
ing numbers turned out to be equal to 2007. What mark did
Eddie get for singing at the end of the term? (The music
teacher marks 2 for “very poor”, 3 for “poor”, 4 for “good”,
and 5 for “very good”.)

D88. Is it possible to delete one of the factorials from the
product 1! · 2! · … · 100! so that the product of the remaining
factorials is the square of an integer?

D89. a) Prove that if a number has exactly 6 divisors,
then it has the form p5 or the form pq2, where p and q are
primes.

b) A number has exactly N divisors. Describe its factor-
ization into primes.

D90. When the number a is multiplied by 2, the number
of its divisors increases by 20%. a) Prove that a is divisible
by 16, but not divisible by 32. b) How will the number of
divisors increase if a is multiplied by 4?
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D91. Find a positive integer of the form n = 2x · 3y · 5z, if
half of it has 30 less divisors, a third of it, 35 less divisors
less, and a fifth, 42 less divisors than the number itself.

D92. Find a number which is a multiple of 12 and has
fourteen divisors.

D93. Find a number equal to twice the number of its di-
visors.

D94. a) Prove that, among the numbers from 1 to a (in-
clusive), there are [a/b] numbers divisible by b. Here and
further, [x] is the integer part of the number x.

b) Prove that the number 2 occurs in the factorization of
n! into primes with power exponent

k =
[

n
2

]
+

[
n
4

]
+

[
n
8

]
+ … .

c) For what values of n is n! divisible by 2n?
d) What is the greatest power of 2 by which the product

of all the natural numbers from n + 1 to 2n is divisible?
e) Generalising the formula from item b), prove that the

product of n consecutive numbers is divisible by n! (see Prob-
lems 1.6 and 2.12).

D95∗. Seventeen two-digit numbers were written on the
blackboard. A mathematician chose one of them and raised
it to the hundredth power. It turned out that the resulting
number is divisible by each of the remaining sixteen. Is it
true that it is also divisible by their product?

D96. Using the result of Problem 8.4, prove the formula
(a, b)[a, b] = ab.

D97. a) Does the formula

(a, b, c)[a, b, c] = abc

hold?
b) What inequality will always hold for the numbers

(a, b, c)[a, b, c] and abc?
c) Express (a, b, c) in terms of a, b, c, [a, b], [b, c], [a, c],

[a, b, c].
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d) Express [a, b, c] in terms of a, b, c, (a, b), (b, c), (a, c),
(a, b, c).

D98. a) By what inequality are ϕ(a), ϕ(b), and ϕ(ab) re-
lated if a and b are not coprime?

b) By what inequality are τ(a), τ(b), and τ(ab) related if
τ(n) is the number of divisors of n.

D99. Let us write out in a row all the proper fractions
with denominator n and make all possible cancellations. For
example, for n = 12, the following sequence of numbers will
be obtained:

0
12

, 1
12

, 1
6

, 1
4

, 1
3

, 5
12

, 1
2

, 7
12

, 2
3

, 3
4

, 5
6

, 11
12

.

How many fractions with denominator d will be obtained if
d is a divisor of the number n?

D100. Prove the Gauss identity:∑
d|n

ϕ(d) = n,

where ϕ(·) is the Euler function and the sum is taken over
all the divisors of the number n.
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Answers and Hints

D1. Answer: Peter was mistaken.
If a and b are divisible by c without remainder, then their

sum is also divisible. If only one of the numbers a and b is
divisible by c, then the sum is not divisible. If none of the
numbers is divisible, then nothing can be said about the sum.
Thus, here either 0, or 1, or 3 divisions without remainder
are possible.

D2. a) Statement: a number of the form aaa is divisible
by 37. Indeed, aaa = 111a = 37 · (3a).

b) Generalization: numbers of the form abcabc = 1001abc
are divisible by 77, because 1001 = 7 · 11 · 13.

D3. Answer: no.
Show that either the sum or the difference is greater in

absolute value than each of the given numbers.

D4. Answer: no.
Assume the converse: let the desired set be obtained. Let

us exchange every large coin for ducats. Then, in the end,
we will get one million ducats. But the number of coins in-
creases with each step by a multiple of 3 (more precisely, by
9, 99, or 999), but eventually it will have increased by half
a million, which is not a multiple of 3. A contradiction.

D5. Answer: no.
Since there is an odd number of stones in each heap at

the beginning, then, in the first step, we can only combine
some pair of heaps into one. If we combine the first two
heaps, then we obtain 100 and 5 stones. If we combine the
second and third heaps, then we obtain 51 and 54 stones. If
the first and third heaps are combined, then we obtain 56
and 49 stones. Note that, in all three cases, the numbers of
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stones have the common divisors 5, 3, and 7, respectively.
This means that, performing further divisions, we will not
be able to divide the groups into heaps smaller than 5, 3 or 7
stones, respectively (This can be proved rigorously by using
the fact that 2 is coprime to 3, 5, 7.)

D6. It is convenient to think not of each basket sepa-
rately, but of all of them. Summing up the first condition
over all baskets, we find that there are 5 times more plums
than apples. Similarly, summing up the second condition, we
find that there are 5 times more apples in total than pears.
Therefore, there are in all 31 times more fruits than pears.

D7. Answer: for any n which is multiples of 3.
Note that if n is a multiple of 3, then it is possible to

combine the vertices of the triangle with some vertices of
the n-gon, and the triangle will be covered. Suppose that
the triangle is covered. If the circumscribed circles of the
triangle and the polygon do not coincide, then the arc of the
circumscribed circle of the triangle greater than a semicircle
will be outside the circumscribed circle of the polygon. The
vertex of the triangle will then fall on this arc and remain
uncovered. If the circles coincide, the vertices of the triangle
must fall on the vertices of the polygon, and this is only
possible if n is a multiple of 3.

D8. Note that, as in Problem1.8, ab is divisible by (ab−cd)2.
The same can be said about cd. Then ab − cd is divisible by
(ab − cd)2. Hence ab − cd = k(ab − cd)2, and thus we have
1=k(ab−cd). Therefore, k=1, ab−cd=1 or k=−1, ab−cd=−1.

D9. Answer: both tests are false.
a) For example, the number 9 is a multiple of 3 and 9, but

not of 27. Alex made a mistake by applying the divisibility
test to the product for non-coprime divisors. (By the way, it
is not difficult to prove that if a and b are not coprime, then
there exists a number n which is a multiple of a and b, but
not ab.)

b) 9981 6 ... 27.
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D10. Answer: two numbers.
The last digit must be 0 or 5, and the sum of the digits is

a multiple of 9.
D11. Answer: yes.
It is necessary that any such number be divisible by 9.

Find all the options and check by longhand whether they are
divisible by 27.

D12. Answer: 6.
The given number is divisible by 9.
D13. Answer: 2222232.
In order for the code number to be divisible by 4, it must

end in 32.
D14. It is easy to see that n2 ends in 6 only if n ends in 4

or 6. Therefore, n is divisible by 2. But then n2 is divisible
by 4. By the divisibility test, the last two digits can be 16,
36, 56, 76, and 96.

D15. Answer: a) yes, b) no.
Write out the number in decimal form.
D16. Answer: a) yes, b) yes.
Generalization: a number consisting of 3n digits 1 (or

other identical digits) is divisible by 3n. In fact, 111 ... 3.
Next, 111111111 = 111 ·1001001, where the second factor is
divisible by 3 on the basis of the divisibility test. Similarly,
the number 111…1 (27 ones) is decomposed into the factors
111111111, a multiple of 9, and a multiple of 3. And so on.

D17. Answer: 4.
When subtracting the sum of its digits from a number, a

multiple of 9 is obtained. The sum of digits of the number
131 is equal to 5, which means that 4 was crossed out.

D18. Note that abcd− ab− cd = 99 · ab.
D19. Let us add all three numbers:

abc + bca + cab = 100a + 10b + c + 100b + 10c + a
+ 100c + 10a + b = 111a + 111b + 111c.

Since 111 is a multiple of 37, it follows that the sum is
a multiple of 37. By assumption, the first term is divisible
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by 37, and hence the sum of the other terms is also divisible
by 37.

D20. Answer: a) no, b) no.
a) Note that the divisor is divisible by 8, but the dividend

is not.
b) Express the divisor as

4206377084 = 42 · 108 + 63 · 105 + 77 · 103 + 84.

Each of the terms is divisible by 7, and hence the sum is
also divisible by 7. Similarly, the number 140359156002848
can be expressed as the sum of terms all of which, with the
exception of the last one (48), is divisible by 7. This means
that the number is not divisible by 7.

D21. a) Answer: No.
Let us count the letters in the word REACHIVEMENT.

The letter E appears 4 times, each of the other 9 letters
appear once. This means that all digits will appear once,
but one of the digits (the one corresponding to the letter E)
will appear 3 more times. The sum of all digits from 0 to 9
equals 45, and so is divisible by 3. The sum of three identi-
cal digits is divisible by 3. Hence, no matter how we replace
letters by digits in the word REACHIVEMENT, the sum of
these digits will be divisible by 3. Therefore, by the divisi-
bility by 3 test, the obtained number will be divisible by 3.
But the only prime number divisible by 3 is 3 itself, and our
number is certainly greater than 3, so the obtained number
cannot be prime.

b) Answer: No.
There are ten different letters in the word SUPERRE-

GENERATOR, the letter E appears 4 times, the letter R ap-
pears 4 times, the other letters appear once each. The rest of
the argument is similar to that in item a) and is left to the
reader.

D22. Answer: 9.
If a number is divisible by 9, then the sum of its digits

is also divisible by 9. Since 32010 is divisible by 9, it follows
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that all the terms of the given sequence are divisible by 9.
Let us estimate their values: 32010 = 91005 < 101005, and so
there are no more than 1005 digits in the original number.
Therefore, the second term of the sequence is not greater
than 9 · 1005 < 104, that is, it has 4 digits at most. Then the
third term of the sequence is not greater than 9 · 4 = 36, and
the fourth is less than 18. Since the fourth term, like the
previous ones, is divisible by 9, it is equal to 9. This means
that all the subsequent terms are equal to 9.

D23. The number must not contain the digit 0, because,
otherwise, all the other digits can be crossed out, and 0 is
divisible by 11. Also, there must not be any identical dig-
its, because, otherwise, we can cross out all the other digits
and get a number which is a multiple of 11. The largest
number satisfying these requirements contains all 9 digits
in decreasing order: 987654321. Let us show that it sat-
isfies the assumptions of the problem. Let us assume that,
after crossing out n > 0 digits from 987654321, we obtain
the number

a2ka2k−1…a2a1,

in which a2k > a2k−1 >…> a2 > a1 (if the number of digits in
the resulting number is odd, then we will write 0 at the end,
which will not affect the divisibility by 11). Then

(a2k−a2k−1)+(a2k−2−a2k−3)+…+(a2−a1) > 0,
a2k−(a2k−1−a2k−2)−(a2k−3−a2k−4)−…−a1 6 a2k 6 9.

Therefore, the number

a2k + a2k−2 + … + a2 − a2k−1 − a2k−3 −…− a1

is not divisible by 11, which means that the number

a2ka2k−1…a2a1

is also not divisible by 11.

D24. Answer: N = 0, 8, 16, 24, 32, 40, 48.
Denote the quotient by c. Then the given number can be

written N = 7c + c = 8c. At the same time, c runs through
all values from 0 to 6.
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D25. The largest change was less than 22 rubles. There-
fore, the largest number of lollipops will be 4.

D26. Answer: the method works if r < b and r < q. Oth-
erwise, some of the entries will not be read as a division with
remainder.

D27. Answer: m = 60.
Solve the equation m = 13k + 8 = 15k.
D28. Answer: 503. Consider the number greater by 1

than the desired number. Use the fact that 7, 8, and 9 are
coprime.

D29. a) Assume that Peter is right, and let us put the
nuts into heaps of 3. Then, by virtue of the first condition,
2 nuts must remain and, by virtue of the second condition,
only 1. Hence Peter is mistaken.

b) Under division by 3, 6, and 9, the greatest remainders
will be 2, 5, and 8. Their sum is exactly 15. Therefore, Peter
is right.

D30. Answer: 5.
Let N be the number of books. Then N = 2x + 1 = 3y + 2.

Multiplying the first equality by 3, we obtain 3N = 6x + 3.
Multiplying the second equality by 2, we obtain 2N = 6y +4.
Let us express N from the last two equalities:

N = 3N − 2N = 6(x− y)− 1 = 6(x− y− 1) + 5.

Thus, the remainder is 5.
Here is another way to solve the problem. Since 2 books

remain after the books have been put in stacks of 3, it follows
that either 2 or 5 books remain after the books have been put
in stacks of 6 (see the solution of Problem 3.9). It follows
from the first condition that the number of books is odd;
therefore, 2 cannot be the remainder.

Finally, the shortest solution (although difficult to gen-
eralise): let’s add another book; then the books are put in
stacks of 2 books and of 3 books without remainder. By the
coprime divisor theorem, N + 1 is divisible by 6 without re-
mainder; then N has the remainder 5 under division by 6.
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D31. Answer: 1946.
Let N be the desired number. By assumption, we have

N = 131k + 112 = 132l + 98, where k and l are positive
integers. Besides, N < 10 000, and hence

l = N − 98
132

<
10 000− 98

132
< 76.

Next, 131k + 112 = 132l + 98, and so 131(k − l) = l − 14.
Therefore, if k 6= l, then |l−14| > 131. But l < 76, and hence
k = l and l− 14 = 0. Thus,

N = 131 · 14 + 112 = 132 · 14 + 98 = 1946.

D32. Answer: 31.
Prove that during any year each of the numbers from 1

to 30 (corresponding to days of the month) can occur any day
of the week. Don’t forget about leap years.

D33. Answer: no.
Numbers obtained from each other by interchanging their

digits have the same remainder when divided by 9. Consider
the remainders in the division of powers of 2 by 9 and verify
that the powers with the same remainder must be more than
10 times greater.

D34. Answer: two chocolates.
Suppose that N is the number of chocolates in the box, a

is the number of chocolates on the plate for Piglet, b choco-
lates are on the plate for Pooh, m is Piglet’s remainder and
k is Pooh’s remainder. Therefore, we have the system

6a + m = N, 7b + k = N, a + k = 16.

Let us add the first and third equations and then subtract
the second, obtaining

7(a− b) + m = 16.

Thus, 16 −m ... 7. Since m < 6, we obtain m = 2. Note that
the number of chocolates in the box may differ.

D35. Note that the same set of letters is repeated in both
words. Therefore, the sum of the digits in both numbers is
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the same, and they have the same remainder when divided
by 9. Therefore, their difference must be divisible by 9.
However, the number 2013 · 2014 is not divisible by 9.

D36. Answer: x = 1, y = 0.

Consider the factorization of 198 into coprime factors:
198 = 11 · 2 · 9. By the divisibility by 9 test, we find that
8+4+x+5+y = 17+x+y ... 9. By the divisibility by 11 test,
we find that 8− 4 + x− 5 + y = −1 + x + y ... 11. Only x+y=1
from the interval 0<x+y<18 is suitable. Therefore, one of
the numbers is 0 and the other is 1. Using the divisibility
by 2 test, we see that the digit y must be even, that is, y = 0,
and hence x = 1.

D37. To write a number in the positional number system
with base q, the number is divided by q and the remainder
is written as the last digit. Next, the incomplete quotient is
divided by q and the remainder is written as the next-to-last
digit, and so on.

D38. Answer: 689.

The sum of the digits must be at least 23, that is, the
number must have more than two digits. Of three-digit num-
bers, the smallest with such a sum of digits is 599 (not suit-
able) and 689 (suitable).

D39. Answer: no.

Prove by enumerating the remainders of squares divided
by 10 that a square cannot end with numbers 2, 3, 7, 8.

D40. Answer: a), b), c) are composite.

Let us use the shortened multiplication formulas:

a) 3999991 = 4000000− 9 = 20002 − 32 = 1997 · 2003;

b) 1000027=1000000+27=1003+33=103·(1002−100·3+32);

c) 910 + 610 + 49 = (310 + 29)2.

D41. Answer: a typo.

Think about what digit this number ends with. (In fact,
the correct number is actually 23021377 − 1.)
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D42. Answer: p = 3.
As in Problem 4.4, for p > 3, p is divided by 6 with re-

mainders 1 or 5. If the remainder is 1, then p + 14 is com-
posite, and if the remainder is 5, then p + 10 is composite.

D43. a) All primes from 2 to N will remain. The crossing-
out removes all numbers that are multiple of the prime p,
except p itself. This means that all composite numbers will
be deleted.

b) Note that numbers can be crossed out beginning with
the number p2, because all composite numbers smaller than p2

will already be crossed out by this time. And, accordingly,
we can stop the algorithm when p2 becomes greater than n.
Compare this solution with that of Problem 4.2.

The sieve of Eratosthenes is the oldest fast method for
obtaining the sequence of primes. In the era of Eratosthenes,
numbers were written on wax tablets and, instead of crossing
out, a hole was pierced, hence the name of the method.

D44. Answer: at n = 2.
The sum of two consecutive positive integers can be a

prime: 2 + 3 = 5. The sum of three cannot be prime, because
it is divisible by 3 and is greater than 3. The sum of four
also cannot be prime, because it is even and greater than 2.
Let us prove that no further sum can be prime. Let the first
number be k, then the last one will be k + n− 1. The sum of
these numbers is the sum of the arithmetical progression

k + (k + n− 1)
2

n = n
2

(2k + n− 1).

Further, we consider this expression separately for even n
and for odd n, and prove that, for n > 2, it can be expressed
as the product of two integers greater than 1.

D45. Answer: 2, 3, 4, 5.

D46. Let the numbers a < b < c < d satisfy the assump-

tions of the problem. By assumption, the quotients b
a , c

b , d
c

are various odd numbers greater than 1. Their product is not

less than 3·5·7 = 105, and hence d = a· b
a · c

b · d
c > 1·105 > 100.
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We can prove in the same way that c = a ·
b
a

·
c
b

> 1 × 3 · 5 = 15,

b > 3 (and, of course, a > 1). Replacing all the non-strict inequalities by
equalities, we obtain the four-tuple (1, 3, 15, 105) giving the answer and
being, in a sense, minimal.

D47. Answer: no.
Examples:

2 · 3 · 5 · 7− 1 = 209 = 11 · 19;
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

The fact that a number is not divisible by the first few primes
does not imply that it is not divisible by a prime greater than
those primes.

D48. Answer: Yes, there are.
We will construct these numbers just as in the solution

of Problem 4.9: consider a number N such that N + 3 is di-
visible by 3, N + 5 is divisible by 5, …, N + 21 is divisible
by 21. This is true, for example, for N = 3 · 5 · … · 21. How-
ever, the neighboring resulting numbers differ not by 1, but
by 2. We then note that they are all even, and so we take
(N + 3)/2, (N + 5)/2, …, (N + 21)/2 as an example justify-
ing the answer. (Here we have used the factor cancellation
theorem; see Problem 6.11.)

D49. Answer: yes.
An example is constructed just as in problem 4.3.
D50. Answer: a) prime for n = 1 and composite for n > 2;

b) prime for n = 1; 3 and composite for n > 4; c) prime for
n=1 and composite for n>2; d) composite for all positive n.

Solution. c) Note that

n4 + 4 = (n4 + 4n2 + 4)− 4n2

= (n2 + 2)2 − (2n)2 = (n2 + 2n + 2)(n2 − 2n + 2).

(Sometimes the sum of squares can also be decomposed into
factors!) When substituting any number into this equality,
we obtain a factorization of the number n4+4. If both factors
differ from ±1, then the number is composite. For n = 1,
we have 5 = 5 · 1, which is prime. For n > 2, both factors are
greater than 1, and hence the number is composite.
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d) Indeed,

24n+2 + 1 = 42n+1 + 1 = (4 + 1)(42n − 42n−1 + …− 4 + 1).

For the number to be composite, it suffices for the second
factor to be greater than 1. This is achieved when n > 1.

D51. Answer: no.
Assume the converse and substitute x = 1 into the de-

composition.

This polynomial is called a cyclotomic polynomial. It turns out that it
cannot be factored into the product of polynomials with either integer or
rational coefficients.

D52. Let x1 and x2 be the roots of the trinomial. Then,
by Vieta’s theorem, x1 + x2 = −a, b = 1− x1x2. Therefore,

a2 +b2 = x2
1 +x2

2 +2x1x2 +x2
1x2

2−2x1x2 +1 = (x2
1 +1)(x2

2 +1).

For non-zero values of x1, x2, this equality gives the factori-
sation of the number a2 + b2 into factors other than 1.

D53. Consider the rectangular parallelepiped with edges
a, b, c.

D54. Answer: 1, 2, 3, 4, 6, 12.
Note that (n, n + 12) = (n, 12).
D55. Answer: The answer will not change.
Prove that

[1, 2, 3, …, 2n− 1, 2n] = [n + 1, n + 2, …, 2n].

Take into account the fact that it suffices to keep the great-
est of the numbers 2k and k.

D56.

[n, n + 1, n + 2] = [[n, n + 1], n + 2] = [n(n + 1), n + 2]

=
n(n + 1)(n + 2)

(n(n + 1), n + 2)
.

Further,

(n(n+1), n+2) = (n2 +n, n+2) = (|n2 +n−(n2 +2n)|, n+2)

= (n, n + 2) = 1 or 2,
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depending on the parity of n. Therefore,

[n, n + 1, n + 2] = n(n + 1)(n + 2) for odd n,

[n, n + 1, n + 2] =
n(n + 1)(n + 2)

2
for even n.

D57. a) All pairs of the form (2n− 1; 2n + 1), where n is
an integer (see Problem 5.7).

b) All pairs of the form (3n − 1; 3n + 2) and of the form
(3n− 2; 3n + 1), where n is an integer.

D58. 377 = 261 · 1 + 116, 261 = 116 · 2 + 29 , 116 =

29 · 4 + 0. Therefore, 377
261

= 29 · 13
29 · 9

= 13
9

.
D59. (10n + 2, 6n + 1) = (4n + 1, 6n + 1) = (2n, 4n + 1) =

(2n, 2n + 1) = 1.
D60. Answer: (a, b) = (a, a + b) = (a, a− b).
D61. Answer: 160 cm by 370 cm.
Let us write Euclid’s algorithm from end to beginning:

5 · 10 = 50, 50 · 3 + 10 = 160, 160 · 2 + 50 = 370.
D62. Consider the value on the right side. By Euclid’s

algorithm,

(13a + 8b, 5a + 3b) = (8a + 5b, 5a + 3b) = (5a + 3b, 3a + 2b)

= (3a + 2b, 2a + b) = (2a + b, a + b) = (a + b, a) = (a, b).

We can also continue this chain in the increasing direc-
tion. The coefficients will be equal to the consecutive Fi-
bonacci numbers.

D63. a) Answer: 220 − 1.
Divide 2120 − 1 by 2100 − 1 with remainder:

2120 − 1 = (2100 − 1) · 220 + 220 − 1.

Acting further in a similar way, we obtain:

(2120−1, 2100−1) = (2100−1, 220−1) = (280−1, 220−1)

= (260−1, 220−1) = (240−1, 220−1) = (220−1, 220−1) = 220−1.

Note that the exponents in this equality are also “divisible
with remainder”.
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b) Answer: (2p − 1, 2q − 1) = 2(p,q) − 1.
Moreover, here the number 2 can be replaced by an arbi-

trary number.
D64. a) Answer: 111…11︸ ︷︷ ︸

10 ones

.

(111…11︸ ︷︷ ︸
100 ones

, 111…11︸ ︷︷ ︸
90 ones

) = (111…11︸ ︷︷ ︸
90 ones

·1010 + 111…11︸ ︷︷ ︸
10 ones

, 111…11︸ ︷︷ ︸
90 ones

)

= (111…11︸ ︷︷ ︸
10 ones

, 111…11︸ ︷︷ ︸
90 ones

) = 111…11︸ ︷︷ ︸
10 ones

,

because the last number is divisible by the next-to-last one.
b) In general,

(111…11︸ ︷︷ ︸
k ones 1

, 111…11︸ ︷︷ ︸
l ones 1

) = 111…111︸ ︷︷ ︸
(k, l) ones 1

.

D65. Answer: if the number n is prime, then the second
player wins; otherwise, the first player wins.

After the first move, an isosceles trapezium1 is formed.
Let us see what figures are formed in subsequent moves.
Suppose that, after some move, one of the players gets a
piece of chocolate in the form of an isosceles trapezium with
a smaller base a and a greater base b (the side length of such
a trapezium is equal to b − a). If that player (let us call
him A) breaks off a triangle whose side is less than b − a,
then the other player can break off a triangle with side 1,
and the other player wins (see Fig. 1).

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Fig. 1

1By a trapezium we mean a quadrilateral with two parallel sides of
unequal length.
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So, in this situation, A must break off a triangle with
side b − a. After this move, there remains a parallelogram
whose side lengths are a and b− a.

Now suppose one of the players got a piece of chocolate
in the form of a parallelogram with sides a and b, a < b.
Then, for similar reasons, that player must break off a trian-
gle with side a. After that move, there remains an isosceles
trapezium with bases b− a and b.

Next, suppose one of the players was given a piece of choco-
late in the form of a parallelogram with sides a and b (a < b),
then, after two moves, that player will get a piece of choco-
late in the form of a parallelogram with sides a and b− a.

Finally, suppose one of the players obtained a parallelo-
gram with equal sides (that is, a rhombus), then that player
has to move so that a triangle is formed after his move (see
Fig. 2).

Fig. 2

Now let’s outline the winning strategy for the second
player for a prime n. For him, it suffices to break off the
piece of largest size every time. Let us show that this strat-
egy results in winning the contest. Let the first player break
off a triangle with side k. After the second player’s move, a
parallelogram is formed with sides k and n − k. These num-
bers are coprime, because n is a prime. Further, after each
move of the second player, a parallelogram will be formed
(until eventually it becomes a rhombus). The side lengths of
this parallelogram are coprime (if k and n are coprime, then
k and n − k are also coprime). Therefore, the side lengths
of the rhombus (which are equal) are also coprime, but this
means that the rhombus has side 1! From it, the first player
will be forced to break off a triangle with side 1, after which
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the second player wins. If n = 1, then the first player has
already won.

Now let the number n be composite. Denote by p any
prime divisor of n. Let the first player first break off a
triangle with side p, and then each time break off the largest
piece. After a while, the second player will get a triangle
with side p and, as discussed above, will lose in a few moves.

Note that the described process illustrates Euclid’s algorithm.

D66. Answer: a) No, he couldn’t, b) Yes, he could.
Note that when cutting a piece into 3 parts, 2 parts are

added, and when cutting into 5 pieces, 4 parts are added.
Therefore, the total number of parts is equal to 1 + 2x + 4y,
where x and y are the number of cuts of the sheet into the re-
spective number of parts. Solving the Diophantine equation
1 + 2x + 4y = 60 or 61, we obtain the answer.

D67. a) x + y = 0; b) x + y = 1; c) x + y = n− 1.

D68. Answer: x = 4 + 43n, y = 6 + 65n, where n > 0.
First, using the usual algorithm, we will find the follow-

ing integer solutions: x = 4 + 43n, y = 6 + 65n, where n
is an integer. Now let’s select integer solutions from them.
Solving the inequalities x > 0, y > 0, we obtain n > 0.

D69. a) Answer: x = 1, y = 4, z = 7.
There are 12 months in a year. One of them, February,

consists of 28 days, four months (April, June, September,
November) consist of 30 days each, the remaining 7 months
consist of 31 days. Since there are 365 days in a year, we
have

28 · 1 + 30 · 4 + 31 · 7 = 365.

b) There is another solution in natural numbers, namely
x = 2, y = 1, z = 9.

D70. Let us write the equation 73x = 1000y + 1, that is,
73x− 1000y = 1. Finding (73, 1000) by Euclid’s algorithm,
we obtain the particular solution x0 = 137, y0 = 10. The
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general solution has the form x = 137+1000n, y = 10+73n,
where n is an integer. Solve the inequality

1 6 73x 6 100000 ⇐⇒ 1 6 10001 + 73000n 6 100000

⇐⇒ 0 6 n 6 1.

Calculating 73x for each of the two values of n, we obtain
the answer: 10001 and 83001.

D71. Answer: 19 narrow boards and 7 wide ones or 6 nar-
row boards and 18 wide ones.

Suppose we have x boards 11 cm wide and y boards
13 cm wide. Then we have the equation 11x + 13y = 300.
A partial solution of that equation with 1 on the right-hand
side is (6;−5). Multiplying by 300, we obtain x0 = 1800,
y0 = −1500. The general solution is x = −13n + 1800,
y = 11n − 1500. Now we need to find a value of n such
that both components are non-negative. From the inequality
x > 0, we obtain n 6 138 and, from the inequality y > 0, we
get n > 137. Substituting n = 137, we obtain the answer:
19 narrow boards and 7 wide ones. Substituting n = 138, we
obtain the other answer: 6 narrow boards and 18 wide ones.

D72. First, we guess a partial solution: (1; 1; 1). Now
we write out the homogeneous equation 2x + 3y + 5z = 0.
Let us rewrite that equation as 2(x + y + 2z) + y + z = 0.
Denoting the expression in parentheses by t (which is obvi-
ously an integer), we obtain the following system of equa-
tions: 2t + y + z = 0 and x + y + 2z = t.

Let us express x and y in terms of z and t: y = −2t − z,
x = 3t − z. To avoid confusion, let’s put z = u, where u is a
parameter. By letting t and u take arbitrary integer values,
we obtain all possible tripes (x; y; z) = (3t − u;−2t − u; u)
satisfying the homogeneous equation. Adding together the
particular solution of the inhomogeneous equation and the
general solution of the homogeneous equation, we then ob-
tain x = 1 + 3t− u, y = 1− 2t− u, z = 1 + u.
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Note that now the solution depends on two parameters! Generally
speaking, an equation with two unknowns leaves one “degree of freedom”,
while an equation with three unknowns leaves two “degrees of freedom”.

D73. Answer: 9 sparrows, 10 turtledoves, 11 pigeons.

D74. Answer: 498 dollars.

Note that (300, 198) = 6, that is, both operations change
the amount of money outside the bank by a multiple of 6.
And the largest number which is a multiple of 6 and does
not exceed 500, is 498. Therefore it will not be possible to
withdraw more than $498.

One can withdraw $498, in particular, as follows. The
equation 300y − 198x = 6 has the solution x = 3, y = 2. If
we can withdraw, in some order, $300 twice and put in $198
three times, then we will withdraw exactly $6. Suppose
there are n dollars in the bank at some point. Remove $300,
put in $198, remove $300, and put in $198 twice. It is
easy to check that this sequence of operations is possible if
n > 402. Repeating this 16 times, we will put $404 in the
bank. Now, having done the first three operations from the
specified sequence, we will leave $2 in the bank.

D75. Answer: 19.

It is necessary to choose a number k such that the Dio-
phantine equation 3x + 4y = k will have two natural solu-
tions. Solving this equation in integers and requiring that
x and y be positive, we obtain the condition that there must
be exactly two integer points in the interval (k/4, k/3). The
smallest such number is k = 19.

D76. Since the numbers 56 and 65 are coprime, by the fac-
tor cancellation theorem, we have a = 65n, and so b = 56n.
Therefore, the number a+b = 65n+56n = 121n is composite.

D77. a) Answer: x = ±9, y = ±8.

Factor the left and right sides and consider all possible
options.

b) Answer: there are no solutions.
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Let us rewrite the equation in the form

x2 − y2 = 2010 ⇐⇒ (x− y)(x + y) = 2010.

Note that the right side is divisible by 2, but not by 4. How-
ever, the numbers in parentheses on the left side are both
either even or odd.

D78. Note that all three automata preserve the common
divisor of the numbers.

a) This is impossible, because the initial numbers are co-
prime, and the final numbers are multiples of 3.

b) Using the first and third automata, it is possible to
implement Euclid’s algorithm. Both the pair {20; 11} and the
pair {31; 13} can be reduced to the pair {1; 1}, because they
are both coprime. Since all the steps are reversible, the pair
{20; 11} can be reduced to the pair {31; 13}.

D79. Answer: a) This is true; b) This is true for composite
numbers in which each prime factor occurs once, but not for
other composite numbers.

D80. Answer: a) This is true for all prime n; b) false for
any composite n.

a) Use the prime divisor theorem.
b) Let n > 4. Then n has a divisor greater than 2 and less

than n; let’s denote it by a. Then we can write n = ab, where
1 < b < n/2. Let us place two a× b rectangles side by side so
that they form the rectangle a × 2b. This rectangle cannot
be cut into rectangles 1× n, because both sides of it are less
than n.

For n = 4, let’s take three tetramino figures: two of di-
mensions 1× 4 and one of dimensions 2× 2 and make a 2× 6
rectangle out of them.

D81. Note that the prime 53 is not a divisor of the number
50!, because, otherwise, by the prime factor theorem, one
of the factors of 50! would be divisible by 53, but this is
impossible. On the other hand, it’s clear that 50! is divisible
by 3 · 17 = 51 and by 4 · 13 = 52 (because these pairs of
numbers are coprime).
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D82. Answer: The number is prime.
The number (n− 1)! is divisible by all numbers from 2 to

n−1. Therefore, the number (n−1)!+1 is not divisible by any
of these numbers. Thus, n is the smallest divisor other than
1 of the number (n − 1)! + 1. Hence, n cannot be composite
(otherwise, there would exist prime divisors smaller than n).

It turns out that actually any prime n is suitable; indeed, if n is prime,
then (n − 1)! + 1 is a multiple of n. This statement is called Wilson’s
theorem and is much more difficult to prove.

D83. Answer: 8, 9, as well as numbers of the form p
and 2p, where p is prime.

It is clear that, for a prime p, the numbers n = p and
n = 2p satisfy the condition, because (n− 1)! is not divisible
by p2. It is also easy to see that 7! is not divisible by 82,
nor 8!, by 92. Let us prove that, for the other valuies of n,
the number (n− 1)! is divisible by n2.

First case. Let n have at least two distinct divisors. Let
us denote one of them by p. Then, among the numbers 1,2,…,
n− 1, there exist at least n/p− 1 numbers divisible by p. If
n is divisible by pk, but not by pk+1, then we have

n
p − 1 > 2pk−1 − 1 > 2k − 1 > 2k− 1.

If n 6= 2p, then at least one of the inequalities given above is
strict. Hence, n/p − 1 > 2k, and (n − 1)! is divisible by p2k.
Since this is true for all p, it follows that (n−1)! is divisible
by n2.

Second case. Let n be the power of a prime: n = pk. Then
n/p − 1 = pk−1 − 1. For p > 5, as well as for p = 3 and
k > 3 or for p = 2 and k > 5, this number is not less than 2k.
Therefore, (n− 1)! is divisible by n2. The case of n = 24 can
be dealt with directly.

D84. Answer: No.
Among the prime factors of a composite two-digit num-

ber, there must exist single-digit numbers (the product of
two non-one-digit numbers is at least a three-digit number).
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Since there are only four one-digit primes (2, 3, 5, 7), then at
least two of our two-digit numbers will have the same prime
factor and they will not be coprime.

D85. a) If Paul ate and drank four times as much, then
the sum of money would also be a multiple of 11, and it
would have turned out to be 33 teas and 11 bagels more than
Tom ate and drank. Therefore, Tom’s portion also costs an
integer number of dollars, a multiple of 11.

b) True. See item a).

D86. Answer: 19.
Let the first house from the corner of the block have the

number p, and suppose the number of houses on one side of
the block is equal to k. Then the sequence p, p + 2, p + 4,
…, p + 2(k−1) of numbers of these houses is an arithmetical
progression. The sum of the first k terms of this progression
is

p + p + 2k− 2
2

k = (p + k− 1)k.

By assumption, we have the equation (p + k− 1)k = 247.
The prime factorization of the number 247 has the form
247 = 13 · 19. Since p > 1, we have p + k− 1 > k, and hence
p + k − 1 = 19, while k = 13, so that p = 7. Consequently,
there are 13 houses on one side of the block, and their num-
bering begins with 7. Thus, the seventh house (from any
corner) has the number 19.

It is also possible to reason differently.
The sum of the numbers is odd, which means that there

are odd numbers on the specified side of the block and the
number of houses is odd. The sum of the numbers (the terms
of the arithmetic progression) is equal to the product of the
number of houses by the number of the middle house, and
247 = 13 · 19. If the number of the middle house is 13, then
8 houses will not fit in front of it. Therefore, the number of
the middle house is 19, and it is the seventh from the corner.
(The cases in which the average house number is 1 or 247 are
discarded for obvious reasons).
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D87. Consider the factorization of the number 2007 into
prime factors: 2007 = 3 ·3 ·223. We could now conclude that
Eddie’s marks are two 2’s and three 3’s. But, in fact, it is
still necessary to prove that there can be no other marks. Let
us see how else we can factor 2007: 2007 = 9 · 223 = 3 · 669.

Since there is no mark 9, these factorizations of the num-
ber 2007 could not have come from Eddie’s marks. Since Ed-
die has more 3’s than 2’s, and the last mark, no matter how
we rearrange the factors, is 3, we can expect that he will get
the mark 3 at the end of the term.

D88. Answer: yes, we need to cross out 50!.
Let us see how many times each number from 2 to 100

occurs in our product. The number 2 occurs in all factorials
beginning with the second, that is, 99 times; the number 3
occurs in all factorials beginning with the third, that is, 98
times, and so on; thus, the number n occurs 101−n times in
the product:

1! · 2! · … · 100! = 299 · 398 · 497 · … · 974 · 983 · 992 · 100.

In particular, all odd numbers in the product occur an even
number of times and even numbers an odd number of times.
Let us separate out the product of all even numbers with
exponent 1:

1! · 2! · … · 100! = 299 · 398 · 497 · … · 974 · 983 · 992 · 100

= (298 · 398 · 496 · … · 974 · 982 · 992) · (2 · 4 · 6 · … · 98 · 100).

In the first parenthesis, all the exponents are even, which
means that the product of the numbers in the first parenthe-
sis is the square of an integer. The product of the numbers
in the second parenthesis is 2 · 4 · 6 · … · 98 · 100 = 250 · 50!.
However, 250 is the square of an integer. Therefore, if we
delete 50!, then the remaining part of the product will be the
square of an integer.

D89. b) The number N is equal to the product

(a + 1)(b + 1) · … · (w + 1),
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where a, b, …, w are the exponents of prime factors in the
factorization. Therefore, to any factorization of the number
N corresponds its own set of exponents in the factorization
into primes.

D90. a) Let the number a be of the form 2n. Then the
divisors of the number a are of the form 1, 2, …, 2n and the
divisors of the number 2a have the form1, 2, …, 2n, 2n+1.
Thus, there were n+1 divisors, but now there are n+2, that
is, 1 more. We have

1
n + 1

= 1
5
⇒ n = 4.

This implies the assertion of the problem.
Now let a be of the form 2nb, where b is an odd number

with k divisors. Then a has (n + 1)k divisors, and 2a has
(n+2)k divisors (due to the multiplicativity of the number of
divisors). Next, we argue just as in the previous paragraph.

We can also directly apply the formula for the number of
divisors.

b) Answer: by 40%.
D91. Answer: x = 6, y = 5, z = 4.
D92. Answer: 26 · 3.
A number with 14 divisors has the form p13 or the form p6q,

where p and q are prime. Since 12=22 ·3, it follows that only
the second option is possible: the required number is 26 · 3.

D93. Answer: 8, 12.
Denote by n the desired number and by τ(x) the number

of divisors of x. Note that, by assumption, n is a multiple
of 2. Consider successively the cases n = 2b, 22b, 23b, 2mb,
where b is odd. In each case, let’s solve the equation n =
2τ(n). We will use the fact that, for the numbers 1 and
2, the number of divisors is equal to the number (1 or 2)
itself and, for the numbers n greater than 2, the number
of divisors is less than the number n itself. Also note that
τ(ab) = τ(a)τ(b) for coprime a and b.

1. Let n = 2b. We have 2b = 2τ(2b) ⇔ b = 2τ(b), which
is impossible, because b is odd.
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2. Let n = 22b. We have 2b = 3τ(b). Note that b = 3
is a solution. Let us prove that there are no other solutions.
It is clear that b is a multiple of 3. If b = 3k, then we have
2·3k =3·(k+1), which is true only for k=1 (because, for k>1,
the left side is greater than the right one). If b = 3k ·s (where
s is not multiple of 3), then we have 2 · 3ks = 3 · (k + 1)τ(s),
and this equation also has no solutions, because s > τ(s) for
s > 2.

3. Let n = 23b. We have b = τ(b), which implies b = 1.
4. Let n = 2mb, where m > 3. Then

2mb = 2τ(2mb) = 2(m + 1)τ(b).

However, 2m > 2(m + 1) for m > 3. Also b > τ(b) for b > 2.
Therefore, the equation has no solutions.

D94. b) In the factorization of n!, the number 2 occurs
once for each even number in n!, also once for each number
divisible by 4, and also once for each number divisible by 8,
and so on.

c) Answer: n! is not divisible for any n.
Use the inequality [x] 6 x and the formula for the sum

of an infinite arithmetic progression.
d) Answer: the product is divisible by 2n, but not divisible

by 2n+1.
Find the exponents of the powers in which 2 occurs in the

prime factorization of the numbers n! and 2n!.
e) Consider the product

(m + 1)(m + 2)…(m + n) =
(m + n)!

m!
.

Express the power of each prime factor for m!, n! and (m+n)!
and take into account the inequality[

a + b
c

]
>

[
a
c

]
+

[
b
c

]
.

Another solution of problem D94, item e), can be obtained from the
fact that the binomial coefficient“ m + n

n

”
=

(m + n)!
n! m!

=
(m + 1)(m + 2)…(m + n)

n!

is an integer by virtue of its combinatorial meaning.
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D95. Answer: This is true.
Hints. 1. Let the selected number be m. Prove that m100

contains all the prime divisors of the remaining numbers,
each with exponent not less than 100.

2. Prove that the exponent of any prime factor in any
two-digit number does not exceed 6 (then, in the product of
16 numbers, it does not exceed 96).

D96. pα · pβ = pmin(α,β) · pmax(α,β). And so with each prime
factor.

D97. a) Answer: no.
For example, (6, 10, 15)[6, 10, 15] = 1 · 30 6= 6 · 10 · 15.
b) Answer: “6”.
It suffices to study the case in which a = pα, b = pβ,

c = pγ, where α 6 β 6 γ. Then (a, b, c)[a, b, c] = pαpγ, and
abc = pα+β+γ.

c), d)

(a, b, c) =
abc[a, b, c]

[a, b][b, c][a, c] , [a, b, c] =
abc(a, b, c)

(a, b)(b, c)(a, c)
.

Using the notation and assumptions of item b), we can verify
these formulas by a direct substitutions.

D98. a) Answer: ϕ(a)ϕ(b) < ϕ(ab).
b) Answer: τ(a)τ(b) > τ(ab).

D99. Answer: ϕ(d).

D100. Use the result of the previous problem.
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Appendix 1

Two Unsolved Problems about Primes

In number theory, there are problems with very simple
formulations whose solutions are still unknown. It is useful
to introduce students to such problems, in particular, so as
to rid them of the illusion that “everything in mathematics
is already discovered”.

1. Goldbach and Euler noticed that it is possible to rep-
resent any even number (except 2) as the sum of two primes.
For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 5 + 5,
12 = 5 + 7, 14 = 7 + 7, 16 = 13 + 3, 18 = 11 + 7, …,
100 = 97 + 3, and so on. Goldbach’s conjecture has not yet
been proved, although it has been verified up to 4 ·1018. You
can study experimentally (using a computer) the number of
representations of the number 2n as the sum of two primes.

2. Prime numbers are often found in pairs (“twins”) p and
p + 2. Such are 3 and 5, 11 and 13, 29 and 31, and so on.
It follows from Problem 4.4 that all pairs of prime twins,
except (3; 5), have the form (6n − 1; 6n + 1). Is there an
infinite number of such “twins”? It follows from Problem
4.9 that, as primes increase, the gaps between them become
wider, but it is still not known whether small gaps persist.
In 2013, the mathematician Zhang Itan proved that there
are infinitely many pairs of primes and the distance between
which does not exceed 70 million. Over time, this distance
was lowered down to 246. As of 2019, the largest known
prime twins are 2996863034895 · 21290000 ± 1.

Find the error in the following “proof” of the existence of an infinite
number of pairs of primes. Consider the numbers 2 · 3 · 5 · … · P − 1 and
2 · 3 · 5 · … · P + 1 (we take primes in increasing order up to P). As Euclid
showed, they are not divisible by any prime from 2 to P, and hence they
are prime (Problem 4.7). In addition, they differ by 2, so they are prime
twins. Since there are infinitely many primes, then we can get as many
prime twins as we wish in this way.
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Appendix 2

Several Research Problems
Related to Divisibility

Solvability of linear equations
in non-negative integers

The fundamental lemma guarantees that the expression
ax + by, where a and b are coprime, can take any integer
value for an appropriate choice of the integers x and y. It
is interesting to see what will happen if we limit ourselves
to non-negative integers x and y. For example, in Problem
6.10, it was proved that the equation 3x+5y = N iis solvable
in non-negative integers for all N > 7. Let’s generalize the
problem.

Let coprime a and b be given; for what values of N is the
equation ax + by = N solvable?

It is convenient to organize the study as follows: having
fixed a and b, we mark all the numbers representable as ax+
by on the integer axis in green and the unrepresentable ones
in red, and search for patterns.

It is not difficult to notice that the equation is unsolvable
only for finitely many right-hand sides, that is, there will al-
ways be such a boundary number N0 that all larger numbers
are expressed as ax+by (just as in the special case of problem
6.10, where N0 = 7). To guess the dependence of N0 on a and
b, we can fix a and find the boundary number by increasing
b step by step. (It is clear that a and b must appear in the
formula symmetrically.) Next, it suffices to prove that N0

cannot be expressed as ax + by, but all N greater than N0

can.

A beautiful pattern (and the idea of a solution) can
be seen by looking at the marked numerical axis. See [13,
pp. 30–32].
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Quadratic remainders

Remainders obtained in dividing the squares of positive
integers by a number M are called quadratic remainders of
the number M. The remaining numbers in the range from
0 to M − 1 are called quadratic non-remainders of the num-
ber M. For example, the numbers 0 and 1 are quadratic re-
mainders of the number 3, and the number 2 is a quadratic
non-remainder of 3.

a) Find all quadratic remainders of the integers M = 2, 5,
7, 11. What can we say about the number of these remain-
ders?

b) State a conjecture for all primes M > 2 and prove it.
c∗) Do the same for M equal to the product of various

primes.
d∗∗) Solve the same problem for an arbitrary M.
See V. V. Ostrik and M. A. Tsfasman. Algebraic Geometry

and Number Theory: Rational and Elliptic Curves. Moscow:
MCCME, 2022 (pp. 11–12, 41–42).

Primitive roots

Let’s take a prime such as p = 7 and look for the remain-
ders resulting from the division of powers of 2 by 7: we see
that 2 gives the remainder 2, 22 gives the remainder 4, 23

gives the remainder 1, 24 gives the remainder 2, …
Now let’s look at the remainders resulting from the divi-

sion of powers of 3 by 7: we see that 3 gives the remainder
3, 32 gives the remainder 2, 33 gives the remainder 6, 34

gives the remainder 4, 35 gives the remainder 5, 36 gives
the remainder 1, …

It is not difficult to understand that the sequence will
loop sooner or later. For a = 3, the remainder manages to
run through all possible numbers 1, 2, …, p−1. In this case,
the number a is called a primitive root modulo p. For a = 2,
the loop consists of only three numbers.

The following questions arise:
a) Does any prime p have a primitive root?
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b) What length can the loop of powers of the number a
modulo p have?

c) What is the number of primitive roots for a given
prime p?

It is worthwhile to continue the experiment: choose a
prime p and successively consider the powers of a = 2, 3, …,
p− 2 (for a = 1, p− 1, everything is clear). Conjectures and
a proof for item b) are easy to find, but a proof for item a)
is very difficult.

Easter

One of the main holidays of Christians, Easter, is move-
able, that is, every year it falls on a new date. The ortho-
dox Christians celebrate Easter on the first Sunday after the
first full moon, which is after March 211. The importance of
knowing the date of Easter in the Middle Ages is shown, for
example, by a Scottish fairy tale in which the inhabitants of
Scotland send a messenger to the Vatican every year to find
out the date of the next Easter. The hero of the fairy tale
became famous for being able to find out not only the date,
but also a method for calculating it.

Gauss found a simple algorithm for calculating the day of
Orthodox Easter, which can be written in a few lines. Denote
by a the remainder of the division of the number of the year
by 19, by b the remainder of the division of it by 4, and
by c the remainder of the division by 7. Further, denote
the remainder in the division of 19a + 15 by 30 by d, and
denote the remainder in the division of 2b + 4c + 6d + 6 by 7
by e. Easter Day will be the (22 + d + e)th day of March, or,
equivalently, the (d + e− 9)th day of April (according to the
Julian calendar!).

Following this algorithm, one can do a little research work
guided by the following plan.

1According to the Julian calendar, which is now 13 days behind the
Gregorian calendar by which we live.
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a) Is the date of Easter periodic? If so, find the period
(called the “great indiction”).

b) Check that the earliest Easter was in 2010. When will
the next earliest Easter occur? When will the next latest
Easter occur? How many times during one period one of the
Easters occurs and how many times, the other?

c) Do all the intermediate dates occur? Which dates are
most common and which are the least common?

d) Can Easter day fall on the same date two years in a
row?

d∗) (for amateurs of astronomy). Justify the Gauss algo-
rithm.

You can use a computer to make an perpetual Easter cal-
endar, that is, the dates for Easter over the entire period.
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Appendix 3

An Alternative Outline of the Course

Let a and b be natural numbers. Consider the Diophantine
equation ay = bx. The minimal positive solution (i.e., the
solution with the smallest positive value of x) will be denoted
by (x0; y0). It exists because the set of positive solutions is
nonempty (for example, (a; b) is a solution) and is bounded
below.

Lemma 1. Any solution is a multiple of the minimal solu-
tion, i.e., if ay = bx, then x is divisible by x0 and y is divisible
by y0.

Proof by contradiction.
Suppose that there is a positive solution (x1; y1) which is

not a multiple of the minimal solution. Let us subtract the
equality ay0 = bx0 from the equality ay1 = bx1, obtaining

a(y1 − y0) = b(x1 − x0).

Thus we see that (x1−x0; y1− y0) is also a positive solution.
If it is less than (x0; y0), then we have obtained a contradic-
tion. If not, then we subtract (x0; y0) a few more times until
we come to a positive solution which is less than (x0; y0).

Lemma 2. Let a and b be coprime numbers. Then the
Diophantine equation ay = bx has only the solutions x = ka,
y = kb.

Proof. Let us prove that (a; b) is a minimal solution. As-
sume that the minimal solution (x0; y0) is smaller. Then, by
Lemma 1, we have a = dx0, b = dy0, where d is an integer.
But, by the assumption that a and b are coprime, we have
d = 1.

Problem (it is not required for what follows, but gives a
beautiful geometric interpretation of the lemmas). A a × b
rectangle, where a and b are positive integers is drawn on
square-lined paper. Into how many parts do the nodes of the
grid divide the diagonal of the rectangle?

107



All the key theorems are now easily deduced from
Lemma 2.

Theorem on coprime divisors. If n is divisible by the co-
primes a and b, then n is also divisible by their product ab.

Proof. By assumption, n can be represented as n = ay =
bx. By Lemma 2, we have y = kb, and hence n = k(ab).

The factor cancellation theorem. Let a and b be coprime,
and let bx be divisible by a. Then x is divisible by a.

Proof. Since bx is divisible by a, it follows that bx = ay.
By Lemma 2, we have x = ka.

The prime divisor theorem. If the product ab is divisible
by a prime p, then either a or b is divisible by p.

Proof. If a is divisible by p, then everything is proved. If
a is not divisible by p, then a is coprime to p. Therefore, by
the factor cancellation theorem, b is divisible by p.

As we see, the proofs of the lemmas are quite clear (al-
though there are some difficulties hidden in the proofs), and
students can independently deduce all the necessary theo-
rems from these lemmas. This exposition dramatically sim-
plifies the proofs!

In this connection, an alternative course plan can be pro-
posed:

— Lessons 1–4;
— Lesson 5, from which Problems 5.6 and 5.11 are re-

moved, but the new lemmas are added and the theorem on
coprime divisors is derived from them;

— Lesson 7, in which the theorems on the cancellation
of factors and on prime divisors are proved using the new
lemmas;

— Lesson 8;
— Lesson 6, in which we can now focus our attention on

the study of Diophantine equations as such. This overloaded
lesson will now be facilitated by the fact that the structure of
the solution of homogeneous Diophantine equations will ac-
tually be described in the lemmas and in the necessary three
theorems proved earlier. One can remove “conversational”
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Problems 6.1 and 6.2 and add a couple of more serious prob-
lems on Diophantine equations, bearing in mind that this is
now the last lesson.

This plan has a drawback. The point is that the proof of
the fundamental theorem of arithmetic based on Euclid’s al-
gorithm and the fundamental lemma is almost literally trans-
ferred to polynomials and Gaussian numbers. In “higher
mathematics”, Euclid’s algorithm is a very important con-
struction that allows us to look at the fundamental theo-
rem of arithmetic from a fairly general position. But the
plan proposed here is difficult to generalise. This disadvan-
tage can partially be compensated by also showing the “high
road”: in the last lesson (former Lesson 6) we can again
derive the prime divisor theorem by using the fundamental
lemma.
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Handout Material

Lesson 1. Divisibility of numbers

Problem 1.1. Find all the divisors of the number 36.
Problem 1.2+. The topmost row of the table indicates what

is given. The left column, what is asked. Fill in the empty
cells: if “yes”, then write “+”, if “no”, write “−”, and if
there is not enough data, write “?”. Justify your answers.

a ... m and b ... m a ... m and b6 ... m a6 ... m and b6 ... m

a + b ... m?

a− b ... m?

a · b ... m?

Problem 1.3. Find out, without performing the divisions,
whether a) 182 − 72 is divisible by 11; b) 453 + 553 by 2500;
c) 13 + 23 + … + 823 by 83.

Problem 1.4. Peter believes that if a2 is divisible by a−b,
then b2 is divisible by a− b. Is he right?

Problem 1.5. a) Find the number of divisors of the inte-
gers 4, 9, 16, 36, 81. Do the results lead you to make a
general conjecture? b) Is the statement converse to the con-
jecture valid?

Problem 1.6. Prove that: a) the product of two consecu-
tive numbers is divisible by 2; b) the number (n2 +n)/2 is an
integer.

Problem 1.7. For what numbers a and b is a is divisible
by b and b is divisible by a? (The numbers can also be nega-
tive!)

Problem 1.8+. a) Is it true that if a ... m and b ... n, then
ab ... mn? b) Is it true that if a ... b and b ... c, then a ... c?

Problem 1.9. Paul believes that if ab + cd is divisible by
a− c, then ad + bc is also divisible by a− c. Is he right?

Problem 1.10. In the Triple Kingdom, only coins of 9 and
15 ducats are in circulation. Is it possible to assemble such
coins to obtain a) 48 ducats, b) 50 ducats?
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Problem 1.11. a) Mary demonstartes the following trick:
given any three-digit number, she writes the given number
twice, obtaining a six-digit number, and then, in a second,
mentally divides this six-digit number by 1001. How does
she do it?

b) Alex noticed that all of Mary’s six-digit numbers are
divisible by 7. How? By what other numbers are they divis-
ible?

Problem 1.12. In an ancient kingdom, there was a prison
with one inmate in each of its hundred cells. The prison
cells are numbered from 1 to 100 and the locks in them were
arranged so that the door opens when the key was turned
once, but, at the next turn of the key, the door closes, and so
on. At that time, the king was at war with the neighboring
kinddom and, at some point, it seemed to him that he was
winning.

Filled with joy, the king sent a messenger with instruc-
tions to unlock all the cell doors, but then the luck turned,
and the king sent another messenger after the first, instruct-
ing him to turn the key in the lockin every second cell; then
the next messenger was sent to turn the key in the lock of
every third cell, and so on. In this way, 100 messengers ar-
rived at the prison one after another and turned the locks
in the cells in succession. How many prisoners were, as a
result, set free and from what cells?
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Lesson 2. Divisibility tests

Problem 2.1. a) Prove that a number is divisible by 2 if
and only if its last digit is divisible by 2. b) Derive a divisi-
bility test by 4 associated with the last two digits.

Problem 2.2. Peter noticed that if one subtracts the sum
of its digits from a number, then one gets a number which is
a multiple of 9. a) Prove this fact. b) On its basis, formulate
divisibility tests by 9 and by 3.

Problem 2.3. Johnny found the number

100! = 1 · 2 · 3 · … · 99 · 100.

He added all its digits, obtaining a new number, in which he
again added all the digits, and so on until he got a one-digit
number. What was it?

Problem 2.4. a) The digits of a positive integer are num-
bered from right to left (the first being the 1’s digit, the
second the 10’s digit, and so on). After that, the sum of
digits located at even places was added to the given num-
ber and, after that, the sum of the digits at the odd places
was subtracted. Prove that the resulting number is divisible
by 11.

b) Formulate a divisibility by 11 test.
Problem 2.5. Is it true that if a number n is divisible by

two other numbers, then it is also divisible by their prod-
uct? Check this by dividing the number n by the following
numbers: a) 6 and 4, b) 3 and 2, c) 9 and 4.

Problem 2.6. In the number 65432789, cross out the least
number of digits so that the remaining number is divisible
by 36.

Problem 2.7. a) Prove the divisibility by 5 test.
b) Derive a divisibility by 25 test.
Problem 2.8. A machine prints the digit “4” one by one on

a strip of paper. Is it be possible to stop it so that a multiple
of 8 is printed?

Problem 2.9. Several digits in a number were interchan-
ged, which resulted a number three times greater than the
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original one. Prove that the resulting number is divisible
by 27.

Problem 2.10. Find the smallest natural number that con-
tains only the digits 1 and 0 and is divisible by 225.

Problem 2.11. Professor Snape wrote a prescription con-
taining numbers

EVILLIVE and LEVICORPUS
(the same letters are replaced by the same digits and differ-
ent letters by different digits). Professor McGonagall claims
that both of these numbers are composite. Is the professor
right?

Problem 2.12. a) Prove that the product of three consec-
utive numbers is divisible by 6. b) Prove that the number
(n3 − n)/6 is an integer.

113



Lesson 3. Division with remainder

Problem 3.1+. Mary was absent from the lesson due to
sickness and worked out examples of division with remainder
as follows: a) 20=3 ·4+8; b) 19=3 ·5+4; c) −11=2 ·(−5)−1.
Explain her mistakes.

Problem 3.2. What remainder will the number 123321
give when divided by 999?

Problem 3.3. The divisor and the dividend are increased
threefold. How will the quotient and remainder change?

Problem 3.4. A number a is a multiple of 3. Can the
remainder from the division of the number a by 12 equal 2?

Problem 3.5. a) Find the least integer (greater than one)
that gives the remainder 1 under division by 2, by 3, by 5,
and by 7.

b) Find all such integers.
Problem 3.6+. Back to Problem 1.2. Fill in the table using

the remainders: “0” if the number is divisible by m without
remainder, and “not 0” if it is divisible with remainder.

Problem 3.7. Each of the numbers from 1 to 1,000,000
is replaced by the sum of its digits. Each of the resulting
numbers is again replaced by the sum of its digits. We pro-
ceed in his way until one million single digits remain. Which
numbers prevail: 1’s or 2’s?

Problem 3.8. Divide with remainder
a) 239 by 6;
b) −239 by 6;
c) −99 by 10;
d) −101 by 100.

Problem 3.9. When the Miserly Knight puts his coins in
stacks of nine, he has eight coins left. How many coins will
there be left when he puts the coins in stacks of 18?

Problem 3.10. The number a gives a remainder of 6 when
divided by 12. Can it give a remainder of 12 when divided
by 20?
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Problem 3.11. Find the smallest natural number that gives
the remainder 1 when divided by 2, the remainder 2 when di-
vided by 3, the remainder 3 when divided by 4, the remain-
der 4 when divided by 5, and the remainder 5 when divided
by 6.

Problem 3.12. A number a, when divided by b, gives the
quotient q and the remainder r. What quotient and remain-
der will the number −a give when divided by b?

Problem 3.13. The number 2 is written on the blackboard.
Every second the sum of its digits is added to the number on
the board. Can the number 123456 appear on the board after
a while?
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Lesson 4. Prime Numbers

Problem 4.1. a) A rectangle on square-lined paper consists
of 31 squares of side 1. What is its perimeter equal to?

b) A rectangle on square-lined paper consists of n squares
of side 1. What property must n have so that the rectangle’s
perimeter can be uniquely determined?

Problem 4.2. Find the largest a) two-digit; b) three-digit
prime.

Problem 4.3. a) Give an example of three numbers that
are not divisible by each other and such that the product of
any two of them is divisible by the third.

b) The same question for numbers greater than one hun-
dred.

Problem 4.4+. Prove that a prime greater than 3 can be
expressed either in the form 6n + 1 or in the form 6n + 5,
where n is a natural number or 0.

Problem 4.5. Can the positive integers n − 2012, n, and
n + 2012 be primes at the same time?

Problem 4.6+. Two boys play the following game: Peter
dictates to John a number (this is where his role ends), and
John writes that number on the blackboard. Next, John
represents the number as the product of two factors other
than 1, and replaces it by the product of these two factors.
Then John does the same with one of the factors, and so on.

Can Peter choose the original number so that John a) can-
not even make the first move; b) John will perform the moves
endlessly?

Problem 4.7+. Consider the set of all primes. Denote them
by p1, p2, …, pn. Let’s construct the number p1 · p2 · … · pn + 1.
Obviously, this number is not divisible by any prime. So it’s
also a prime. However, it is not included in our set of all
primes, because it is greater than each of them. We arrived
at a contradiction. Where is the mistake?

Problem 4.8. a) Let m and n be positive inetgers, and let
m2 − n2 be a prime. Find m− n.
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b) A smaller square in a large square on square-lined pa-
per was painted green, and 79 unpainted cells remained. Can
all the corners of the large square remain unpainted?

Problem 4.9. Is there a hundred consecutive composite
numbers?

Problem 4.10. Let us call a number simplified if it is the
product of exactly two primes (not necessarily different).
What is the largest number of consecutive simplified num-
bers?

Problem 4.11. Can the remainder in the division of a prime
by 30 be composite?

Problem 4.12. a) Find five primes such that the distance
between any two adjacent primes is 6.

b) Are there six such primes?
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Lesson 5. Common Divisors and Common Multiples.
Euclid’s Algorithm

Problem 5.1. Let’s draw a rectangle of 8× 12 little 1× 1
squares on square-lined paper. What equal squares can the
rectangle be partitioned into?

Problem 5.2. What squares can be constructed by putting
together 4×6 rectangles (with the long sides of all rectangles
being parallel)?

Problem 5.3+. Find the common divisors of the numbers n
and n + 1.

Problem 5.4. Find (846, 246).

Problem 5.5+. Prove that, for any two positive integers a
and b, the following equality (a, b) · [a, b] = ab holds.

Problem 5.6. Solve each of the following systems:

a)

{
(x, y) = 5,

[x, y] = 10
; b)

{
(x, y) = 1,

[x, y] = 4
; c)

{
(x, y) = 5,

[x, y] = 31.

Problem 5.7. Is it true that the following numbers are
coprime:

a) two adjacent odd numbers;

b) an odd number and half the even number following it?

Problem 5.8. Find: a) (1960, 588); b) [1960, 588] by us-
ing Euclid’s algorithm.

Problem 5.9. An automaton can cut off from any rectan-
gle a square with a side equal to the smaller side of the rect-
angle. Find some pair of numbers a and b such that when
cutting the a×b rectangle, the automaton obtains squares of
six different sizes.

Problem 5.10. Find all values of m for which the fraction
11m + 3
13m + 4

is cancellable.

Problem 5.11. Solve each of the two following systems:

a)

{
(x, y) = 5,

[x, y] = 30
; b)

{
(x, y) = 1,

[x, y] = 30.
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Problem 5.12. The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13,
21, 34, … are defined by the equalities ϕn+2 = ϕn+1 + ϕn (the
next number is equal to the sum of the previous two) and
ϕ1 = ϕ2 = 1. Find (ϕ100, ϕ101).
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Lesson 6. Diophantine Equations

Problem 6.1. A grasshopper jumps along the number line.
First, it takes one or more jumps of length 3 inches in one di-
rection (right or left), and then one or more jumps of length 5
in the other direction. How can he get from point 0 to point 7?
Find all the options.

Problem 6.2. A seller and a buyer have an unlimited num-
ber of coins of two denominations. The seller can give change.
The buyer was able to pay 7 doublons. Can the buyer pay

a) 14 doublons;

b) 35 doublons;

c) 36 doublons?

Problem 6.3+. Find an integer solution of the equation
a) 15x + 17y = 1; b) 15x + 17y = 9.

Problem 6.4. Using a blue felt-tip pen, a craftsman puts
marks spaced 34 cm apart on a long ribbon starting from its
beginning, while another craftsman puts marks on it with a
red felt-tip pen every 27 cm. Can any blue mark be at the
distance of 2 cm from any red one?

Problem 6.5. Do the following Diophantine equations have
a solution:

a) 6x+8y = 9; b) 5x+10y = 17; c) 25x+10y = 55;

d) 12x + 15y = 22; e) 24x + 18y = 2010?

Problem 6.6. Prove the theorem on coprime divisors (Les-
son 2). If a number n is divisible by each of two coprime
numbers a and b, then it is divisible by their product ab.

Problem 6.7. Use arguments similar to Problem 6.5 in
general form and prove the following statement:

Theorem (criterion for the solvability of Diophantine
equations). a) If c is divisible by (a, b), then equation

ax + by = c, (1)

has infinitely many solutions. b) If c is not divisible by
(a, b), then equation (1) has no solutions.
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Problem 6.8. n points are marked on the circle at equal
distances from one another (as in the dial of a clock). One
of these points is the starting point. It is connected by a
segment to a point which is d arcs away from it clockwise.

We also connect this new point by a segment to a point
which is d arcs away from it. We continue in this way until
the last point coincides with the starting point. Thus, we will
obtain a closed polygonal line (possibly, a self-intersecting
one).

a) For what values of d will all of the n points turn out
to be vertices of a polygonal line?

b) How many revolutions will the polygonal line perform
before closing?

Problem 6.9. It is required to lay a gas pipeline on a 450
m long plot of land. There are pipes of length 9 and 13 m
at the disposal of the builders. How many pipes of these
lengths must be taken to lay the route so that the number of
welds is minimal? The pipes must not be cut.

Problem 6.10. a) Prove that amounts of 8, 9, and 10
francs can be paid in three- and five-franc bills.

b) What are the largest amounts that can be paid in three-
and five-franc bills?

Problem 6.11. Arguing as in Problem 6.6, prove the fol-
lowing statement that we used when solving homogeneous
Diophantine equations.

Theorem on the cancellation of a factor. If the product of
ac is divisible by b and the numbers a and b are coprime,
then the number c is divisible by b.

Problem 6.12.
Forty grey mice ran with forty grains of rice,
Two thinner ones strained, with a load of two grains,
A few ran all smiles, without any rice,
The big ones were serving, carrying seven,
Small mice, through the door, ran carrying four.
How many grey mice ran without any rice?
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Lesson 7. Prime Divisor Theorem

Problem 7.1. Does the rebus AB · CD = EEFF have a solu-
tion?

Problem 7.2. Prove that if an exact square is divisible by
a prime p, then it is divisible by p2.

Problem 7.3. Nick boasts that he can solve any problem.
The teacher gives him one hundred cards with 0 written on
it, one hundred cards with 1 on it, and one hundred cards
with 2 on it and asks him to use all these cards to compose
a number which is a complete square. Will Nick be able to
solve this problem?

Problem 7.4. Let p be a prime. Prove that if the product
of several numbers is divisible by p2, then one of the factors
is divisible by p2 or there are at least two factors, each of
which is divisible by p.

Problem 7.5. Three numbers have the same remainder
when divided by 3. Prove that their product either is not
divisible by 3 or is a multiple of 27.

Problem 7.6. For what values of n is the number (n− 1)!
divisible by n without a remainder?

Problem 7.7. Can a number whose digits are one 1, two
2’s, three 3’s, ..., nine 9’s be an exact square?

Problem 7.8. A prime was squared to give a ten-digit
number. Can all the digits of the resulting number be dif-
ferent?

Problem 7.9. What is the smallest natural number n for
which n! is divisible by 100?

Problem 7.10. Let p1, p2, p3, p4 be different primes. Find
prime common divisors of the numbers: a) p1p2 and p3p4,
b) p1p2 and p2p4.

Problem 7.11. a) Write positive integers at the vertices
of a square so that, at every pair of adjacent vertices, the in-
tegers will not be coprime, but, at every pair of non-adjacent
vertices, they will be coprime.
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b) The same problem for a cube (if the vertices are con-
nected by an edge, then the integers must not be coprime,
and if they are not connected by an edge, then they must be
coprime).

Problem 7.12. The integers x, y, and z satisfy

(x− y)(y− z)(z− x) = x + y + z.

Prove that the number x + y + z is divisible by 27.
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Lesson 8. Factorization into Primes.
The Fundamental Theorem of Arithmetic

Problem 8.1. Four natural numbers are written at the ver-
tices of a square. On each side, the product of the numbers
at its ends is written. The sum of these products is 77. Find
the sum of the numbers written at the vertices.

Problem 8.2. Prove that, in the factorization into primes
of an exact cube, all the exponents are multiples of 3.

Problem 8.3+. Find the number of divisors of the following
numbers: a) pk; b) pkqs, where p and q are prime. c) Gener-
alise the results obtained.

Problem 8.4. Let the factorizations into primes of the
numbers a and b contain the prime factor p to the mth and
nth power, respectively, and let m > n. Prove that p appears
in the factorization into primes of the number [a, b] raised
to the mth power, and in the factorization into primes of the
number (a, b) raised to the nth power.

Problem 8.5+. A even positive integer is said to be evenly-
prime if it cannot be represented as a product of two smaller
even numbers. (For example, the numbers 2, 6, 10 are evenly-
prime, and 4 = 2 · 2, 8 = 4 · 2 are not.) State an analogue of
the fundamental theorem of arithmetic for even numbers,
replacing the words “natural” by “even”, and “prime” by
“evenly-prime”. Check both parts of the resulting statement.

Problem 8.6. Find a) ϕ(p); b) ϕ(p2); c) ϕ(pk), where p is
prime.

Problem 8.7. Is there an integer whose product of digits
is a) 1990; b) 2000; c) 2010?

Problem 8.8. We are given two rectangular pieces of card-
board of dimensions 49 × 51 and 99 × 101. They are cut
into identical rectangular, but not square, parts with inte-
ger sides. Find the dimensions of these parts.

Problem 8.9. Is there a set of a) two; b) ten natural num-
bers such that none of them is divisible by any of the others,
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and the square of each of them is divisible by each of the
others?

Problem 8.10. Is there a positive integer whose product
by 2 is a square, by 3 is a cube, and by 5 a fifth power?

Problem 8.11. Can a number having exactly 15 divisors
be divisible by a) 100; b) 1000?

Problem 8.12. Your friend has chosen several arbitrary
positive integers, and you want to guess all of them exactly
in the order in which he chose those numbers. You are al-
lowed to ask your friend to make an arbitrary calculation
related to his numbers, for example, to find the product or
sum of some of them, or a more complex combination and
tell you the result. Let’s call each such calculation a move.
What is the smallest number of moves needed for you to be
able to determine those numbers?

Problem 8.13. For coprime numbers a and b, consider the
following table:

1, 2, 3, …, b;
b + 1, b + 2, b + 3, …, 2b;

… … … … …
(a− 1)b + 1, (a− 1)b + 2, (a− 1)b + 3, …, ab.

a) Prove that there are exactly ϕ(b) columns in which all
numbers are coprime to b.

b) Prove that, in each column, all the remainders in the
division by a are different.

c) Prove that, in each column, there are exactly ϕ(a)
numbers coprime to a.

d) Find ϕ(ab) from ϕ(a) and ϕ(b).
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