Линейные отображения

- Задача 9.0. Оператор на конечномерном векторном пространстве сюръективен тогда и только тогда, когда он инъективен.
- **Задача 9.1.** Покажите, что для взаимно простых многочленов P и Q естественный гомоморфизм колец $k[x]/(PQ) \to k[x]/(P) \oplus k[x]/(Q)$ инъективен (а следовательно, в силу предыдущей задачи, является изоморфизмом).
- Задача 9.2. Пусть $\Delta \colon \mathbb{R}[x] \to \mathbb{R}[x]$ разностная производная: $(\Delta P)(x) = P(x) P(x-1)$.
- а) Найдите ядро оператора Δ .
- б) Выведите из предыдущего пункта сюръективность оператора Δ .
- в) Выведите из предыдущего пункта, что для любого k сумма $1^k + 2^k + \ldots + n^k$ является многочленом от n.
- **Задача 9.3.** Найдите все собственные вектора оператора $\frac{d^2}{dx^2} \colon \mathbb{R}[[x]] \to \mathbb{R}[[x]].$
- **Задача 9.4.** а) Пусть V пространство последовательностей, т. ч. $x_{n+1} = x_n + x_{n-1}$, $T: V \to V$ $one pamop\ cdeuza:\ (Tx)_n = x_{n+1}$. Найдите собственный базис и собственные значения этого оператора. Разложите по этому базису последовательность Фибоначчи и получите формулу для F_n .
- б) Когда у оператора сдвига на пространстве последовательностей, удовлетворяющих рекурренте $x_{n+1} = a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k}$, есть собственный базис?

* * *

- **Задача 9.5.** Если у A^2 есть собственное значение λ^2 , то у A есть собственное значение λ или $-\lambda$.
- **Задача 9.6.** Пусть операторы A и B на векторном пространстве над алгебраически замкнутым полем и а) AB = BA; б) оператор AB BA имеет ранг 1. Докажите, что у них есть общий собственный вектор.
- **Задача 9.7.** Если A и B два оператора, то характеристические многочлены операторов AB и BA равны.