Lecture 3: Huge-scale optimization problems

Yurii Nesterov, CORE/INMA (UCL)

September 10, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

1 Problems sizes

- 2 Random coordinate search
- 3 Confidence level of solutions
- 4 Sparse Optimization problems
- 5 Sparse updates for linear operators
- 6 Fast updates in computational trees

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 7 Simple subgradient methods
- 8 Application examples

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 ightarrow n^3$	Kilobyte:	10 ³
Medium-size	A^{-1}	$10^{3} - 10^{4}$	$n^3 ightarrow n^2$	Megabyte:	10 ⁶
Large-scale	Ax	$10^{5} - 10^{7}$	$n^2 ightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n ightarrow \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)
- Finite-element schemes (Old)
- Partial differential equations (Old)

Problem: $\min_{x \in \mathbb{R}^n} f(x)$ (*f* is convex and differentiable).

Coordinate relaxation algorithm

For $k \ge 0$ iterate

- **1** Choose active coordinate i_k .
- 2 Update $x_{k+1} = x_k h_k \nabla_{i_k} f(x_k) e_{i_k}$ ensuring $f(x_{k+1}) \le f(x_k)$. (e_i is *i*th coordinate vector in \mathbb{R}^n .)

Main advantage: Very simple implementation.

- 1 Cyclic moves. (Difficult to analyze.)
- 2 Random choice of coordinate (Why?)
- 3 Choose coordinate with the maximal directional derivative.

Complexity estimate: assume

$$\|
abla f(x) -
abla f(y)\| \le L \|x - y\|, \quad x, y \in R^n.$$

Let us choose $h_k = rac{1}{L}$. Then

$$\begin{array}{rcl} f(x_k) - f(x_{k+1}) & \geq & \frac{1}{2L} |\nabla_{i_k} f(x_k)|^2 \ \geq & \frac{1}{2nL} \|\nabla f(x_k)\|^2 \\ \\ & \geq & \frac{1}{2nLR^2} (f(x_k) - f^*)^2. \end{array}$$

Hence, $f(x_k) - f^* \leq \frac{2nLR^2}{k}$, $k \geq 1$. (For Grad.Method, drop *n*.) This is the only known theoretical result known for CDM!

Criticism

Theoretical justification:

- Complexity bounds are not known for the most of the schemes.
- The only justified scheme needs computation of the whole gradient. (Why don't use GM?)

Computational complexity:

- Fast differentiation: if function is defined by a sequence of operations, then C(∇f) ≤ 4C(f).
- Can we do anything without computing the function's values?

Result: CDM are almost out of the computational practice.

Let $E \in R^{n imes n}$ be an incidence matrix of a graph. Denote $e = (1, \dots, 1)^T$ and

 $\bar{E} = E \cdot \operatorname{diag} (E^T e)^{-1}.$

Thus, $\bar{E}^T e = e$. Our problem is as follows:

Find
$$x^* \ge 0$$
: $\overline{E}x^* = x^*$.

Optimization formulation:

$$f(x) \stackrel{\text{def}}{=} \frac{1}{2} \|\bar{E}x - x\|^2 + \frac{\gamma}{2} [\langle e, x \rangle - 1]^2 \rightarrow \min_{x \in \mathbb{R}^n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Huge-scale problems

Main features

- The size is very big $(n \ge 10^7)$.
- The data is distributed in space.
- The requested parts of data are not always <u>available</u>.
- The data may be changing in <u>time</u>.

Consequences

Simplest operations are expensive or infeasible:

- Update of the full vector of variables.
- Matrix-vector multiplication.
- Computation of the objective function's value, etc.

Let ua look at the gradient of the objective:

$$\begin{aligned} \nabla_i f(x) &= \langle a_i, g(x) \rangle + \gamma [\langle e, x \rangle - 1], \ i = 1, \dots, n, \\ g(x) &= \bar{E}x - x \in \mathbb{R}^n, \quad (\bar{E} = (a_1, \dots, a_n)). \end{aligned}$$

Main observations:

■ The coordinate move x₊ = x - h_i∇_if(x)e_i needs O(p_i) a.o. (p_i is the number of nonzero elements in a_i.)

$$d_i \stackrel{\text{def}}{=} \operatorname{diag} \left(\nabla^2 f \stackrel{\text{def}}{=} \bar{E}^T \bar{E} + \gamma e e^T \right)_i = \gamma + \frac{1}{p_i} \text{ are available.}$$

We can use them for choosing the step sizes $(h_i = \frac{1}{d_i})$.

Reasonable coordinate choice strategy? <u>Random!</u>

 $\min_{x \in R^N} f(x), \quad (f \text{ is convex and differentiable})$

Main Assumption:

$$|f'_i(x+h_ie_i)-f'_i(x)| \le L_i|h_i|, \quad h_i \in R, \ i=1,\ldots,N,$$

where e_i is a coordinate vector. Then

$$f(x + h_i e_i) \leq f(x) + f'_i(x)h_i + \frac{L_i}{2}h_i^2$$
. $x \in \mathbb{R}^N, h_i \in \mathbb{R}$.

Define the coordinate steps: $T_i(x) \stackrel{\text{def}}{=} x - \frac{1}{L_i} f'_i(x) e_i$. Then,

$$f(x) - f(T_i(x)) \geq \frac{1}{2L_i} [f'_i(x)]^2, \quad i = 1, \dots, N.$$

We need a special random counter \mathcal{R}_{α} , $\alpha \in R$:

Prob
$$[i] = p_{\alpha}^{(i)} = L_i^{\alpha} \cdot \left[\sum_{j=1}^N L_j^{\alpha}\right]^{-1}, \quad i = 1, \dots, N.$$

Note: \mathcal{R}_0 generates uniform distribution.

```
Method RCDM(\alpha, x_0)

For k \ge 0 iterate:

1) Choose i_k = \mathcal{R}_{\alpha}.

2) Update x_{k+1} = T_{i_k}(x_k).
```

We need to introduce the following norms for $x, g \in \mathbb{R}^N$:

$$\|x\|_{\alpha} = \left[\sum_{i=1}^{N} L_{i}^{\alpha} [x^{(i)}]^{2}\right]^{1/2}, \quad \|g\|_{\alpha}^{*} = \left[\sum_{i=1}^{N} \frac{1}{L_{i}^{\alpha}} [g^{(i)}]^{2}\right]^{1/2}$$

After k iterations, $RCDM(\alpha, x_0)$ generates random output x_k , which depends on $\xi_k = \{i_0, \ldots, i_k\}$. Denote $\phi_k = E_{\xi_{k-1}}f(x_k)$.

Theorem. For any $k \ge 1$ we have

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{j=1}^N L_j^\alpha\right] \cdot R_{1-\alpha}^2(x_0),$$

where $R_\beta(x_0) = \max_x \left\{ \max_{x_* \in X^*} \|x - x_*\|_\beta : f(x) \leq f(x_0) \right\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Interpretation

Denote
$$S_{\alpha} = \sum_{i=1}^{N} L_{i}^{\alpha}$$
.
1. $\alpha = 0$. Then $S_{0} = N$, and we get
 $\phi_{k} - f^{*} \leq \frac{2N}{k} \cdot R_{1}^{2}(x_{0})$.

Note

- We use the metric $||x||_1^2 = \sum_{i=1}^N L_i[x^{(i)}]^2$.
- Matrix with diagonal $\{L_i\}_{i=1}^N$ can have its norm equal to n.
- Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!

Interpretation

2.
$$\alpha = \frac{1}{2}$$
. Denote

$$D_{\infty}(x_0) = \max_{x} \left\{ \max_{y \in X^*} \max_{1 \le i \le N} |x^{(i)} - y^{(i)}| : f(x) \le f(x_0) \right\}.$$

Then, $R_{1/2}^2(x_0) \leq S_{1/2}D_\infty^2(x_0)$, and we obtain

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^N L_i^{1/2}\right]^2 \cdot D_\infty^2(x_0).$$

Note:

- For the first order methods, the worst-case complexity of minimizing over a box depends on N.
- Since $S_{1/2}$ can be bounded, RCDM can be applied in situations when the usual GM fail.

3. $\alpha = 1$. Then $R_0(x_0)$ is the size of the initial level set in the standard Euclidean norm. Hence,

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^N L_i\right] \cdot R_0^2(x_0) \equiv \frac{2N}{k} \cdot \left[\frac{1}{N}\sum_{i=1}^N L_i\right] \cdot R_0^2(x_0).$$

Rate of convergence of GM can be estimated as

$$f(x_k)-f^*\leq \frac{\gamma}{k}R_0^2(x_0),$$

where γ satisfies condition $f''(x) \preceq \gamma \cdot I$, $x \in \mathbb{R}^N$.

Note: maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as that of *RCDM*.

Theorem. Let f(x) be strongly convex with respect to $\|\cdot\|_{1-\alpha}$ with convexity parameter $\sigma_{1-\alpha} > 0$. Then, for $\{x_k\}$ generated by $RCDM(\alpha, x_0)$ we have

$$\phi_k - \phi^* \leq \left(1 - \frac{\sigma_{1-\alpha}}{S_{\alpha}}\right)^k (f(x_0) - f^*).$$

Proof: Let x_k be generated by *RCDM* after *k* iterations. Let us estimate the expected result of the next iteration.

$$f(x_k) - E_{i_k}(f(x_{k+1})) = \sum_{i=1}^{N} p_{\alpha}^{(i)} \cdot [f(x_k) - f(T_i(x_k))]$$

$$\geq \sum_{i=1}^{N} \frac{p_{\alpha}^{(i)}}{2L_i} [f'_i(x_k)]^2 = \frac{1}{2S_{\alpha}} (\|f'(x_k)\|_{1-\alpha}^*)^2$$

$$\geq \frac{\sigma_{1-\alpha}}{S_{\alpha}} (f(x_k) - f^*).$$

It remains to compute expectation in ξ_{k-1} .

Note: We have proved that the <u>expected values</u> of random $f(x_k)$ are good.

Can we guarantee anything after a single run?

Confidence level: Probability $\beta \in (0, 1)$, that some statement about random output is correct.

Main tool: Chebyschev inequality $(\xi \ge 0)$:

Prob
$$[\xi \ge T] \le \frac{E(\xi)}{T}$$
.

Our situation:

$$\operatorname{\mathsf{Prob}}\left[f(x_k)-f^*\geq\epsilon\right] \hspace{0.1in}\leq \frac{1}{\epsilon}[\phi_k-f^*] \hspace{0.1in}\leq \hspace{0.1in} 1-\beta.$$

We need $\phi_k - f^* \leq \epsilon \cdot (1 - \beta)$. Too expensive for $\beta \to 1$?

Consider $f_{\mu}(x) = f(x) + \frac{\mu}{2} ||x - x_0||_{1-\alpha}^2$. It is strongly convex. Therefore, we can obtain $\phi_k - f_{\mu}^* \leq \epsilon \cdot (1-\beta)$ in

$$O\left(rac{1}{\mu}S_{lpha}\lnrac{1}{\epsilon\cdot(1-eta)}
ight)$$
 iterations.

Theorem. Define $\alpha = 1, \ \mu = rac{\epsilon}{4R_0^2(\mathbf{x}_0)}$, and choose

$$k \hspace{2mm} \geq \hspace{2mm} 1 + \frac{8 \mathcal{S}_1 R_0^2(x_0)}{\epsilon} \left[\ln \frac{2 \mathcal{S}_1 R_0^2(x_0)}{\epsilon} + \ln \frac{1}{1-\beta} \right].$$

Let x_k be generated by $RCDM(1, x_0)$ as applied to f_{μ} . Then

$$\operatorname{Prob}(f(x_k) - f^* \leq \epsilon) \geq \beta.$$

Note: $\beta = 1 - 10^{-p} \Rightarrow \ln 10^p = 2.3p$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Implementation details: Random Counter

Given the values L_i , i = 1, ..., N, generate efficiently random $i \in \{1, ..., N\}$ with probabilities **Prob** $[i = k] = L_k / \sum_{j=1}^N L_j$. **Solution:** a) Trivial $\Rightarrow O(N)$ operations. b). Assume $N = 2^p$. Define p + 1 vectors $S_k \in R^{2^{p-k}}$, k = 0, ..., p: $S_0^{(i)} = L_i$, i = 1, ..., N. $S_k^{(i)} = S_{k-1}^{(2i)} + S_{k-1}^{(2i-1)}$, $i = 1, ..., 2^{p-k}$, k = 1, ..., p.

Algorithm: Make the choice in *p* steps, from top to bottom.

 If the element i of S_k is chosen, then choose in S_{k-1} either 2i or 2i − 1 in accordance to probabilities S_{k-1} or S_{k-1} or S_{k-1} / S_k⁽ⁱ⁾.

 Difference: for n = 2²⁰ > 10⁶ we have p = log₂ N = 20.

Sparse problems

Problem:
$$\min_{x \in Q} f(x)$$
, where Q is closed and convex in \mathbb{R}^N , and
• $f(x) = \Psi(Ax)$, where Ψ is a simple convex function:
• $\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle$, $y_1, y_2 \in \mathbb{R}^M$,
• $A : \mathbb{R}^N \to \mathbb{R}^M$ is a sparse matrix.
Let $p(x) \stackrel{\text{def}}{=} \#$ of nonzeros in x. Sparsity coefficient:
 $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

- Computation of vector Ax needs p(A) operations.
- Initial complexity MN is reduced in $\gamma(A)$ times.

$$x_0 \in Q, \quad x_{k+1} = \pi_Q(x_k - hf'(x_k)), \quad k \geq 0.$$

Main computational expenses

- Projection onto a simple set Q needs O(N) operations.
- Displacement $x_k \rightarrow x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times. **Note:** For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$. **Can we get more?**

Sparse updating strategy

Main idea

• After update
$$x_+ = x + d$$
 we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_{y} + Ad$.

• What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.
Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small!
 $\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$
 $\leq \gamma(d) \max_{\substack{1 \leq j \leq m \\ 1 \leq j \leq m}} \gamma(Ae_j) \cdot MN$.
If $\gamma(d) \leq c\gamma(A), \gamma(A_j) \leq c\gamma(A)$, then
 $\overline{\kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN}$.
Expected acceleration: $(10^{-6})^2 = 10^{-12} \Rightarrow 1 \sec \approx 32\,000$

years

When it can work?

Simple methods: No full-vector operations! (Is it possible?)
 Simple problems: Functions with *sparse* gradients.

Examples

1 Quadratic function $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$. The gradient $f'(x) = Ax - b, \quad x \in \mathbb{R}^N$,

is not sparse even if A is sparse.

2 Piece-wise linear function g(x) = max_{1≤i≤m} [⟨a_i, x⟩ - b⁽ⁱ⁾]. Its subgradient f'(x) = a_{i(x)}, i(x) : f(x) = ⟨a_{i(x)}, x⟩ - b^{(i(x))}, can be sparse if a_i is sparse!

But: We need a fast procedure for updating *max-operations*.

Fast updates in short computational trees

Def: Function f(x), $x \in \mathbb{R}^n$, is *short-tree representable*, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n = 2^k$ and the tree has k + 1 levels: $v_{0,i} = x^{(i)}$, i = 1, ..., n. Size of the next level halves the size of the previous one:

$$\psi_{i+1,j} = \psi_{i+1,j}(\psi_{i,2j-1},\psi_{i,2j}), \quad j=1,\ldots,2^{k-i-1}, \ i=0,\ldots,k-1,$$

where $\psi_{i,j}$ are some bivariate functions.

$v_{k,1}$									
		<i>V</i> _{<i>k</i>-1,1}			$V_{k-1,2}$				
		•			•				
	V _{2,1}			V _{2,n/4}		n/4			
V_1	.,1	V _{1,2}		••	•	$V_{1,n/2-1}$ $V_{1,n/2-1}$		n/2	
<i>V</i> 0,1	<i>V</i> _{0,2}	<i>V</i> _{0,3}	<i>V</i> _{0,4}			V _{0,n-3}	$V_{0,n-2}$	$V_{0,n-1}$	V ₀ , <i>n</i>

Main advantages

Important examples (symmetric functions)

$$\begin{split} f(x) &= \|x\|_{p}, \quad p \geq 1, \quad \psi_{i,j}(t_{1},t_{2}) \equiv \left[|t_{1}|^{p} + |t_{2}|^{p} \right]^{1/p}, \\ f(x) &= \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1},t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right), \\ f(x) &= \max_{1 \leq i \leq n} x^{(i)}, \qquad \psi_{i,j}(t_{1},t_{2}) \equiv \max\left\{t_{1},t_{2}\right\}. \end{split}$$

• The binary tree requires only n-1 auxiliary cells.

- Its value needs n-1 applications of $\psi_{i,j}(\cdot, \cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with Sublinear Iteration Cost

Simple subgradient methods

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q, \quad x_{k+1} \ = \ \pi_Q \left(x_k - rac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k)
ight), \quad k \ge 0.$$

Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. Then for any $k \ge 0$ we have:

$$f_k^* - f^* \leq \frac{L(f) \|x_0 - \pi_{X_*}(x_0)\|}{(k+1)^{1/2}},$$

 $\|x_k - x^*\| \leq \|x_0 - x^*\|, \quad \forall x^* \in X_*.$

Proof:

Let us fix $x^* \in X_*$. Denote $r_k(x^*) = ||x_k - x^*||$. Then

$$\begin{array}{lll} r_{k+1}^2(x^*) & \leq & \left\| x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) - x^* \right\|^2 \\ & = & r_k^2(x^*) - 2 \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} \langle f'(x_k), x_k - x^* \rangle + \frac{(f(x_k) - f^*)^2}{\|f'(x_k)\|^2} \\ & \leq & r_k^2(x^*) - \frac{(f(x_k) - f^*)^2}{\|f'(x_k)\|^2} \, \leq \, r_k^2(x^*) - \frac{(f_k^* - f^*)^2}{L^2(f)}. \end{array}$$

~

From this reasoning, $||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2$, $\forall x^* \in X^*$. **Corollary:** Assume X_* has recession direction d_* . Then

$$\|x_k - \pi_{X_*}(x_0)\| \leq \|x_0 - \pi_{X_*}(x_0)\|, \quad \langle d_*, x_k \rangle \geq \langle d_*, x_0 \rangle.$$

(Proof: consider $x^* = \pi_{X_*}(x_0) + \alpha d_*$, $\alpha \ge 0$.)

Constrained minimization (N.Shor (1964) & B.Polyak)

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$,
else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0, \dots, k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i).$ **Theorem:** If $k > ||x_0 - x^*||^2 / h^2$, then $\mathcal{F}_k \neq \emptyset$ and $f_k^* - f(x) \le hL(f), \quad \max_{i \in \mathcal{F}_k} g(x_i) \le hL(g).$

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take $h = \frac{\epsilon}{\max\{L(f), L(g)\}}$. Then we need to decide on the number of steps N (easy!).

Note: The standard advice is $h = \frac{R}{\sqrt{N+1}}$ (much more difficult!)

2. Constants L(f), L(g) are not known

- Start from a guess.
- Restart from scratch each time we see the guess is wrong.
- The guess is doubled after restart.

3. Tracking the record value f_k^*

Double run.

Other ideas are welcome!

Observations:

- Very often, Large- and Huge- scale problems have repetitive sparsity patterns and/or limited connectivity.
 - Social networks.
 - Mobile phone networks.
 - Truss topology design (local bars).
 - Finite elements models (2D: four neighbors, 3D: six neighbors).

2 For *p*-diagonal matrices $\kappa(A) \leq p^2$.

Nonsmooth formulation of Google Problem

Main property of spectral radius $(A \ge 0)$

If $A \in R_+^{n \times n}$, then $\rho(A) = \min_{x \ge 0} \max_{1 \le i \le n} \frac{1}{x^{(i)}} \langle e_i, Ax \rangle$. The minimum is attained at the corresponding eigenvector.

Since $\rho(\bar{E}) = 1$, our problem is as follows:

$$f(x) \stackrel{\text{def}}{=} \max_{1 \leq i \leq N} [\langle e_i, \overline{E}x \rangle - x^{(i)}] \rightarrow \min_{x \geq 0}.$$

Interpretation: Maximizing the self-esteem! Since $f^* = 0$, we can apply Polyak's method with sparse updates. **Additional features;** the optimal set X^* is a *convex cone*. If $x_0 = e$, then the whole sequence is separated from zero:

$$\langle x^*, e \rangle \leq \langle x^*, x_k \rangle \leq \|x^*\|_1 \cdot \|x_k\|_{\infty} = \langle x^*, e \rangle \cdot \|x_k\|_{\infty}.$$

Goal: Find $\bar{x} \ge 0$ such that $\|\bar{x}\|_{\infty} \ge 1$ and $f(\bar{x}) \le \epsilon$. (First condition is satisfied automatically.) We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Setup: Each agent has exactly p random friends. Thus, $\kappa(A) \approx p^2$.

Iteration Cost: $GM_s \approx p^2 \log_2 N$, $GM \approx pN$.

Time for 10 ⁴	iterations	(p = 32)
--------------------------	------------	----------

N	$\kappa(A)$	GM _s	GM
1024	1632	3.00	2.98
2048	1792	3.36	6.41
4096	1888	3.75	15.11
8192	1920	4.20	139.92
16384	1824	4.69	408.38

Time for 10^3 iterations (p = 16)

N	$\kappa(A)$	GM _s	GM		
131072	576	0.19	213.9		
262144	592	0.25	477.8		
524288	592	0.32	1095.5		
1048576	608	0.40	2590.8		
$1 \sec pprox 100 \min!$					