Lecture 2: Looking into the Black Box. Structural Optimization.

Yurii Nesterov, CORE/INMA (UCL)

September 8, 2012

Outline

1 Nonsmooth Optimization
2 Smoothing technique
3 Application examples
4 Interior-point methods: standard problem
5 Newton method
6 Self-concordant functions and barriers
7 Application examples
8 Further directions

Nonsmooth Unconstrained Optimization

Problem: $\min \left\{f(x): x \in R^{n}\right\} \Rightarrow x^{*}, f^{*}=f\left(x^{*}\right)$, where $f(x)$ is a nonsmooth convex function.
Subgradients: $g \in \partial f(x) \Leftrightarrow f(y) \geq f(x)+\langle g, y-x\rangle \quad \forall y \in R^{n}$.

Main difficulties:

- $g \in \partial f(x)$ is not a descent direction at x.
- $g \in \partial f\left(x^{*}\right)$ does not imply $g=0$.

Example

$$
\begin{gathered}
f(x)=\max _{1 \leq j \leq m}\left\{\left\langle a_{j}, x\right\rangle+b_{j}\right\}, \\
\partial f(x)=\operatorname{Conv}\left\{a_{j}:\left\langle a_{j}, x\right\rangle+b_{j}=f(x)\right\} .
\end{gathered}
$$

Subgradient methods in Nonsmooth Optimization

Advantages

- Very simple iteration scheme.
- Low memory requirements.
- Optimal rate of convergence (uniformly in the dimension).
- Interpretation of the process.

Objections:

- Low rate of convergence. (Confirmed by theory!)
- No acceleration.

■ High sensitivity to the step-size strategy.

Lower complexity bounds

Nemirovsky, Yudin 1976

If $f(x)$ is given by a local black-box, it is impossible to converge faster than $O\left(\frac{1}{\sqrt{k}}\right)$ uniformly in n. (k is the \# of calls of oracle.)

NB: Convergence is very slow.
Question: We want to find an ϵ-solution of the problem

$$
\max _{1 \leq j \leq m}\left\{\left\langle a_{j}, x\right\rangle+b_{j}\right\} \quad \rightarrow \quad \min _{x}: x \in R^{n},
$$

by a gradient scheme (n and m are big).
What is the worst-case complexity bound?
"Right answer" (Complexity Theory): $O\left(\frac{1}{\epsilon^{2}}\right)$ calls of oracle.
Our target: A gradient scheme with $O\left(\frac{1}{\epsilon}\right)$ complexity bound.
Reason of speed up: our problem is not in a black box.

Complexity of Smooth Minimization

Problem: $f(x) \rightarrow \min _{x}: x \in R^{n} \quad$, where f is a convex function and $\|\nabla f(x)-\nabla f(y)\|_{*}^{x} \leq L(f)\|x-y\|$ for all $x, y \in R^{n}$.
(For measuring gradients we use dual norms: $\|s\|_{*}=\max _{\|x\|=1}\langle s, x\rangle$.)
Rate of convergence: Optimal method gives $O\left(\frac{L(f)}{k^{2}}\right)$.
Complexity: $O\left(\sqrt{\frac{L(f)}{\epsilon}}\right)$. The difference with $O\left(\frac{1}{\epsilon^{2}}\right)$ is very big.

Smoothing the convex function

For function f define its Fenchel conjugate:

$$
f_{*}(s)=\max _{x \in R^{n}}[\langle s, x\rangle-f(x)] .
$$

It is a closed convex function with $\operatorname{dom} f_{*}=\operatorname{Conv}\left\{f^{\prime}(x): x \in R^{n}\right\}$.
Moreover, under very mild conditions $\left(f_{*}(s)\right)_{*} \equiv f(x)$.
Define $f_{\mu}(x)=\max _{s \in \operatorname{dom} f_{*}}\left[\langle s, x\rangle-f_{*}(s)-\frac{\mu}{2}\|s\|_{*}^{2}\right]$, where $\|\cdot\|_{*}$ is a
Euclidean norm.
Note: $\quad f_{\mu}^{\prime}(x)=s_{\mu}(x)$, and $x=f_{*}^{\prime}\left(s_{\mu}(x)\right)+\mu s_{\mu}(x)$. Therefore,

$$
\begin{aligned}
\left\|x^{1}-x^{2}\right\|^{2}= & \left\|f_{*}^{\prime}\left(s^{1}\right)-f_{*}^{\prime}\left(s_{2}\right)\right\|^{2}+2 \mu\left\langle f_{*}^{\prime}\left(s^{1}\right)-f_{*}^{\prime}\left(s^{2}\right), s^{1}-s^{2}\right\rangle \\
& +\mu^{2}\left\|s^{1}-s^{2}\right\|^{2} \geq \mu^{2}\left\|s^{1}-s^{2}\right\|^{2}
\end{aligned}
$$

Thus, $f_{\mu} \in C_{1 / \mu}^{1,1}$ and $f(x) \geq f_{\mu}(x) \geq f(x)-\mu D^{2}$, where $D=\operatorname{Diam}\left(\operatorname{dom} f_{*}\right)$.

Main questions

1. Given by a non-smooth convex $f(x)$, can we form its computable smooth ϵ-approximation $f_{\epsilon}(x)$ with

$$
L\left(f_{\epsilon}\right)=O\left(\frac{1}{\epsilon}\right) ?
$$

If yes, we need only $O\left(\sqrt{\frac{L\left(f_{\epsilon}\right)}{\epsilon}}\right)=O\left(\frac{1}{\epsilon}\right)$ iterations.
2. Can we do this in a systematic way?

Conclusion: We need a convenient model of our problem.

Adjoint problem

Primal problem: Find $f^{*}=\min _{x}\left\{f(x): x \in Q_{1}\right\}$, where
$Q_{1} \subset E_{1}$ is convex closed and bounded.
Objective: $f(x)=\hat{f}(x)+\max _{u}\left\{\langle A x, u\rangle_{2}-\hat{\phi}(u): u \in Q_{2}\right\}$, where

- $\hat{f}(x)$ is differentiable and convex on Q_{1}.
- $Q_{2} \subset E_{2}$ is a closed convex and bounded.
- $\hat{\phi}(u)$ is continuous convex function on Q_{2}.
- linear operator $A: E_{1} \rightarrow E_{2}^{*}$.

Adjoint problem: $\max _{u}\left\{\phi(u): u \in Q_{2}\right\}$, where

$$
\phi(u)=-\hat{\phi}(u)+\min _{x}\left\{\langle A x, u\rangle_{2}+\hat{f}(x): x \in Q_{1}\right\} .
$$

NB: Adjoint problem is not unique!

Example

Consider $f(x)=\max _{1 \leq j \leq m}\left|\left\langle a_{j}, x\right\rangle_{1}-b_{j}\right|$.

1. $Q_{2}=E_{1}^{*}, A=I, \hat{\phi}(u) \equiv f_{*}(u)=\max _{x}\left\{\langle u, x\rangle_{1}-f(x): x \in E_{1}\right\}$

$$
=\min _{s \in R^{m}}\left\{\sum_{j=1}^{m} s_{j} b_{j}: u=\sum_{j=1}^{m} s_{j} a_{j}, \sum_{j=1}^{m}\left|s_{j}\right| \leq 1\right\}
$$

2. $E_{2}=R^{m}, \hat{\phi}(u)=\langle b, u\rangle_{2}, f(x)=\max _{1 \leq j \leq m}\left|\left\langle a_{j}, x\right\rangle_{1}-b_{j}\right|$

$$
=\max _{u \in R^{m}}\left\{\sum_{j=1}^{m} u_{j}\left[\left\langle a_{j}, x\right\rangle_{1}-b_{j}\right]: \sum_{j=1}^{m}\left|u_{j}\right| \leq 1\right\} .
$$

3. $E_{2}=R^{2 m}, \hat{\phi}(u)$ is a linear, Q_{2} is a simplex:
$f(x)=\max _{u \in R^{2 m}}\left\{\sum_{j=1}^{m}\left(u_{j}^{1}-u_{j}^{2}\right)\left[\left\langle a_{j}, x\right\rangle_{1}-b_{j}\right]: \sum_{j=1}^{m}\left(u_{j}^{1}+u_{j}^{2}\right)=1, u \geq 0\right\}$.
NB: Increase in $\operatorname{dim} E_{2}$ decreases the complexity of representation.

Smooth approximations

Prox-function: $d_{2}(u)$ is continuous and strongly convex on Q_{2} :

$$
d_{2}(v) \geq d_{2}(u)+\left\langle\nabla d_{2}(u), v-u\right\rangle_{2}+\frac{1}{2} \sigma_{2}\|v-u\|_{2}^{2} .
$$

Assume: $d_{2}\left(u_{0}\right)=0$ and $d_{2}(u) \geq 0 \forall u \in Q_{2}$.
Fix $\mu>0$, the smoothing parameter, and define

$$
f_{\mu}(x)=\max _{u}\left\{\langle A x, u\rangle_{2}-\hat{\phi}(u)-\mu d_{2}(u): u \in Q_{2}\right\} .
$$

Denote by $u(x)$ the solution of this problem.
Theorem: $f_{\mu}(x)$ is convex and differentiable for $x \in E_{1}$. Its gradient $\nabla f_{\mu}(x)=A^{*} u(x)$ is Lipschitz continuous with

$$
L\left(f_{\mu}\right)=\frac{1}{\mu \sigma_{2}}\|A\|_{1,2}^{2}
$$

where $\|A\|_{1,2}=\max _{x, u}\left\{\langle A x, u\rangle_{2}:\|x\|_{1}=1,\|u\|_{2}=1\right\}$.
NB: 1. For any $x \in E_{1}$ we have $f_{0}(x) \geq f_{\mu}(x) \geq f_{0}(x)-\mu D_{2}$, where $D_{2}=\max _{u}\left\{d_{2}(u): u \in Q_{2}\right\}$.
2. All norms are very important.

Optimal method

Problem: $\min _{x}\left\{f(x): x \in Q_{1}\right\}$ with $f \in C^{1,1}\left(Q_{1}\right)$.
Prox-function: strongly convex $d_{1}(x), d_{1}\left(x^{0}\right)=0, d_{1}(x) \geq 0$, $x \in Q_{1}$.
Gradient mapping:

$$
T_{L}(x)=\arg \min _{y \in Q_{1}}\left\{\langle\nabla f(x), y-x\rangle_{1}+\frac{1}{2} L\|y-x\|_{1}^{2}\right\} .
$$

Method. For $k \geq 0$ do:

1. Compute $f\left(x^{k}\right), \nabla f\left(x^{k}\right)$.
2. Find $y^{k}=T_{L(f)}\left(x^{k}\right)$.
3. Find $z^{k}=\arg \min _{x \in Q_{1}}\left\{\frac{L(f)}{\sigma} d_{1}(x)+\sum_{i=0}^{k} \frac{i+1}{2}\left\langle\nabla f\left(x^{i}\right), x\right\rangle_{1}\right\}$.
4. Set $x^{k+1}=\frac{2}{k+3} z^{k}+\frac{k+1}{k+3} y^{k}$.

Convergence: $f\left(y^{k}\right)-f\left(x^{*}\right) \leq \frac{4 L(f) d_{1}\left(x^{*}\right)}{\sigma_{1}(k+1)^{2}}$, where x^{*} is the optimal solution.

Applications

Smooth problem: $\bar{f}_{\mu}(x)=\hat{f}(x)+f_{\mu}(x) \quad \rightarrow \quad \min : x \in Q_{1}$.
Lipschitz constant: $L_{\mu}=L(\hat{f})+\frac{1}{\mu \sigma_{2}}\|A\|_{1,2}^{2}$. Denote
$D_{1}=\max _{x}\left\{d_{1}(x): x \in Q_{1}\right\}$.
Theorem: Let us choose $N \geq 1$. Define

$$
\mu=\mu(N)=\frac{2\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_{1}}{\sigma_{1} \sigma_{2} D_{2}}} .
$$

After N iterations set $\hat{x}=y^{N} \in Q_{1}$ and

$$
\hat{u}=\sum_{i=0}^{N} \frac{2(i+1)}{(N+1)(N+2)} u\left(x^{i}\right) \in Q_{2} .
$$

Then $0 \leq f(\hat{x})-\phi(\hat{u}) \leq \frac{4\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_{1} D_{2}}{\sigma_{1} \sigma_{2}}}+\frac{4 L(\hat{f}) D_{1}}{\sigma_{1} \cdot(N+1)^{2}}$.
Corollary. Let $L(\hat{f})=0$. For getting an ϵ-solution, we choose

$$
\mu=\frac{\epsilon}{2 D_{2}}, \quad L=\frac{D_{2}}{2 \sigma_{2}} \cdot \frac{\|A\| \|_{1,2}^{2}}{\epsilon}, \quad N \geq 4\|A\|_{1,2} \sqrt{\frac{D_{1} D_{2}}{\sigma_{1} \sigma_{2}}} \cdot \frac{1}{\epsilon} .
$$

Example: Equilibrium in matrix games (1)

Denote $\Delta_{n}=\left\{x \in R^{n}: x \geq 0, \sum_{i=1}^{n} x^{(i)}=1\right\}$. Consider the problem $\min _{x \in \Delta_{n}} \max _{u \in \Delta_{m}}\left\{\langle A x, u\rangle_{2}+\langle c, x\rangle_{1}+\langle b, u\rangle_{2}\right\}$.

Minimization form:

$$
\begin{array}{ll}
\min _{x \in \Delta_{n}} f(x), & f(x)=\langle c, x\rangle_{1}+\max _{1 \leq j \leq m}\left[\left\langle a_{j}, x\right\rangle_{1}+b_{j}\right], \\
\max _{u \in \Delta_{m}} \phi(u), & \phi(u)=\langle b, u\rangle_{2}+\min _{1 \leq i \leq n}\left[\left\langle\hat{a}_{i}, u\right\rangle_{2}+c_{i}\right],
\end{array}
$$

where a_{j} are the rows and \hat{a}_{i} are the columns of A.

1. Euclidean distance: Let us take

$$
\begin{array}{cl}
\|x\|_{1}^{2}=\sum_{i=1}^{n} x_{i}^{2}, \quad\|u\|_{2}^{2}=\sum_{j=1}^{m} u_{j}^{2} \\
d_{1}(x)=\frac{1}{2}\left\|x-\frac{1}{n} e_{n}\right\|_{1}^{2}, \quad d_{2}(u)=\frac{1}{2}\left\|u-\frac{1}{m} e_{m}\right\|_{2}^{2} .
\end{array}
$$

Then $\|A\|_{1,2}=\lambda_{\max }^{1 / 2}\left(A^{T} A\right)$ and $\quad f(\hat{x})-\phi(\hat{u}) \leq \frac{4 \lambda_{\max }^{1 / 2}\left(A^{T} A\right)}{N+1}$.

Example: Equilibrium in matrix games (2)

2. Entropy distance. Let us choose

$$
\begin{array}{ll}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|, & d_{1}(x)=\ln n+\sum_{i=1}^{n} x_{i} \ln x_{i} \\
\|u\|_{2}=\sum_{j=1}^{m}\left|u_{j}\right|, & d_{2}(u)=\ln m+\sum_{j=1}^{m} u_{j} \ln u_{j} .
\end{array}
$$

LM: $\sigma_{1}=\sigma_{2}=1 . \quad\left(\right.$ Hint: $\left.\left\langle d_{1}^{\prime \prime}(x) h, h\right\rangle=\sum_{i=1}^{n} \frac{h_{i}^{2}}{x_{i}} \rightarrow \min _{x \in \Delta_{n}}=\|h\|_{1}^{2}.\right)$
Moreover, since $D_{1}=\ln n, D_{2}=\ln m$, and

$$
\|A\|_{1,2}=\max _{x}\left\{\max _{1 \leq j \leq m}\left|\left\langle a_{j}, x\right\rangle\right|:\|x\|_{1}=1\right\}=\max _{i, j}\left|A_{i, j}\right|,
$$

we have $f(\hat{x})-\phi(\hat{u}) \leq \frac{4 \sqrt{\ln n \ln m}}{N+1} \cdot \max _{i, j}\left|A_{i, j}\right|$.
NB: 1. Usually $\max _{i, j}\left|A_{i, j}\right| \ll \lambda_{\text {max }}^{1 / 2}\left(A^{T} A\right)$.
2. We have $\bar{f}_{\mu}(x)=\langle c, x\rangle_{1}+\mu \ln \left(\frac{1}{m} \sum_{j=1}^{m} \mathrm{e}^{\left[\left\langle a_{j}, x\right\rangle+b_{j}\right] / \mu}\right)$.

Part II: Interior Point Methods

Black-Box Methods: Main assumptions represent the bounds for the size of certain derivatives.

Example

Consider the function $f\left(x_{1}, x_{2}\right)=\left\{\begin{aligned} \frac{x_{2}^{2}}{x_{1}}, & x_{1}>0, \\ 0, & x_{1}=x_{2}=0 .\end{aligned}\right.$
It is closed, convex, but discontinuous at the origin.
However, its epigraph $\left\{x \in R^{3}: x_{1} x_{3} \geq x_{2}^{2}\right\}$ is a simple convex set:
$x_{1}=u_{1}+u_{3}, x_{2}=u_{2}, x_{3}=u_{1}-u_{3} \Rightarrow u_{1} \geq \sqrt{u_{2}^{2}+u_{3}^{2}}$.
(Lorentz cone)
Question: Can we always replace the functional components by convex sets?

Standard formulation

Problem: $\quad f^{*}=\min _{x \in Q}\langle c, x\rangle$,
where $Q \subset E$ is a closed convex set with nonempty interior.
How we can measure the quality of $x \in Q$?

1. The residual $\langle c, x\rangle-f^{*}$ is not very informative since it does not depend on position of x inside Q.
2. The boundary of a convex set can be very complicated.
3. It is easy to travel inside provided that we keep a sufficient distance to the boundary.
Conclusion: we need a barrier function $f(x)$:

- $\operatorname{dom} f=\operatorname{int} Q$,
- $f(x) \rightarrow \infty$ as $t \rightarrow \partial Q$.

Path-following method

Central path: for $t>0$ define $x^{*}(t), \quad t c+f^{\prime}\left(x^{*}(t)\right)=0$
(hence $x^{*}(t)=\arg \min _{x}\left[\Psi_{t}(x) \stackrel{\text { def }}{=} t\langle c, x\rangle+f(x)\right]$.)
Lemma. Suppose $\left\langle f^{\prime}(x), y-x\right\rangle \leq A$ for all $x, y \in \operatorname{dom} Q$. Then

$$
\left\langle c, x^{*}(t)-x^{*}\right\rangle=\frac{1}{t}\left\langle f^{\prime}\left(x^{*}(t)\right), x^{*}-x^{*}(t)\right\rangle \leq \frac{1}{t} A .
$$

Method: $t_{k}>0, x^{k} \approx x^{*}\left(t_{k}\right) \quad \Rightarrow \quad t_{k+1}>t_{k}$, $x^{k+1} \approx x^{*}\left(t^{k+1}\right)$.
For approximating $x^{*}\left(t^{k+1}\right)$, we need a powerful minimization scheme.

Main candidate: Newton Method.
(Very good local convergence.)

Classical results on the Newton Method

Method: $\quad x^{k+1}=x^{k}-\left[f^{\prime \prime}\left(x^{k}\right)\right]^{-1} f^{\prime}\left(x^{k}\right)$.
Assume that:

- $f^{\prime \prime}\left(x^{*}\right) \geq \ell \cdot I_{n}$
- $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|, \forall x, y \in R^{n}$.
- The starting point x^{0} is close to $x^{*}:\left\|x^{0}-x^{*}\right\|<\bar{r}=\frac{2 \ell}{3 M}$.

Then $\left\|x^{k}-x^{*}\right\|<\bar{r}$ for all k, and the Newton method converges quadratically: $\left\|x^{k+1}-x^{*}\right\| \leq \frac{M\left\|x^{k}-x^{*}\right\|^{2}}{2\left(\ell-M\left\|x^{k}-x^{*}\right\|\right)}$.

Note:

- The description of the region of quadratic convergence is given in terms of the metric $\langle\cdot, \cdot\rangle$.
- The resulting neighborhood is changing when we choose another metric.

Simple observation

Let $f(x)$ satisfy our assumptions. Consider $\phi(y)=f(A y)$, where A is a non-degenerate $(n \times n)$-matrix.
Lemma: Let $\left\{x^{k}\right\}$ be a sequence, generated by Newton Method for function f.
Consider the sequence $\left\{y^{k}\right\}$, generated by the Newton Method for function ϕ with $y^{0}=A^{-1} x^{0}$.
Then $y^{k}=A^{-1} x^{k}$ for all $k \geq 0$.
Proof: Assume $y^{k}=A^{-1} x^{k}$ for some $k \geq 0$. Then

$$
\begin{aligned}
y^{k+1} & =y^{k}-\left[\phi^{\prime \prime}\left(y^{k}\right)\right]^{-1} \phi^{\prime}\left(y^{k}\right) \\
& =y^{k}-\left[A^{T} f^{\prime \prime}\left(A y^{k}\right) A\right]^{-1} A^{T} f^{\prime}\left(A y^{k}\right) \\
& =A^{-1} x^{k}-A^{-1}\left[f^{\prime \prime}\left(x^{k}\right)\right]^{-1} f^{\prime}\left(x^{k}\right)=A^{-1} x^{k+1}
\end{aligned}
$$

Conclusion: The method is affine invariant. Its region of quadratic convergence does not depend on the metric!

What was wrong?

Old assumption: $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|$.
Let $f \in C^{3}\left(R^{n}\right)$. Denote $f^{\prime \prime \prime}(x)[u]=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left[f^{\prime \prime}(x+\alpha u)-f^{\prime \prime}(x)\right]$.
This is a matrix!
Then the old assumption is equivalent to: $\left\|f^{\prime \prime \prime}(x)[u]\right\| \leq M\|u\|$. Hence, at any point $x \in R^{n}$ we have

$$
(*): \quad\left|\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle\right| \leq M\|u\| \cdot\|v\|^{2} \text { for all } u, v \in R^{n} .
$$

Note:

- The LHS of $(*)$ is an affine invariant directional derivative.
- The norm $\|\cdot\|$ has nothing common with our particular f.
- However, there exists a local norm, which is closely related to f. This is $\|u\|_{f^{\prime \prime}(x)}=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2}$.
■ Let us make a similar assumption in terms of $\|\cdot\|_{f^{\prime \prime}(x)}$.

Definition of Self-Concordant Function

Let $f(x) \in C^{3}(\operatorname{dom} f)$ be a closed and convex, with open domain.
Let us fix a point $x \in \operatorname{dom} f$ and a direction $u \in R^{n}$.
Consider the function $\phi(x ; t)=f(x+t u)$. Denote

$$
\begin{gathered}
D f(x)[u]=\phi_{t}^{\prime}(x ; 0)=\left\langle f^{\prime}(x), u\right\rangle, \\
D^{2} f(x)[u, u]=\phi_{t t}^{\prime \prime}(x ; 0)=\left\langle f^{\prime \prime}(x) u, u\right\rangle=\|u\|_{f^{\prime \prime}(x)}^{2}, \\
D^{3} f(x)[u, u, u]=\phi_{t t t}^{\prime \prime \prime}(x ; 0)=\left\langle f^{\prime \prime \prime}(x)[u] u, u\right\rangle
\end{gathered}
$$

Def. We call function f self-concordant if the inequality $D^{3} f(x)[u, u, u] \mid \leq 2\|u\|_{f^{\prime \prime}(x)}^{3}$ holds for any $x \in \operatorname{dom} f, u \in R^{n}$.

Note:

- We cannot expect that these functions are very common.

■ We hope that they are good for the Newton Method.

Examples

1. Linear function is s.c. since $f^{\prime \prime}(x) \equiv 0, f^{\prime \prime \prime}(x) \equiv 0$
2. Convex quadratic function is s.c. $\left(f^{\prime \prime \prime}(x) \equiv 0\right)$.
3. Logarithmic barrier for a ray $\{x>0\}$:

$$
f(x)=-\ln x, \quad f^{\prime}(x)=-\frac{1}{x}, \quad f^{\prime \prime}(x)=\frac{1}{x^{2}}, \quad f^{\prime \prime \prime}(x)=-\frac{2}{x^{3}} .
$$

4. Logarithmic barrier for a quadratic region. Consider a concave function $\phi(x)=\alpha+\langle a, x\rangle-\frac{1}{2}\langle A x, x\rangle$. Define $f(x)=-\ln \phi(x)$.

$$
\begin{gathered}
D f(x)[u]=-\frac{1}{\phi(x)}[\langle a, u\rangle-\langle A x, u\rangle] \stackrel{\text { def }}{=} \omega_{1}, \\
D^{2} f(x)[u]^{2}=\frac{1}{\phi^{2}(x)}[\langle a, u\rangle-\langle A x, u\rangle]^{2}+\frac{1}{\phi(x)}\langle A u, u\rangle,
\end{gathered}
$$

$$
D^{3} f(x)[u]^{3}=-\frac{2}{\phi^{3}(x)}[\langle a, u\rangle-\langle A x, u\rangle]^{3}-\frac{3\langle A u, u\rangle}{\phi^{2}(x)}[\langle a, u\rangle-\langle A x, u\rangle] .
$$

$D_{2}=\omega_{1}^{2}+\omega_{2}, D_{3}=2 \omega_{1}^{3}-3 \omega_{1} \omega_{2}$. Hence, $\left|D_{3}\right| \leq 2\left|D_{2}\right|^{3 / 2}$.

Simple properties

1. If f_{1}, f_{2} are s.c.f., then $f_{1}+f_{2}$ is s.c. function.
2. If $f(y)$ is s.c.f., then $\phi(x)=f(A x+b)$ is also a s.c. function.

Proof: Denote $y=y(x)=A x+b, v=A u$. Then

$$
\begin{gathered}
D \phi(x)[u]=\left\langle f^{\prime}(y(x)), A u\right\rangle=\left\langle f^{\prime}(y), v\right\rangle, \\
D^{2} \phi(x)[u]^{2}=\left\langle f^{\prime \prime}(y(x)) A u, A u\right\rangle=\left\langle f^{\prime \prime}(y) v, v\right\rangle, \\
D^{3} \phi(x)[u]^{3}=D^{3} f(y(x))[A u]^{3}=D^{3} f(y)[v]^{3} .
\end{gathered}
$$

Example: $f(x)=\langle c, x\rangle-\sum_{i=1}^{m} \ln \left(a_{i}-\left\|A_{i} x-b_{i}\right\|^{2}\right)$ is a s.c.-function.

Main properties

Let $x \in \operatorname{dom} f$ and $u \in R^{n}, u \neq 0$. For $x+t u \in \operatorname{dom} f$, consider

$$
\phi(t)=\frac{1}{\left\langle f^{\prime \prime}(x+t u) u, u\right\rangle^{1 / 2}} .
$$

Lemma. For all feasible t we have: $\left|\phi^{\prime}(t)\right| \leq 1$.
Proof: Indeed, $\phi^{\prime}(t)=-\frac{f^{\prime \prime \prime}(x+t u)[u]^{3}}{2\left\langle f^{\prime \prime}(x+t u) u, u\right\rangle^{3 / 2}}$.
Corollary 1: dom ϕ contains the interval $(-\phi(0), \phi(0))$.
Proof: Since $f(x+t u) \rightarrow \infty$ as $x+t u \rightarrow \partial \operatorname{dom} f$, the same is true for $\left\langle f^{\prime \prime}(x+t u) u, u\right\rangle$. Hence $\operatorname{dom} \phi(t) \equiv\{t \mid \phi(t)>0\}$.
Denote $W^{0}(x ; r)=\left\{y \in R^{n} \mid\|y-x\|_{f^{\prime \prime}(x)}<r\right\}$. Then

$$
W^{0}(x ; r) \subseteq \operatorname{dom} f \text { for } r<1
$$

Main Theorem: for any $y \in W(x ; r), r \in[0,1)$, we have

$$
(1-r)^{2} F^{\prime \prime}(x) \preceq F^{\prime \prime}(y) \preceq \frac{1}{(1-r)^{2}} F^{\prime \prime}(x) .
$$

Local convergence

For x close to $x^{*}, f^{\prime}\left(x^{*}\right)=0$, function $f(x)$ is almost quadratic:

$$
f(x) \approx f^{*}+\frac{1}{2}\left\langle f^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right), x-x^{*}\right\rangle
$$

Therefore, $f(x)-f^{*} \approx \frac{1}{2}\left\|x-x^{*}\right\|_{f^{\prime \prime}\left(x^{*}\right)}^{2} \approx \frac{1}{2}\left\|x-x^{*}\right\|_{f^{\prime \prime}(x)}^{2}$

$$
\approx \frac{1}{2}\left\langle f^{\prime}(x),\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x)\right\rangle \stackrel{\text { def }}{=} \frac{1}{2}\left(\left\|f^{\prime}(x)\right\|_{x}^{*}\right)^{2} \stackrel{\text { def }}{=} \lambda_{f}^{2}(x)
$$

The last value is the local norm of the gradient. It is computable!
Theorem: Let $x \in \operatorname{dom} f$ and $\lambda_{f}(x)<1$.
Then the point $x_{+}=x-\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x)$ belongs to $\operatorname{dom} f$ and

$$
\lambda_{f}\left(x_{+}\right) \leq\left(\frac{\lambda_{f}(x)}{1-\lambda_{f}(x)}\right)^{2}
$$

NB: Region of quadratic convergence is $\lambda_{f}(x)<\bar{\lambda}, \frac{\bar{\lambda}}{(1-\bar{\lambda})^{2}}=1$. It is affine-invariant!

Following the cental path

Consider $\Psi_{t}(x)=t\langle c, x\rangle+f(x)$ with s.c. function f.
■ For Ψ_{t}, Newton Method has local quadratic convergence.

- The region of quadratic convergence (RQC) is given by

$$
\lambda_{\Psi_{t}}(x) \leq \beta<\bar{\lambda}
$$

Assume we know $x=x^{*}(t)$. We want to update $t, t_{+}=t+\Delta$, keeping x in RQC of function $\Psi_{t+\Delta}: \lambda \psi_{t+\Delta}(x) \leq \beta$.
Question: How large can be Δ ? Since $t c+f^{\prime}(x)=0$, we have:
$\lambda_{\Psi_{t+\Delta}}(x)=\left\|t_{+} c+f^{\prime}(x)\right\|_{x}^{*}=|\Delta| \cdot\|c\|_{x}^{*}=\frac{|\Delta|}{t}\left\|f^{\prime}(x)\right\|_{x}^{*} \leq \beta$.
Conclusion: for the linear rate, we need to assume that $\left\langle\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x), f^{\prime}(x)\right\rangle$ is uniformly bounded on $\operatorname{dom} f$.
Thus, we come to the definition of self-concordant barrier.

Definition of Self-Concordant Barrier

Let $F(x)$ be a s.c.-function. It is a ν-self-concordant barrier, if $\max _{u \in R^{n}}\left[2\left\langle F^{\prime}(x), u\right\rangle-\left\langle F^{\prime \prime}(x) u, u\right\rangle\right] \leq \nu$ for all $x \in \operatorname{dom} F$.
The value ν is called the parameter of the barrier.
If $F^{\prime \prime}(x)$ is non-degenerate, then $\left\langle F^{\prime}(x),\left[F^{\prime \prime}(x)\right]^{-1} F^{\prime}(x)\right\rangle \leq \nu$.
Another form: $\left\langle F^{\prime}(x), u\right\rangle^{2} \leq \nu\left\langle F^{\prime \prime}(x) u, u\right\rangle$.
Main property: $\left\langle F^{\prime}(x), y-x\right\rangle \leq \nu, x, y \in \operatorname{int} Q$.
NB: ν is responsible for the rate of p.-f. method: $t_{+}=t \pm \frac{\alpha \cdot t}{\nu^{1 / 2}}$.
Complexity: $O\left(\sqrt{\nu} \ln \frac{\nu}{\epsilon}\right)$ iterations of the Newton method.
Calculus: 1. Affine transformations do not change ν.
2. Restriction on a subspace can only decrease ν.
3. $F=F_{1}+F_{2} \quad \Rightarrow \quad \nu=\nu_{1}+\nu_{2}$.

Examples

1. Barrier for a ray: $F(t)=-\ln t, F^{\prime}(t)=-\frac{1}{t}, F^{\prime \prime}(t)=\frac{1}{t^{2}}, \nu=1$.
2. Polytop $\left\{x:\left\langle a_{i}, x\right\rangle \leq b_{i}\right\}, F(x)=-\sum_{i=1}^{m} \ln \left(b_{i}-\left\langle a_{i}, x\right\rangle\right), \nu=m$.
3. I_{2}-ball: $F(x)=-\ln \left(1-\|x\|^{2}\right), D_{1}=\omega_{1}, D_{2}=\omega_{1}^{2}+\omega_{2}, \nu=1$.
4. Intersection of ellipsoids: $F(x)=-\sum_{i=1}^{m} \ln \left(r_{i}^{2}-\left\|A_{i} x-b_{i}\right\|^{2}\right)$, $\nu=m$.
5. Lorentz cone $\{t \geq\|x\|\}, F(x, t)=-\ln \left(t^{2}-\|x\|^{2}\right), \nu=2$.
6. LMI-cone $\left\{X=X^{T} \succeq 0\right\}, F(X)=-\ln \operatorname{det} X, \nu=n$.
7. Epigraph $\left\{t \geq e^{x}\right\}, F(x, t)=-\ln \left(t-e^{x}\right)-\ln (\ln t-x), \nu=4$.
8. Universal barrier. Define the polar set

$$
P(x)=\{s:\langle s, y-x\rangle \leq 1, y \in Q\} .
$$

Then $F(x)=-\ln \operatorname{vol}_{n} P(x)$ is an $O(n)$-s.c. barrier for Q.

Further directions: specification of the model description

Path-following methods

- Conic problems. Gain: primal-dual IPM.
- Self-scaled cones: $F_{*}\left(F^{\prime \prime}(x) u\right) \equiv F(u)-2 F(x)-\nu$. Gain: long-step methods, very good search directions.
■ Positive polynomials: $p(t) \geq 0, t \in R$ iff $p_{k}=\sum_{i+j=k} Y^{i, j}$,
$Y \succeq 0$. Gain: very cheap computation of determinants.

Black-box methods

- Composite functions: $f(x)+h(x)$, where f is smooth but complex, and h is nonsmooth and simple. Gain: rate $O\left(\frac{1}{k^{2}}\right)$.
- Huge-scale problem: very sparse linear operators. Gain: extremely cheap iterations. (Next Lecture.)

