
Lecture 3: Huge-scale optimization problems

Yurii Nesterov, CORE/INMA (UCL)

September 10, 2012

Outline

1 Problems sizes

2 Random coordinate search

3 Confidence level of solutions

4 Sparse Optimization problems

5 Sparse updates for linear operators

6 Fast updates in computational trees

7 Simple subgradient methods

8 Application examples

Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory

Small-size All 100 − 102 n4 → n3 Kilobyte: 103

Medium-size A−1 103 − 104 n3 → n2 Megabyte: 106

Large-scale Ax 105 − 107 n2 → n Gigabyte: 109

Huge-scale x + y 108 − 1012 n→ log n Terabyte: 1012

Sources of Huge-Scale problems

Internet (New)

Telecommunications (New)

Finite-element schemes (Old)

Partial differential equations (Old)

Very old optimization idea: Coordinate Search

Problem: min
x∈Rn

f (x) (f is convex and differentiable).

Coordinate relaxation algorithm

For k ≥ 0 iterate

1 Choose active coordinate ik .

2 Update xk+1 = xk − hk∇ik f (xk)eik ensuring f (xk+1) ≤ f (xk).
(ei is ith coordinate vector in Rn.)

Main advantage: Very simple implementation.

Possible strategies

1 Cyclic moves. (Difficult to analyze.)

2 Random choice of coordinate (Why?)

3 Choose coordinate with the maximal directional derivative.

Complexity estimate: assume
‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, x , y ∈ Rn.

Let us choose hk = 1
L . Then

f (xk)− f (xk+1) ≥ 1
2L |∇ik f (xk)|2 ≥ 1

2nL‖∇f (xk)‖2

≥ 1
2nLR2 (f (xk)− f ∗)2.

Hence, f (xk)− f ∗ ≤ 2nLR2

k , k ≥ 1. (For Grad.Method, drop n.)

This is the only known theoretical result known for CDM!

Criticism

Theoretical justification:

Complexity bounds are not known for the most of the
schemes.

The only justified scheme needs computation of the
whole gradient. (Why don’t use GM?)

Computational complexity:

Fast differentiation: if function is defined by a sequence of
operations, then C (∇f) ≤ 4C (f).

Can we do anything without computing the function’s values?

Result: CDM are almost out of the computational practice.

Google problem

Let E ∈ Rn×n be an incidence matrix of a graph. Denote
e = (1, . . . , 1)T and

Ē = E · diag (ET e)−1.

Thus, ĒT e = e. Our problem is as follows:

Find x∗ ≥ 0 : Ē x∗ = x∗.

Optimization formulation:

f (x)
def
= 1

2‖Ē x − x‖2 + γ
2 [〈e, x〉 − 1]2 → min

x∈Rn

Huge-scale problems

Main features

The size is very big (n ≥ 107).

The data is distributed in space.

The requested parts of data are not always available.

The data may be changing in time.

Consequences

Simplest operations are expensive or infeasible:

Update of the full vector of variables.

Matrix-vector multiplication.

Computation of the objective function’s value, etc.

Structure of the Google Problem

Let ua look at the gradient of the objective:

∇i f (x) = 〈ai , g(x)〉+ γ[〈e, x〉 − 1], i = 1, . . . , n,

g(x) = Ē x − x ∈ Rn, (Ē = (a1, . . . , an)).

Main observations:

The coordinate move x+ = x − hi∇i f (x)ei needs O(pi) a.o.
(pi is the number of nonzero elements in ai .)

di
def
= diag

(
∇2f

def
= ĒT Ē + γeeT

)
i

= γ + 1
pi

are available.

We can use them for choosing the step sizes (hi = 1
di

).

Reasonable coordinate choice strategy? Random!

Random coordinate descent methods (RCDM)

min
x∈RN

f (x), (f is convex and differentiable)

Main Assumption:

|f ′i (x + hiei)− f ′i (x)| ≤ Li |hi |, hi ∈ R, i = 1, . . . ,N,

where ei is a coordinate vector. Then

f (x + hiei) ≤ f (x) + f ′i (x)hi + Li
2 h

2
i . x ∈ RN , hi ∈ R.

Define the coordinate steps: Ti (x)
def
= x − 1

Li
f ′i (x)ei . Then,

f (x)− f (Ti (x)) ≥ 1
2Li

[f ′i (x)]2, i = 1, . . . ,N.

Random choice for coordinates

We need a special random counter Rα, α ∈ R:

Prob [i] = p
(i)
α = Lαi ·

[
N∑
j=1

Lαj

]−1
, i = 1, . . . ,N.

Note: R0 generates uniform distribution.

Method RCDM(α, x0)

For k ≥ 0 iterate:

1) Choose ik = Rα.

2) Update xk+1 = Tik (xk).

Complexity bounds for RCDM

We need to introduce the following norms for x , g ∈ RN :

‖x‖α =

[
N∑
i=1

Lαi [x (i)]2
]1/2

, ‖g‖∗α =

[
N∑
i=1

1
Lαi

[g (i)]2
]1/2

.

After k iterations, RCDM(α, x0) generates random output xk ,
which depends on ξk = {i0, . . . , ik}. Denote φk = Eξk−1

f (xk).

Theorem. For any k ≥ 1 we have

φk − f ∗ ≤ 2
k ·

[
N∑
j=1

Lαj

]
· R2

1−α(x0),

where Rβ(x0) = max
x

{
max
x∗∈X∗

‖x − x∗‖β : f (x) ≤ f (x0)

}
.

Interpretation

Denote Sα =
N∑
i=1

Lαi .

1. α = 0. Then S0 = N, and we get

φk − f ∗ ≤ 2N
k · R

2
1 (x0).

Note

We use the metric ‖x‖21 =
N∑
i=1

Li [x
(i)]2.

Matrix with diagonal {Li}Ni=1 can have its norm equal to n.

Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!

Interpretation

2. α = 1
2 . Denote

D∞(x0) = max
x

{
max
y∈X∗

max
1≤i≤N

|x (i) − y (i)| : f (x) ≤ f (x0)

}
.

Then, R2
1/2(x0) ≤ S1/2D

2
∞(x0), and we obtain

φk − f ∗ ≤ 2
k ·
[

N∑
i=1

L
1/2
i

]2
· D2
∞(x0).

Note:

For the first order methods, the worst-case complexity of
minimizing over a box depends on N.

Since S1/2 can be bounded, RCDM can be applied in
situations when the usual GM fail.

Interpretation

3. α = 1. Then R0(x0) is the size of the initial level set in the
standard Euclidean norm. Hence,

φk − f ∗ ≤ 2
k ·
[

N∑
i=1

Li

]
· R2

0 (x0) ≡ 2N
k ·
[

1
N

N∑
i=1

Li

]
· R2

0 (x0).

Rate of convergence of GM can be estimated as

f (xk)− f ∗ ≤ γ

k
R2
0 (x0),

where γ satisfies condition f ′′(x) � γ · I , x ∈ RN .
Note: maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as
that of RCDM.

Minimizing the strongly convex functions

Theorem. Let f (x) be strongly convex with respect to ‖ · ‖1−α
with convexity parameter σ1−α > 0.
Then, for {xk} generated by RCDM(α, x0) we have

φk − φ∗ ≤
(

1− σ1−α
Sα

)k
(f (x0)− f ∗).

Proof: Let xk be generated by RCDM after k iterations.
Let us estimate the expected result of the next iteration.

f (xk)− Eik (f (xk+1)) =
N∑
i=1

p
(i)
α · [f (xk)− f (Ti (xk))]

≥
N∑
i=1

p
(i)
α
2Li

[f ′i (xk)]2 = 1
2Sα

(‖f ′(xk)‖∗1−α)2

≥ σ1−α
Sα

(f (xk)− f ∗).

It remains to compute expectation in ξk−1.

Confidence level of the answers

Note: We have proved that the expected values of random f (xk)
are good.

Can we guarantee anything after a single run?

Confidence level: Probability β ∈ (0, 1), that some statement
about random output is correct.
Main tool: Chebyschev inequality (ξ ≥ 0):

Prob [ξ ≥ T] ≤ E(ξ)
T .

Our situation:

Prob [f (xk)− f ∗ ≥ ε] ≤ 1
ε [φk − f ∗] ≤ 1− β.

We need φk − f ∗ ≤ ε · (1− β). Too expensive for β → 1?

Regularization technique

Consider fµ(x) = f (x) + µ
2‖x − x0‖21−α. It is strongly convex.

Therefore, we can obtain φk − f ∗µ ≤ ε · (1− β) in

O
(

1
µSα ln 1

ε·(1−β)

)
iterations.

Theorem. Define α = 1, µ = ε
4R2

0 (x0)
, and choose

k ≥ 1 +
8S1R2

0 (x0)
ε

[
ln

2S1R2
0 (x0)
ε + ln 1

1−β

]
.

Let xk be generated by RCDM(1, x0) as applied to fµ.Then

Prob (f (xk)− f ∗ ≤ ε) ≥ β.

Note: β = 1− 10−p ⇒ ln 10p = 2.3p.

Implementation details: Random Counter

Given the values Li , i = 1, . . . ,N, generate efficiently random

i ∈ {1, . . . ,N} with probabilities Prob [i = k] = Lk/
N∑
j=1

Lj .

Solution: a) Trivial ⇒ O(N) operations.

b). Assume N = 2p. Define p + 1 vectors Sk ∈ R2p−k
,

k = 0, . . . , p:

S
(i)
0 = Li , i = 1, . . . ,N.

S
(i)
k = S

(2i)
k−1 + S

(2i−1)
k−1 , i = 1, . . . , 2p−k , k = 1, . . . , p.

Algorithm: Make the choice in p steps, from top to bottom.

If the element i of Sk is chosen, then choose in Sk−1 either 2i

or 2i − 1 in accordance to probabilities
S
(2i)
k−1

S
(i)
k

or
S
(2i−1)
k−1

S
(i)
k

.

Difference: for n = 220 > 106 we have p = log2N = 20.

Sparse problems

Problem: min
x∈Q

f (x), where Q is closed and convex in RN , and

f (x) = Ψ(Ax), where Ψ is a simple convex function:

Ψ(y1) ≥ Ψ(y2) + 〈Ψ′(y2), y1 − y2〉, y1, y2 ∈ RM ,

A : RN → RM is a sparse matrix.

Let p(x)
def
= # of nonzeros in x . Sparsity coefficient:

γ(A)
def
= p(A)

MN .

Example 1: Matrix-vector multiplication

Computation of vector Ax needs p(A) operations.

Initial complexity MN is reduced in γ(A) times.

Gradient Method

x0 ∈ Q, xk+1 = πQ(xk − hf ′(xk)), k ≥ 0.

Main computational expenses

Projection onto a simple set Q needs O(N) operations.

Displacement xk → xk − hf ′(xk) needs O(N) operations.

f ′(x) = ATΨ′(Ax). If Ψ is simple, then the main efforts are
spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in
γ(A) times.
Note: For Large- and Huge-scale problems, we often have
γ(A) ≈ 10−4 . . . 10−6. Can we get more?

Sparse updating strategy

Main idea

After update x+ = x + d we have y+
def
= Ax+ = Ax︸︷︷︸

y

+Ad .

What happens if d is sparse?

Denote σ(d) = {j : d (j) 6= 0}. Then y+ = y +
∑

j∈σ(d)
d (j) · Aej .

Its complexity, κA(d)
def
=

∑
j∈σ(d)

p(Aej), can be VERY small!

κA(d) = M
∑

j∈σ(d)
γ(Aej) = γ(d) · 1

p(d)

∑
j∈σ(d)

γ(Aej) ·MN

≤ γ(d) max
1≤j≤m

γ(Aej) ·MN.

If γ(d) ≤ cγ(A), γ(Aj) ≤ cγ(A), then

κA(d) ≤ c2 · γ2(A) ·MN .

Expected acceleration: (10−6)2 = 10−12 ⇒ 1 sec ≈ 32 000
years

When it can work?

Simple methods: No full-vector operations! (Is it possible?)

Simple problems: Functions with sparse gradients.

Examples

1 Quadratic function f (x) = 1
2〈Ax , x〉 − 〈b, x〉. The gradient

f ′(x) = Ax − b, x ∈ RN ,

is not sparse even if A is sparse.

2 Piece-wise linear function g(x) = max
1≤i≤m

[〈ai , x〉 − b(i)]. Its

subgradient f ′(x) = ai(x), i(x) : f (x) = 〈ai(x), x〉 − b(i(x)),
can be sparse if ai is sparse!

But: We need a fast procedure for updating max-operations.

Fast updates in short computational trees

Def: Function f (x), x ∈ Rn, is short-tree representable, if it can
be computed by a short binary tree with the height ≈ ln n.

Let n = 2k and the tree has k + 1 levels: v0,i = x (i), i = 1, . . . , n.
Size of the next level halves the size of the previous one:

vi+1,j = ψi+1,j(vi ,2j−1, vi ,2j), j = 1, . . . , 2k−i−1, i = 0, . . . , k − 1,

where ψi ,j are some bivariate functions.

v2,1
v1,1 v1,2

v0,1 v0,2 v0,3 v0,4

v2,n/4
v1,n/2−1 v1,n/2

v0,n−3v0,n−2v0,n−1 v0,n

.

. . .

vk−1,1 vk−1,2
vk,1

Main advantages

Important examples (symmetric functions)

f (x) = ‖x‖p, p ≥ 1, ψi ,j(t1, t2) ≡ [|t1|p + |t2|p]1/p ,

f (x) = ln

(
n∑

i=1
ex

(i)

)
, ψi ,j(t1, t2) ≡ ln (et1 + et2) ,

f (x) = max
1≤i≤n

x (i), ψi ,j(t1, t2) ≡ max {t1, t2} .

The binary tree requires only n − 1 auxiliary cells.

Its value needs n − 1 applications of ψi ,j(·, ·) (≡ operations).

If x+ differs from x in one entry only, then for re-computing
f (x+) we need only k ≡ log2 n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost

.

Simple subgradient methods

I. Problem: f ∗
def
= min

x∈Q
f (x), where

Q is a closed and convex and ‖f ′(x)‖ ≤ L(f), x ∈ Q,

the optimal value f ∗ is known.

Consider the following optimization scheme (B.Polyak, 1967):

x0 ∈ Q, xk+1 = πQ

(
xk −

f (xk)− f ∗

‖f ′(xk)‖2
f ′(xk)

)
, k ≥ 0.

Denote f ∗k = min
0≤i≤k

f (xi). Then for any k ≥ 0 we have:

f ∗k − f ∗ ≤ L(f)‖x0−πX∗ (x0)‖
(k+1)1/2

,

‖xk − x∗‖ ≤ ‖x0 − x∗‖, ∀x∗ ∈ X∗.

Proof:

Let us fix x∗ ∈ X∗. Denote rk(x∗) = ‖xk − x∗‖. Then

r2k+1(x∗) ≤
∥∥∥xk − f (xk)−f ∗

‖f ′(xk)‖2
f ′(xk)− x∗

∥∥∥2
= r2k (x∗)− 2 f (xk)−f ∗

‖f ′(xk)‖2
〈f ′(xk), xk − x∗〉+ (f (xk)−f ∗)2

‖f ′(xk)‖2

≤ r2k (x∗)− (f (xk)−f ∗)2
‖f ′(xk)‖2

≤ r2k (x∗)− (f ∗k −f
∗)2

L2(f)
.

From this reasoning, ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2, ∀x∗ ∈ X ∗.
Corollary: Assume X∗ has recession direction d∗. Then

‖xk − πX∗(x0)‖ ≤ ‖x0 − πX∗(x0)‖, 〈d∗, xk〉 ≥ 〈d∗, x0〉.

(Proof: consider x∗ = πX∗(x0) + αd∗, α ≥ 0.)

Constrained minimization (N.Shor (1964) & B.Polyak)

II. Problem: min
x∈Q
{f (x) : g(x) ≤ 0}, where

Q is closed and convex,

f , g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If g(xk) > h ‖g ′(xk)‖, then (A): xk+1 = πQ

(
xk − g(xk)

‖g ′(xk)‖2
g ′(xk)

)
,

else (B): xk+1 = πQ

(
xk − h

‖f ′(xk)‖ f
′(xk)

)
.

Let Fk ⊆ {0, . . . , k} be the set (B)-iterations, and
f ∗k = min

i∈Fk

f (xi).

Theorem: If k > ‖x0 − x∗‖2/h2, then Fk 6= ∅ and

f ∗k − f (x) ≤ hL(f), max
i∈Fk

g(xi) ≤ hL(g).

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take h = ε
max{L(f),L(g)} . Then we need to decide on the

number of steps N (easy!).

Note: The standard advice is h = R√
N+1

(much more difficult!)

2. Constants L(f), L(g) are not known

Start from a guess.

Restart from scratch each time we see the guess is wrong.

The guess is doubled after restart.

3. Tracking the record value f ∗k

Double run. Other ideas are welcome!

Application examples

Observations:

1 Very often, Large- and Huge- scale problems have repetitive
sparsity patterns and/or limited connectivity.

Social networks.
Mobile phone networks.
Truss topology design (local bars).
Finite elements models (2D: four neighbors, 3D: six neighbors).

2 For p-diagonal matrices κ(A) ≤ p2.

Nonsmooth formulation of Google Problem

Main property of spectral radius (A ≥ 0)

If A ∈ Rn×n
+ , then ρ(A) = min

x≥0
max
1≤i≤n

1
x(i)
〈ei ,Ax〉.

The minimum is attained at the corresponding eigenvector.

Since ρ(Ē) = 1, our problem is as follows:

f (x)
def
= max

1≤i≤N
[〈ei , Ē x〉 − x (i)] → min

x≥0
.

Interpretation: Maximizing the self-esteem!
Since f ∗ = 0, we can apply Polyak’s method with sparse updates.
Additional features; the optimal set X ∗ is a convex cone.
If x0 = e, then the whole sequence is separated from zero:

〈x∗, e〉 ≤ 〈x∗, xk〉 ≤ ‖x∗‖1 · ‖xk‖∞ = 〈x∗, e〉 · ‖xk‖∞.

Goal: Find x̄ ≥ 0 such that ‖x̄‖∞ ≥ 1 and f (x̄) ≤ ε.
(First condition is satisfied automatically.)

Computational experiments: Iteration Cost

We compare Polyak’s GM with sparse update (GMs) with the
standard one (GM).

Setup: Each agent has exactly p random friends.
Thus, κ(A) ≈ p2.

Iteration Cost: GMs ≈ p2 log2N, GM ≈ pN.

Time for 104 iterations (p = 32)

N κ(A) GMs GM

1024 1632 3.00 2.98
2048 1792 3.36 6.41
4096 1888 3.75 15.11
8192 1920 4.20 139.92

16384 1824 4.69 408.38

Time for 103 iterations (p = 16)

N κ(A) GMs GM

131072 576 0.19 213.9
262144 592 0.25 477.8
524288 592 0.32 1095.5

1048576 608 0.40 2590.8

1 sec ≈ 100 min!

	Problems sizes
	Random coordinate search
	Confidence level of solutions
	Sparse Optimization problems
	Sparse updates for linear operators
	Fast updates in computational trees
	Simple subgradient methods
	Application examples

