Lecture 1: Intrinsic complexity of Black-Box Optimization

Yurii Nesterov, CORE/INMA (UCL)

September 6, 2012

Outline

1 Basic NP-hard problem

2 NP-hardness of some popular problems

3 Lower complexity bounds for Global Minimization

4 Nonsmooth Convex Minimization. Subgradient scheme.

5 Smooth Convex Minimization. Lower complexity bounds

6 Methods for Smooth Minimization with Simple Constraints

Standard Complexity Classes

Let data be coded in matrix A, and n be dimension of the problem.

Combinatorial Optimization

- NP-hard problems: 2^{n} operations. Solvable in $O(p(n)\|A\|)$.
- Fully polynomial approximation schemes: $O\left(\frac{p(n)}{\epsilon^{k}} \ln ^{\alpha}\|A\|\right)$.
- Polynomial-time problems: $O\left(p(n) \ln ^{\alpha}\|A\|\right)$.

Continuous Optimization

- Sublinear complexity: $O\left(\frac{p(n)}{\epsilon^{\alpha}}\|A\|^{\beta}\right), \alpha, \beta>0$.
- Polynomial-time complexity: $O\left(p(n) \ln \left(\frac{1}{\epsilon}\|A\|\right)\right)$.

Basic NP-hard problem: Problem of stones

Given n stones of integer weights a_{1}, \ldots, a_{n}, decide if it is possible to divide them on two parts of equal weight.

Mathematical formulation

Find a Boolean solution $x_{i}= \pm 1, i=1, \ldots, n$, to a single linear equation $\sum_{i=1}^{n} a_{i} x_{i}=0$.

Another variant: $\sum_{i=2}^{n} a_{i} x_{i}=a_{1}$.
NB: Solvable in $O\left(\ln n \cdot \sum_{i=1}^{n}\left|a_{i}\right|\right)$ by FFT transform.

Immediate consequence: quartic polynomial

Theorem: Minimization of quartic polynomial of n variables is NP-hard.

Proof: Consider the following function:

$$
f(x)=\sum_{i=1}^{n} x_{i}^{4}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}+\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{4}+\left(1-x_{1}\right)^{4} .
$$

The first part is $\left\langle A[x]^{2},[x]^{2}\right\rangle$, where $A=I-\frac{1}{n} e_{n} e_{n}^{T} \succeq 0$ with $A e_{n}=0$, and $[x]_{i}^{2}=x_{i}^{2}, i=1, \ldots, n$.
Thus, $f(x)=0$ iff all $x_{i}=\tau, \sum_{i=1}^{n} a_{i} x_{i}=0$, and $x_{1}=1$.
Corollary: Minimization of convex quartic polynomial over the unit sphere is NP-hard.

Nonlinear Optimal Control: NP-hard

Problem: $\min _{u}\left\{f(x(1)): x^{\prime}=g(x, u), 0 \leq t \leq 1, x(0)=x_{0}\right\}$.
Consider $g(x, u)=\frac{1}{n} x \cdot\langle x, u\rangle-u$.
Lemma. Let $\left\|x_{0}\right\|^{2}=n$. Then $\|x(t)\|^{2}=n, 0 \leq t \leq 1$.
Proof. Consider $\tilde{g}(x, u)=\left(\frac{x x^{T}}{\|x\|^{2}}-l\right) u$ and let $x^{\prime}=\tilde{g}(x, u)$. Then

$$
\left\langle x^{\prime}, x\right\rangle=\left\langle\left(\frac{x x^{T}}{\|x\|^{2}}-I\right) u, x\right\rangle=0 .
$$

Thus, $\|x(t)\|^{2}=\left\|x_{0}\right\|^{2}$. Same is true for $x(t)$ defined by g.
Note: We have enough degrees of freedom to put $x(1)$ at any position of the sphere.
Hence, our problem is: $\quad \min \left\{f(y):\|y\|^{2}=n\right\}$.

Descent direction of nonsmooth nonconvex function

Consider $\phi(x)=\left(1-\frac{1}{\gamma}\right) \max _{1 \leq i \leq n}\left|x_{i}\right|-\min _{1 \leq i \leq n}\left|x_{i}\right|+|\langle a, x\rangle|$,
where $a \in Z_{+}^{n}$ and $\gamma \stackrel{\text { def }}{=} \sum_{i=1}^{n} a_{i} \geq 1$. Clearly, $\phi(0)=0$.
Lemma. It is NP-hard to decide if $\phi(x)<0$ for some $x \in R^{n}$.
Proof: 1. Assume that $\sigma \in R^{n}$ with $\sigma_{i}= \pm 1$ satisfies $\langle a, \sigma\rangle=0$.
Then $\phi(\sigma)=-\frac{1}{\gamma}<0$.
2. Assume $\phi(x)<0$ and $\max _{1 \leq i \leq n}\left|x_{i}\right|=1$. Denote $\delta=|\langle a, x\rangle|$.

Then $\left|x_{i}\right|>1-\frac{1}{\gamma}+\delta, i=1, \ldots, n$.
Denoting $\sigma_{i}=\operatorname{sign} x_{i}$, we have $\sigma_{i} x_{i}>1-\frac{1}{\gamma}+\delta$. Therefore, $\left|\sigma_{i}-x_{i}\right|=1-\sigma_{i} x_{i}<\frac{1}{\gamma}-\delta$, and we conclude that

$$
\begin{aligned}
|\langle a, \sigma\rangle| & \leq|\langle a, x\rangle|+|\langle a, \sigma-x\rangle| \leq \delta+\gamma \max _{1 \leq i \leq n}\left|\sigma_{i}-x_{i}\right| \\
& <(1-\gamma) \delta+1 \leq 1
\end{aligned}
$$

Since $a \in Z^{n}$, this is possible iff $\langle a, \sigma\rangle=0$.

Black-box optimization

Oracle: Special unit for computing function value and derivatives at test points. (0-1-2 order.)

Analytic complexity: Number of calls of oracle, which is necessary (sufficient) for solving any problem from the class.
(Lower/Upper complexity bounds.)
Solution: ϵ-approximation of the minimum.
Resisting oracle: creates the worst problem instance for a particular method.

■ Starts from "empty" problem.

- Answers must be compatible with the description of the problem class.
- The bad problem is created after the method stops.

Bounds for Global Minimization

Problem: $f^{*}=\min _{x}\left\{f(x): x \in B_{n}\right\}, B_{n}=\left\{x \in R^{n}: 0 \leq x \leq e_{n}\right\}$.

Problem Class: $|f(x)-f(y)| \leq L\|x-y\|_{\infty} \forall x, y \in B_{n}$.
Oracle: $f(x)$ (zero order).
Goal: Find $\bar{x} \in B_{n}: f(\bar{x})-f^{*} \leq \epsilon$.
Theorem: $N(\epsilon) \geq\left(\frac{L}{2 \epsilon}\right)^{n}$.
Proof. Divide B_{n} on $p^{n} I_{\infty}$-balls of radius $\frac{1}{2 p}$.
Resisting oracle: at each test point reply $f(x)=0$.
Assume, $N<p^{n}$. Then, \exists ball with no questions. Hence, we can take $f^{*}=-\frac{L}{2 p}$. Hence, $\epsilon \geq \frac{L}{2 p}$.

Corollary: Uniform Grid method is worst-case optimal.

Nonsmooth Convex Minimization (NCM)

Problem: $f^{*}=\min _{x}\{f(x): x \in Q\}$, where
■ $Q \subseteq R^{n}$ is a convex set: $x, y \in Q \Rightarrow[x, y] \in Q$. It is simple.

- $f(x)$ is a sub-differentiable convex function:

$$
f(y) \geq f(x)+\left\langle f^{\prime}(x), y-x\right\rangle, \quad x, y \in Q
$$

for certain subgradient $f^{\prime}(x) \in R^{n}$.
Oracle: $f(x), f^{\prime}(x)$ (first order).
Solution: ϵ-approximation in function value.
Main inequality: $\left\langle f^{\prime}(x), x-x^{*}\right\rangle \geq f(x)-f^{*} \geq 0, \forall x \in Q$.
NB: Anti-subgradient decreases the distance to the optimum.

NCM: Lower Complexity Bounds

Let $Q \equiv\{\|x\| \leq 2 R\}$ and $x^{k+1} \in x^{0}+\operatorname{Lin}\left\{f^{\prime}\left(x^{0}\right), \ldots, f^{\prime}\left(x^{k}\right)\right\}$.
Consider the function $f_{m}(x)=L \max _{1 \leq i \leq m} x_{i}+\frac{\mu}{2}\|x\|^{2}$ with $\mu=\frac{L}{R m^{1 / 2}}$.
From the problem: $\min _{\tau}\left(L \tau+\frac{\mu m}{2} \tau^{2}\right)$, we get

$$
\tau_{*}=-\frac{L}{\mu m}=-\frac{R}{m^{1 / 2}}, f_{m}^{*}=-\frac{L^{2}}{2 \mu m}=-\frac{L R}{m^{1 / 2}},\left\|x^{*}\right\|^{2}=m \tau_{*}^{2}=R^{2} .
$$

NB: If $x^{0}=0$, then after k iterations we can keep $x_{i}=0$ for $i>k$.
Lipschitz continuity: $f_{k+1}\left(x^{k}\right)-f_{k+1}^{*} \geq-f_{k+1}^{*}=\frac{L R}{(k+1)^{1 / 2}}$.
Strong convexity: $f_{k+1}\left(x^{k}\right)-f_{k+1}^{*} \geq-f_{k+1}^{*}=\frac{L^{2}}{2(k+1) \cdot \mu}$.
Both lower bounds are exact!

Subgradient Method

Problem: $\min _{x \in Q}\{f(x): g(x) \leq 0\}$, where Q is a closed convex set, and convex $f, g \in C_{L}^{0,0}(Q)$. Method If $\frac{g\left(x^{k}\right)}{\left\|g^{\prime}\left(x^{k}\right)\right\|}>h$ then a)
$x^{k+1}=\pi_{Q}\left(x^{k}-\frac{g\left(x^{k}\right)}{\left\|g^{\prime}\left(x^{k}\right)\right\|^{2}} g^{\prime}\left(x^{k}\right)\right)$,
else b) $x^{k+1}=\pi_{Q}\left(x^{k}-\frac{h}{\left\|f^{\prime}\left(x^{k}\right)\right\|} f^{\prime}\left(x^{k}\right)\right)$.
Denote $\left.f_{N}^{*}=\min _{0 \leq k \leq N}\left\{f\left(x^{k}\right): k \in \mathbf{b}\right)\right\}$. Let $N=N_{a}+N_{b}$.
Theorem: If $N>\frac{1}{h^{2}}\left\|x^{0}-x^{*}\right\|^{2}$, then $f_{N}^{*}-f^{*} \leq h L . \quad\left(h=\frac{\epsilon}{L}.\right)$
Proof: Denote $r_{k}=\left\|x^{k}-x^{*}\right\|$.
a): $r_{k+1}^{2}-r_{k}^{2} \leq-\frac{2 g\left(x^{k}\right)}{\left\|g^{\prime}\left(x^{k}\right)\right\|^{2}}\left\langle g^{\prime}\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\frac{g^{2}\left(x^{k}\right)}{\left\|g^{\prime}\left(x^{k}\right)\right\|^{2}} \leq-h^{2}$.
b): $r_{k+1}^{2}-r_{k}^{2} \leq-\frac{2 h\left\langle f^{\prime}\left(x^{k}\right), x^{k}-x^{*}\right\rangle}{\left\|f^{\prime}\left(x^{k}\right)\right\|}+h^{2} \leq-\frac{2 h}{L}\left(f\left(x^{k}\right)-f^{*}\right)+h^{2}$.

Thus, $N_{b} \frac{2 h}{T}\left(f_{N}^{*}-f^{*}\right) \leq r_{0}^{2}+h^{2}\left(N_{b}-N_{a}\right)=r_{0}^{2}+h^{2}\left(2 N_{b}-N\right)$.

Smooth Convex Minimization (SCM)

Lipschitz-continuous gradient: $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \leq L\|x-y\|$.
Geometric interpretation: for all $x, y \in \operatorname{dom} F$ we have

$$
\begin{aligned}
0 & \leq f(y)-f(x)-\left\langle f^{\prime}(x), y-x\right\rangle \\
& =\int_{0}^{1}\left\langle f^{\prime}\left(x+\tau(y-x)-f^{\prime}(x), y-x\right\rangle d t \leq \frac{L}{2}\|x-y\|^{2} .\right.
\end{aligned}
$$

Sufficient condition: $0 \preceq f^{\prime \prime}(x) \preceq L \cdot I_{n}, x \in \operatorname{dom} f$.
Equivalent definition:
$f(y) \geq f(x)+\left\langle f^{\prime}(x), y-x\right\rangle+\frac{1}{2 L}\left\|f^{\prime}(x)-f^{\prime}(y)\right\|^{2}$.
Hint: Prove first that $f(x)-f^{*} \geq \frac{1}{2 L}\left\|f^{\prime}(x)\right\|^{2}$.

SCM: Lower complexity bounds

Consider the family of functions $(k \leq n)$:
$f_{k}(x)=\frac{1}{2}\left[x_{1}^{2}+\sum_{i=1}^{k-1}\left(x_{i}-x_{i+1}\right)^{2}+x_{k}^{2}\right]-x_{1} \equiv \frac{1}{2}\left\langle A_{k} x, x\right\rangle-x_{1}$.
Let $R_{k}^{n}=\left\{x \in R^{n}: x_{i}=0, i>k\right\}$. Then $f_{k+p}(x)=f_{k}(x)$, $x \in R_{k}^{n}$.
Clearly, $0 \leq\left\langle A_{k} h, h\right\rangle \leq h_{1}^{2}+\sum_{i=1}^{k-1} 2\left(h_{i}^{2}+h_{i+1}^{2}\right)+h_{k}^{2} \leq 4\|h\|^{2}$,

Hence, $A_{k} x=e_{1}$ has the solution $\bar{x}_{i}^{k}=\left\{\begin{array}{cl}\frac{k+1-i}{k+1}, & 1 \leq i \leq k, \\ 0, & i>k .\end{array}\right.$.
Thus $f_{k}^{*}=\frac{1}{2}\left\langle A_{k} \bar{x}^{k}, \bar{x}^{k}\right\rangle-\left\langle e_{1}, \bar{x}^{k}\right\rangle=-\frac{1}{2}\left\langle e_{1}, \bar{x}^{k}\right\rangle=-\frac{k}{2(k+1)}$, and
$\left\|\bar{x}^{k}\right\|^{2}=\sum_{i=1}^{k}\left(\frac{k+1-i}{k+1}\right)^{2}=\frac{1}{(k+1)^{2}} \sum_{i=1}^{k} i^{2}=\frac{k(2 k+1)}{6(k+1)}$.
Let $x^{0}=0$ and $p \leq n$ is fixed.
Lemma. If $x^{k} \in \mathcal{L}_{k} \stackrel{\text { def }}{=} \operatorname{Lin}\left\{f_{p}^{\prime}\left(x^{0}\right), \ldots, f_{p}^{\prime}\left(x^{k-1}\right)\right\}$, then $\mathcal{L}_{k} \subseteq R_{k}^{n}$.
Proof: $x^{0}=0 \in R_{0}^{n}, f_{p}^{\prime}(0)=-e_{1} \in R_{1}^{n} \Rightarrow x^{1} \in R_{1}^{n}, f_{p}^{\prime}\left(x_{1}\right) \in R_{2}^{n}, \square$
Corollary 1: $f_{p}\left(x^{k}\right)=f_{k}\left(x^{k}\right) \geq f_{k}^{*}$.
Corollary 2: Take $p=2 k+1$. Then

$$
\begin{aligned}
& \frac{f_{p}\left(x^{k}\right)-f_{p}^{*}}{L\left\|x^{0}-\bar{x}^{p}\right\|^{2}} \geq\left[-\frac{k}{2(k+1)}+\frac{2 k+1}{2(2 k+2)}\right] /\left[\frac{(2 k+1)(4 k+3)}{3(k+1)}\right]=\frac{3}{4(2 k+1)(4 k+3)} \\
& \left\|x^{k}-\bar{x}^{p}\right\|^{2} \geq \sum_{i=k+1}^{2 k+1}\left(\bar{x}_{i}^{2 k+1}\right)^{2}=\frac{(2 k+3)(k+2)}{24(k+1)} \geq \frac{1}{8}\left\|\bar{x}^{p}\right\|^{2}
\end{aligned}
$$

Some remarks

1. The rate of convergence of any Black-Box gradient methods as applied to $f \in C^{1,1}$ cannon be high than $O\left(\frac{1}{k^{2}}\right)$.
2. We cannot guarantee any rate of convergence in the argument.
3. Let $A=L L^{T}$ and $f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle$. Then

$$
f(x)-f^{*}=\frac{1}{2}\left\|L^{T} x-d\right\|^{2}, \text { where } d=L^{T} x^{*}
$$

Thus, the residual of the linear system $L^{T} x=b$ cannot be decreased faster than with the rate $O\left(\frac{1}{k}\right)$
(provided that we are allowed to multiply by L and L^{T}.)
4. Optimization problems with nontrivial linear equality constraints cannot be solved faster than with the rate $O\left(\frac{1}{k}\right)$.

Methods for Smooth Minimization with Simple Constraints

Consider the problem: $\min _{x}\{f(x): x \in Q\}$,
where convex $f \in C_{L}^{1,1}(Q)$, and Q is a simple closed convex set (allows projections).
Gradient mapping: for $M>0$ define

$$
T_{M}(x)=\arg \min _{y \in Q}\left[f(x)+\left\langle f^{\prime}(x), y-x\right\rangle+\frac{M}{2}\|x-y\|^{2}\right] .
$$

If $M \geq L$, then

$$
\left.f\left(T_{M}(x)\right) \leq f(x)+\left\langle f^{\prime}(x), T_{M}(x)-x\right\rangle+\frac{M}{2}\left\|x-T_{M}(x)\right\|^{2}\right] .
$$

Reduced gradient: $g_{M}(x)=M \cdot\left(x-T_{M}(x)\right)$.
Since $\left\langle f^{\prime}(x)+M\left(T_{M}(x)-x\right), y-T_{M}(x)\right\rangle \geq 0$ for all $y \in Q$,

$$
\begin{gathered}
f(x)-f\left(T_{M}(x)\right) \geq \frac{M}{2}\left\|x-T_{M}(x)\right\|^{2}=\frac{1}{2 M}\left\|g_{M}(x)\right\|^{2}, \quad(\rightarrow 0) \\
f(y) \geq f(x)+\left\langle f^{\prime}(x), T_{M}(x)-x\right\rangle+\left\langle f^{\prime}(x), y-T_{M}(x)\right\rangle \\
\geq f\left(T_{M}(x)\right)-\frac{1}{2 M}\left\|g_{M}(x)\right\|^{2}+\left\langle g_{M}(x), y-T_{M}(x)\right\rangle .
\end{gathered}
$$

Primal Gradient Method (PGM)

Main scheme: $\quad x^{0} \in Q, \quad x^{k+1}=T_{L}\left(x^{k}\right), k \geq 0$.
Primal interpretation: $\quad x^{k+1}=\pi_{Q}\left(x^{k}-\frac{1}{L} f^{\prime}\left(x^{k}\right)\right)$.
Rate of convergence. $\quad f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{1}{2 L}\left\|g_{L}\left(x^{k}\right)\right\|^{2}$.

$$
\begin{aligned}
f\left(T_{L}(x)\right)-f^{*} & \leq \frac{1}{22}\left\|g_{L}(x)\right\|^{2}+\left\langle g_{L}(x), T_{L}(x)-x^{*}\right\rangle \\
& \leq \frac{1}{2 L}\left(\left\|g_{L}(x)\right\|+L R\right)^{2}-\frac{L}{2} R^{2} .
\end{aligned}
$$

Hence, $\left\|g_{L}(x)\right\| \geq\left[2 L\left(f\left(T_{L}(x)\right)-f^{*}\right)+L^{2} R^{2}\right]^{1 / 2}-L R$

$$
=\frac{2 L\left(f\left(T_{L}(x)\right)-f^{*}\right)}{\left[2 L\left(f\left(T_{L}(x)\right)-f^{*}\right)+L^{2} R^{2}\right]^{1 / 2}+L R} \geq \frac{c}{R} \cdot\left(f\left(T_{L}(x)\right)-f^{*}\right) .
$$

Thus, $f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c^{2}}{L R^{2}}\left(f\left(x^{k+1}\right)-f^{*}\right)^{2}$.
Similar situation: $\quad a^{\prime}(t)=-a^{2}(t) \Rightarrow a(t) \approx \frac{1}{t}$.
Conclusion: PGM converges as $O\left(\frac{1}{k}\right)$. This is far from the lower complexity bounds.

Dual Gradient Method (DGM)

Model: Let $\lambda_{i}^{k} \geq 0, i=0, \ldots, k$, and $S_{k} \stackrel{\text { def }}{=} \sum_{i=0}^{k} \lambda_{i}^{k}$. Then

$$
S_{k} f(y) \geq \mathcal{L}_{\lambda^{k}}(y) \stackrel{\text { def }}{=} \sum_{i=0}^{k} \lambda_{i}^{k}\left[f\left(x^{i}\right)+\left\langle f^{\prime}\left(x^{i}\right), y-x^{i}\right\rangle\right], \quad y \in Q .
$$

Our method:
$x^{k+1}=\arg \min _{y \in Q}\left\{\psi_{k}(y) \stackrel{\text { def }}{=} \mathcal{L}_{\lambda^{k}}(y)+\frac{M}{2}\left\|y-x^{0}\right\|^{2}\right\}$.
Let us choose $\lambda_{i}^{k} \equiv 1$ and $M=L$. We prove by induction
$(*): \quad F_{k}^{*} \stackrel{\text { def }}{=} \sum_{i=0}^{k} f\left(y^{i}\right) \leq \psi_{k}^{*} \stackrel{\text { def }}{=} \min _{y \in Q} \psi_{k}(y) . \quad\left(\leq(k+1) f^{*}+\frac{L}{2} R^{2}\right)$

1. $k=0$. Then $y^{0}=T_{L}\left(x^{0}\right)$.
2. Assume $(*)$ is true for some $k \geq 0$. Then

$$
\begin{gathered}
\psi_{k+1}^{*}=\min _{y \in Q}\left[\psi_{k}(y)+f\left(x^{k}\right)+\left\langle f^{\prime}\left(x^{k}\right), y-x^{k}\right\rangle\right] \\
\geq \min _{y \in Q}\left[\psi_{k}^{*}+\frac{L}{2}\left\|y-x^{k}\right\|^{2}+f\left(x^{k}\right)+\left\langle f^{\prime}\left(x^{k}\right), y-x^{k}\right\rangle\right] .
\end{gathered}
$$

We can take $y^{k+1}=T_{L}\left(x_{k}\right)$. Thus, $\frac{1}{k+1} \sum_{i=0}^{k} f\left(y^{i}\right) \leq f^{*}+\frac{L R^{2}}{2(\underline{\underline{k}+1)}}$.

Some remarks

1. Dual gradient method works with the model of the objective function.
2. The minimizing sequence $\left\{y^{k}\right\}$ is not necessary for the algorithmic scheme. We can generate it if necessary.
3. Both primal and dual method have the same rate of convergence $O\left(\frac{1}{k}\right)$. It is not optimal.
May be we can combine them in order to get a better rate?

Comparing PGM and DGM

Primal Gradient method

- Monotonically improves the current state using the local model of the objective.
■ Interpretation: Practitioners, industry.

Dual Gradient Method

- The main goal is to construct a model of the objective.

■ It is updated by a new experience collected around the predicted test points $\left(x_{k}\right)$.

- Practical verification of the advices $\left(y_{k}\right)$ is not essential for the procedure.
■ Interpretation: Science.
Hint: Combination of theory and practice should give better results

Estimating sequences

Def. A sequences $\left\{\phi_{k}(x)\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=0}^{\infty}, \lambda_{k} \geq 0$ are called the estimating sequences if $\lambda_{k} \rightarrow 0$ and $\forall x \in Q, k \geq 0$,

$$
(*): \quad \phi_{k}(x) \leq\left(1-\lambda_{k}\right) f(x)+\lambda_{k} \phi_{0}(x) .
$$

Lemma: If $(* *): f\left(x^{k}\right) \leq \phi_{k}^{*} \equiv \min _{x \in Q} \phi_{k}(x)$, then

$$
f\left(x^{k}\right)-f^{*} \leq \lambda_{k}\left[\phi_{0}\left(x^{*}\right)-f^{*}\right] \rightarrow 0 .
$$

Proof. $f\left(x^{k}\right) \leq \phi_{k}^{*}=\min _{x \in Q} \phi_{k}(x) \leq \min _{x \in Q}\left[\left(1-\lambda_{k}\right) f(x)+\lambda_{k} \phi_{0}(x)\right]$

$$
\leq\left(1-\lambda_{k}\right) f\left(x^{*}\right)+\lambda_{k} \phi_{0}\left(x^{*}\right)
$$

Rate of $\lambda_{k} \rightarrow 0$ defines the rate of $f\left(x^{k}\right) \rightarrow f^{*}$.

Questions

- How to construct the estimating sequences?
- How we can ensure $\left(^{* *}\right)$?

Updating estimating sequences

Let $\phi_{0}(x)=\frac{L}{2}\left\|x-x^{0}\right\|^{2}, \lambda_{0}=1,\left\{y^{k}\right\}_{k=0}^{\infty}$ is a sequence in Q, and $\left\{\alpha_{k}\right\}_{k=0}^{\infty}: \alpha_{k} \in(0,1), \sum_{k=0}^{\infty} \alpha_{k}=\infty$. Then $\left\{\phi_{k}(x)\right\}_{k=0}^{\infty},\left\{\lambda_{k}\right\}_{k=0}^{\infty}$:

$$
\begin{gathered}
\lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k} \\
\phi_{k+1}(x)=\left(1-\alpha_{k}\right) \phi_{k}(x)+\alpha_{k}\left[f\left(y^{k}\right)+\left\langle f^{\prime}\left(y^{k}\right), x-y^{k}\right\rangle\right]
\end{gathered}
$$

are estimating sequences.
Proof: $\phi_{0}(x) \leq\left(1-\lambda_{0}\right) f(x)+\lambda_{0} \phi_{0}(x) \equiv \phi_{0}(x)$.
If $(*)$ holds for some $k \geq 0$, then

$$
\begin{aligned}
\phi_{k+1}(x) & \leq\left(1-\alpha_{k}\right) \phi_{k}(x)+\alpha_{k} f(x) \\
& =\left(1-\left(1-\alpha_{k}\right) \lambda_{k}\right) f(x)+\left(1-\alpha_{k}\right)\left(\phi_{k}(x)-\left(1-\lambda_{k}\right) f(x)\right) \\
& \leq\left(1-\left(1-\alpha_{k}\right) \lambda_{k}\right) f(x)+\left(1-\alpha_{k}\right) \lambda_{k} \phi_{0}(x) \\
& =\left(1-\lambda_{k+1}\right) f(x)+\lambda_{k+1} \phi_{0}(x) .
\end{aligned}
$$

Updating the points

Denote $\phi_{k}^{*}=\min _{x \in Q} \phi_{k}(x), v^{k}=\arg \min _{x \in Q} \phi_{k}(x)$. Suppose $\phi_{k}^{*} \geq f\left(x^{k}\right)$.
$\phi_{k+1}^{*}=\min _{x \in Q}\left\{\left(1-\alpha_{k}\right) \phi_{k}(x)+\alpha_{k}\left[f\left(y^{k}\right)+\left\langle f^{\prime}\left(y^{k}\right), x-y^{k}\right\rangle\right]\right\} \geq$
$\min _{x \in Q}\left\{\left(1-\alpha_{k}\right)\left[\phi_{k}^{*}+\frac{\lambda_{k} L}{2}\left\|x-v_{k}\right\|^{2}\right]+\alpha_{k}\left[f\left(y^{k}\right)+\left\langle f^{\prime}\left(y^{k}\right), y-y^{k}\right\rangle\right]\right\}$
$\geq \min _{x \in Q}\left\{f\left(y^{k}\right)+\frac{\left(1-\alpha_{k}\right) \lambda_{k} L}{2}\left\|x-v_{k}\right\|^{2}\right.$ $\left.+\left\langle f^{\prime}\left(y^{k}\right), \alpha_{k}\left(x-y^{k}\right)+\left(1-\alpha_{k}\right)\left(x^{k}-y^{k}\right)\right\rangle\right\}$
$\left(y_{k} \stackrel{\text { def }}{=}\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} v^{k}=x^{k}+\alpha_{k}\left(v^{k}-x^{k}\right)\right)$
$=\min _{x \in Q}\left\{f\left(y^{k}\right)+\frac{\left(1-\alpha_{k}\right) \lambda_{k} L}{2}\left\|x-v_{k}\right\|^{2}+\alpha_{k}\left\langle f^{\prime}\left(y^{k}\right), x-v^{k}\right\rangle\right\}$
$=\min _{\substack{y=x^{k}+\alpha_{k}\left(x-x^{k}\right) \\ x \in Q}}\left\{f\left(y^{k}\right)+\frac{\left(1-\alpha_{k}\right) \lambda_{k} L}{2 \alpha_{k}^{2}}\left\|y-y_{k}\right\|^{2}+\left\langle f^{\prime}\left(y^{k}\right), y-y^{k}\right\rangle\right\} \stackrel{(?)}{\geq} f\left(x^{k+1}\right)$
Answer: $\alpha_{k}^{2}=\left(1-\alpha_{k}\right) \lambda_{k} . x_{k+1}=T_{L}\left(y_{k}\right)$.

Optimal method

Choose $v^{0}=x^{0} \in Q, \lambda_{0}=1, \phi_{0}(x)=\frac{L}{2}\left\|x-x^{0}\right\|^{2}$.
For $k \geq 0$ iterate:
■ Compute $\alpha_{k}: \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \lambda_{k} \equiv \lambda_{k+1}$.
■ Define $y_{k}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} v^{k}$.

- Compute $x^{k+1}=T_{L}\left(y^{k}\right)$.
- $\phi_{k+1}(x)=\left(1-\alpha_{k}\right) \phi_{k}(x)+\alpha_{k}\left[f\left(y^{k}\right)+\left\langle f^{\prime}\left(y^{k}\right), x-y^{k}\right\rangle\right]$.

Convergence: Denote $a_{k}=\lambda_{k}^{-1 / 2}$. Then
$a_{k+1}-a_{k}=\frac{\lambda_{k}^{1 / 2}-\lambda_{k+1}^{1 / 2}}{\lambda_{k}^{1 / 2} \lambda_{k+1}^{1 / 2}}=\frac{\lambda_{k}-\lambda_{k+1}}{\lambda_{k}^{1 / 2} \lambda_{k+1}^{1 / 2}\left(\lambda_{k}^{1 / 2}+\lambda_{k+1}^{1 / 2}\right)} \geq \frac{\lambda_{k}-\lambda_{k+1}}{2 \lambda_{k} \lambda_{k+1}^{1 / 2}}=\frac{\alpha_{k}}{2 \lambda_{k+1}^{1 / 2}}=\frac{1}{2}$.
Thus, $a_{k} \geq 1+\frac{k}{2}$. Hence, $\lambda_{k} \leq \frac{4}{(k+2)^{2}}$.

Interpretation

1. $\phi_{k}(x)$ accumulates all previously computed information about the objective. This is a current model of our problem.
2. $v^{k}=\arg \min _{x \in Q} \phi_{k}(x)$ is a prediction of the optimal strategy.
3. $\phi_{k}^{*}=\phi_{k}\left(v^{k}\right)$ is an estimate of the optimal value.
4. Acceleration condition: $f\left(x^{k}\right) \leq \phi_{k}^{*}$. We need a firm, which is at least as good as the best theoretical prediction.
5. Then we create a startup $y^{k}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} v^{k}$, and allow it to work one year.
6. Theorem: Next year, its performance will be at least as good as the new theoretical prediction. And we can continue!
Acceleration result: 10 years instead 100.
Who is in a right position to arrange 5? Government, political institutions.
