Кольца и идеалы

- **Задача 2.0.** $R[\sqrt{d}] \cong R[x]/(x^2-d)$. (Следствие: левая часть действительно является кольцом.)
- Задача 2.1. а) Опишите все идеалы и соответствующие факторкольца для колец $\mathbb{C}[x]$ и $\mathbb{R}[x]$ (основной теоремой алгебры можно пользоваться без доказательства).
- б) Найдите все обратимые элементы и опишите все идеалы в кольце k[[x]] формальных степенных рядов над произвольным полем.
- **Задача 2.2.** Является ли $\mathbb{Q}[x,y]$ кольцом главных идеалов? А $\mathbb{Z}[x]$?
- **Задача 2.3.** Пусть I_x идеал обращающихся в ноль в точке x непрерывных функций на отрезке. Опишите соответствующее факторкольцо.
- **Задача 2.4.** а) Кольцо *целых чисел Гаусса* $\mathbb{Z}[\sqrt{-1}]$ евклидово относительно нормы $N(z)=z\bar{z}$ (в частности, это кольцо факториально).
- б) Кольцо $\mathbb{Z}[\sqrt{-5}]$ не факториально.

Из-за того, что $N(a+b\sqrt{-1})=a^2+b^2$, изучение кольца $\mathbb{Z}[\sqrt{-1}]$ помогает выяснить, какие целые числа представимы в виде суммы двух квадратов.

Задача 2.5. а) Найдите все обратимые элементы кольца $\mathbb{Z}[\sqrt{-1}]$.

- б) Разложите 2, 15, 29 в произведение простых гауссовых.
- Задача 2.6. а) Если целые числа n и m представимы в виде суммы двух квадратов, то и число nm представимо в виде суммы двух квадратов.
- б) Если $n = x^2 + y^2$ делится на простое $p \neq 2$, то либо x и y делятся на p, либо p тоже представимо в виде суммы двух квадратов.
- в) Верны ли предыдущие два утверждения для представлений в виде $x^2 + 5y^2$?

Задача 2.7. Пусть p — нечетное целое простое число. Тогда следующие условия эквивалентны:

- а) (a1) число p явяляется простым гауссовым;
 - (a2) кольцо $\mathbb{F}_p[\sqrt{-1}]$ является полем;
 - (a3) уравнение $x^2 = -1$ не разрешимо в \mathbb{F}_n ;
- б) (б0) число p представимо в виде суммы двух квадратов;
 - (б1) число p имеет вид $\pi\bar{\pi}$, где π простое гауссово;
 - (б2) кольцо $\mathbb{F}_p[\sqrt{-1}]$ изоморфно кольцу $\mathbb{F}_p \oplus \mathbb{F}_p$; (б3) уравнение $x^2 = -1$ разрешимо в \mathbb{F}_p ;
- в) Что происходит при p = 2?
- г) Других простых в $\mathbb{Z}[\sqrt{-1}]$ нет.
- **Задача 2.8.** а) Если p=4k+3, то p не представимо в виде суммы двух квадратов. Если p = 4k + 1 — простое число, то (2k)! — корень из -1 в \mathbb{F}_p (и, как следствие предыдущей задачи, р представимо в виде суммы двух квадратов).
- б) Какие целые числа представимы в виде суммы двух квадратов?

