Функции от операторов

- Задача 10.1. Найдите жорданов базис и нормальную форму для оператора
- а) $\begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}$ (над \mathbb{C}); б) $\frac{d}{dx}$ на $\mathbb{R}[x]$; в) Δ на $\mathbb{R}[x]$ ($\Delta P(x) = P(x) P(x-1)$).
- **Задача 10.2.** Если A нильпотентный оператор ($A^N=0$ для некоторого N), то E+A обратимый оператор.
- **Задача 10.3.** Если оператор A (на векторном пространстве над $\mathbb C$) невырожден, то из него можно извлечь корень k-й степени.
- **Задача 10.4.** Вычислите экспоненту (сумму ряда $E+A+A^2/2+A^3/6+\ldots$) от
- а) жордановой клетки; б) оператора $\lambda \frac{d}{dx}$ на $\mathbb{R}[x]$; в) матрицы $\begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}$.
- **Задача 10.5*.** Сопоставьте предыдущую задачу с задачей 9.2 и выразите коэффициенты многочлена $S_k(n) := 1^k + \ldots + n^k$ через коэффициенты ряда $\frac{x}{1 e^{-x}} = \sum_{n \geq 0} B_n \frac{x^n}{n!}$ (числа B_i называют *числами Бернулли*).
- **Задача 10.6.** $\det \exp(A) = \exp(\operatorname{tr} A)$; в частности, экспонента матрицы с нулевым следом («матрицы из sl») матрица с единичным определителем («из SL»).
- **Задача 10.7.** Пусть характеристический многочлен оператора A имеет корни λ_i кратности k_i . Тогда если $f^{(n)}(\lambda_i) = g^{(n)}(\lambda_i)$ при $n < k_i$, то f(A) = g(A).