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|
Optimal stopping problems

Consider an optimal stopping problem:

Y*= sup E[Z],
77 ([0,7])

where

» (Zt)=0 is a process on the probability space (Q, (Z¢)t=0,P), s. 1.
E[supyeio, 1 14tl] < oo,

» 7 ([0, T]) is the set of stopping times with values in [0, T].
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|
Optimal stopping problems

Consider an optimal stopping problem:

Y*= sup E[Z],
77 ([0,7])

where

» (Zt)=0 is a process on the probability space (Q, (Z¢)t=0,P), s. 1.
E[supyeio, 1 14tl] < oo,

» 7 ([0, T]) is the set of stopping times with values in [0, T].

Question

How to approximate Y* in the case when the expectation E[Z;] cannot
be computed in a closed form ?
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-
Dual approach
Consider a martingale (M;);.o with My = 0 adapted to the filtration

(%t)=0- We have

Y*= sup E[Z—M;]<E sup [Z;— M.
7€77[0,T] te[0,T]

Observation
The r.h.s. with an arbitrary martingale gives an upper bound for Y*. }
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-
Dual approach
Consider a martingale (M;);.o with My = 0 adapted to the filtration

(%t)=0- We have

Y*= sup E[Z -M;]<E sup [Z;-M].
7€77[0,T] te[0,T]

Observation
The r.h.s. with an arbitrary martingale gives an upper bound for Y*. J

It can be shown
Y*=inf E sup [Z;—M;], 1
Jnf te[o%[ t— M;] (1)
where «f is the set of all adapted martingales starting at 0.
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|
Dual approach

Question
What martingales do solve (1) and is the solution unique ? J

v/ One solution of (1) is M* - the Doob martingale of the Snell
process
Y = sup E[ZI|F],

1T [1,T]

i.e., M} is an (#)-martingale which satisfies
Y=Yy +M;-Af, tel0,T]

with M(’)‘ :=AS :=0.

v’ There are many martingales solving (1) and some of solutions are
“petter” than others.
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|
Dual approach

Note that

Y*= sup [Z—-M], as.
te[0,T]

Hence M* also solves the penalized optimization problem

inf { E + AJ Var
Meo

for any A >0 and M* is a “good” solution of (1).

sup (Z— M)
t€[0, ]

te[0,T]

sup (Zt— Mt)] } (2)

Observation
In fact, even the problem (2) has infinitely many solutions. J
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|
Dual approach

» Let M be an adapted martingale with My =0.
» Simulate a set of trajectories

Z M), (2 M), telo, T].

> Define ZO(M) = supgepo, (2 - MY, j=1,....n
Monte Carlo estimate

_ 15 Z0(m

J=1

DI—L

has the variance Var(Z(M))/n.

Observation

To speed up the convergence of Y,(M) we would like to have
martingales M with a smaller variance of Z(M) = sUpgc[o, 17(Zs — Ms).
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|
Penalized empirical dual approach

Let .4 c o/ be a family of adapted martingales with My = 0. Consider

Me.«

Mn_arginf( Zzw +/1\/V,,(M)), 1>0,

where ZU)(M) = Supse[O,T](Zs(j) _ Mél)) and

Vn(M) = Y (ZO(M)-ZV(m))2.
(n 1) 1=<i<jsn
Question
How large are the variance of Z(M;) = E[sup;c|o,1(Zt — Mn,t)| and the
bias E[Z(Mp)] - Y*?
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|
Penalized empirical dual approach

> (¥,p) is a metric space.

» i ={M(y): weWP}is afamily of adapted continuous martingales
such that

sup YV M@ 7

<C, a.s.
VPP o(v, )

» A set ¥* c V¥ such that

Y* = sup (Z;—Mi(y)), as., forany yev¥*
te[0,T]

is not empty.
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|
Penalized empirical dual approach

> (¥p,p) is a sequence of finite-dimensional approximating spaces (
sieves) such that for any ne N and some yv* € ¥* there exists an

element 7,y * in ¥, satisfying o(v*, mpy*) — 0 as n— oo.

Theorem
Denote ]
Cp= f 7 n(e) ddn(e)
0

with

0

n(8) = f Jlog[1 + N(e, ¥, )] de.

0

Then

E[Z(Mn)]- Y* -0, Var(Z(M,)) -0, n—oo,
provided €,/v/n=0(1).
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Martingales via martingale representations

Z[Z G(t,X[), tE[O, T]

@ G:[0,T]xRY — R is a Hélder function

@ X;is a d-dimensional Markov process solving the system of
SDE’s:

dXt = H(t,Xt)dt-i-U(t,Xt)th, X0=X
Theorem

If My is square integrable and is adapted to the filtration generated by

W4, then there is a square integrable (row vector valued) process
H;=(H},...,H™) satisfying

t
M, = f HedWs.
0
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-
Martingales via martingale representations

Under some conditions we have Hs = (s, Xs) and

M, = f w(s, Xs)aWs
for some v satisfying [y E[lw(s, Xs)I2] ds < c.
Define
M ={M(y), yelap(0, T xR}
Lemma

VIM=M)7<VT  sup  ly(s,x)-v'(sX):=VT-o(y,y)

(s,x)€[0, T] xR

with My = My(y), M; = Mi(y"), v, ' € Lo p([0, T] xRY) n C([0, T] x RY).
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-
Martingales via martingale representations

@ Introduce a linear sieve

K=1b1p1+...+ Pkdbk : P1,...,. Pk €R},

where ¢1,...,¢k € Lo p([0, T] x RY) n C([0, T] x RY).
@ Define

My = {Me(v) :w e Pg}.

@ Set

n
M,,:arg |nf %ZZ +(x+Ap) V,,(M)),

E Kn ]
where K, — oo as n— oco.
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-
Martingales via martingale representations

Observation
For many linear sieves it holds

log[1 +N(e, Pk, 0)] <K% log(1/e), €—0

Theorem
With probability at least 1 -6

E[Z(Mn)]-Y* San, \/V(Mp) S an,

where ap=inf, g, ,-cp- |V =" lloo, provided An = \/2l0g(2/6)/vn
and K¢+1//n=0(1) for n — co.
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|
Andersen-Broadie dual approach

@ Discrete time optimal stopping problems: 0=ty <fj <...<t; =T
Y*= sup E[Z],

Lemma

It holds
M;, —M; =Y, —E[Y; |#] j=0..,L-1.

tj+1

@ Replace Y* by its approximation Y obtained, for example, using a
regression approach.
@ Find an approximation M of M* using sub-simulation and the
formula
M?j+1 - MT/ = ij+1 - E[ij+1 |F4].
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|
Comparison with the standard approach

Our new approach

@ is directly applicable in the case of continuous time optimal
stopping problems,

@ delivers “true” upper bound without use of sub-simulation, thus
resulting in a non-nested Monte Carlo,

@ does not exclusively concentrate on finding Doob martingale and
takes advantage of the richness of the class «/* of adapted
martingales satisfying

Y{=sup (£4-M;), as,
te[0,T]

@ the variance of the r.v Z(Mp) = supsc o, 71(Zs — Mn,s) is, with high
probability, bounded by a multiple of
inf  d(M,M"),
Me tl,M'e s *

where d is a deterministic metric on /.
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-
Penalization vs. No peanlization

Question
What happens if we do not penalize by empirical variance? J

@ Consider a class of processes Z; defined as

t t
z,:f (s, Ws)dws+f g(s,Ws)ds, t=0,
0 0

where (W;)sso is the standard Brownian motion and f, g are two
functions satisfying

T T
fOE|f(s,Ws)|2ds<oo, fOElg(s,Ws)lds<oo.
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-
Penalization vs. No peanlization

Observation
If g =0, then the process Z; is uniformly integrable submartingale and

;
y*= sup E[Z]=E U g(s, Ws)ds] .
7eg ([0,T]) 0

> Take T =1, f(s,x) =sin*(x) and g(s,x) = x, then Y* =1/2.
» Consider a set of functions on [0, T] x R:

(P1(t,x),....p7(t,x)) = {1,x, tx,sin(x),cos(x),sin(2x),cos(2x)} .
» Define a sieve ¥ via

Y ={B1¢p1+...+B7¢7: B1,..., 7 ER}.
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-
Penalization vs. No peanlization

» Simulate n paths of the Brownian motion W; on [0, T]
» Consider two optimization problems

W= arginf{ 1 i Z(/)(z//)}
wed (M=
and
na = arginf{1 S Z0()+ Y (Z(’)(w)—Z‘”(w))Z}
’ wew (M= n(n—-1) 4 i5<n
with

i . t . ,
20(w)= sup [20- [[y(s, w)aw?)|,
te[0, T] 0

. t . E t .
z0 - fo (s, W9y awd + fo g(s, W) ds.

Denis Belomestny (Premolab, DUE) Advanced Monte Carlo Methods 06.10.2012 18/19



-
Penalization vs. No peanlization

The histograms of the standard deviations of the r.v. Z(y ) (left) and
Z(wp) (right) based on 1000 realizations of the solutions > and yp
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