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On Krull-Schmidt theory1

In this note k denotes a field and all rings and algebras are unital and associative.
Recall that a ring A is called local if it has an ideal R ⊂ A such that all elements in A \ R

are invertible. If this is the case, the quotient ring A/R is a division ring.

Definition 1. An additive category is called Krull-Schmidt if

• any object has a decomposition into a finite direct sum of indecomposable objects,

• the endomorphism ring of any indecomposable object is local.

Theorem 2. Let A be an additive k-linear idempotent complete category. Suppose that any
space HomA(X, Y ) is finite-dimensional. Then A is a Krull-Schmidt category.

To prove Theorem, we need several lemmas.

Lemma 3. Let V be a finite-dimensional k-vector space and A ⊂ End(V ) a subalgebra. Suppose
A has no nontrivial idempotents, then any element in A is either invertible (in End(V )) or
nilpotent.

Proof. Take any a ∈ A. Let χa(t) ∈ k[t] be the characteristic polynomial of a. We have

χa(t) = td · f(t)

where f ∈ k[t], f(0) 6= 0. One can find polynomials p(t), q(t) ∈ k[t] such that

tdp(t) + f(t)q(t) = 1.

Let a1 = adp(a), a2 = f(a)q(a) ∈ A. Then a1 + a2 = 1 and a1a2 = adf(a)p(a)q(a) =
χa(a)p(a)q(a) = 0, similarly a2a1 = 0. It follows that a1, a2 are idempotents. They should
be trivial. Suppose a1 = adp(a) = 1, it follows that a is invertible (if d 6= 0 this is obvious, if
d = 0 then det a = ±χa(0) 6= 0 and a is invertible). Suppose a2 = f(a)q(a) = 1, then f(a) is
invertible. It follows that ad = χa(a)f(a)−1 = 0, and a is nilpotent.

Lemma 4. Let A be a finite-dimensional k-algebra. Suppose A has no nontrivial idempotents,
then any element in A is either invertible or nilpotent.

Proof. Consider the left adjoint representation of A: a 7→ la = a · −, it is an injective homo-
morphism

l : A→ Endk(A).

By Lemma 3 applied to the image of l, for any element a ∈ A either la is nilpotent or invertible.
In the first case a is nilpotent. In the second case there exists b ∈ A such that ab = la(b) = 1.
It follows that lalb = 1 ∈ Endk(A), hence lbla = 1 and ba = 1. Thus a is invertible.

Lemma 5. Let A be a ring. Suppose that any element in A is either invertible or nilpotent.
Then the set of nilpotents in A is a maximal ideal and A is local.

Proof. Left to the reader.

1By technical reasons these notes are typed in English. Also, the exposition here is slightly different from
one from the lecture
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Proof of Theorem 2. The existence of a decomposition is almost clear. We prove it by induction
in dim(End(M)). Clearly, if M ∼= M1 ⊕ M2 then dim(End(M)) > 2. Hence any M with
dim(End(M)) = 1 is indecomposable. For the induction step, assume M ∼= M1 ⊕M2 and use
that

dim(End(M1)), dim(End(M2)) < dim(End(M)).

Now letM ∈ A be an indecomposable object. The algebra A = End(M) is finite-dimensional
by assumptions. Also, A has no nontrivial idempotents because M is indecomposable and A is
idempotent complete. Now by Lemmas 4 and 5, the algebra A is local.

Example 6. LetA be a finite-dimensional k-algebra. Then the categories mod−A andDb(mod−A)
are Krull-Schmidt.

Let X be a projective scheme over k. Then the categories cohX and Db(cohX) are Krull-
Schmidt.

Theorem 7. Let A be a Krull-Schmidt category. Then decomposition of an object in A into a
direct sum of indecomposable objects is unique in the following sense: if M = M1 ⊕ . . . ⊕Mn

and M = M ′
1 ⊕ . . .⊕M ′

m then n = m and up to renumbering of objects one has Mi
∼= M ′

i .

For the proof we will need a notion of ideal in an additive category.

Definition 8. Let A be an additive category and I be a family of morphisms in A. Denote
I(X, Y ) := I ∩Hom(X, Y ) for any X, Y ∈ A. We say that I is an ideal in A if for any f, g ∈ I
and h a morphism in A we have −f, f + g, fh, hf ∈ I as soon as the operations make sense.
One-sided ideals are defined similarly.

Lemma 9. Let I be an ideal in an additive category A. Let Pi, Qi ∈ Ind(A), P = ⊕Pi, Q =
⊕Qj. Let f ∈ Hom(P,Q), write it as f =

∑
ij fij, where fij : Pi → Qj. Then f ∈ I ⇐⇒ fij ∈ I

for all i, j.

Proof. It follows clearly from properties of an ideal.

Definition 10. For an ideal I in an additive category A the quotient category A/I is defined
as follows. Its objects are the same as in A and the Hom spaces are

HomA/I(X, Y ) := HomA(X, Y )/I(X, Y ).

One can see that this is well-defined, A/I is an additive category and there is a natural
additive functor

π : A → A/I.
Definition 11. Let A be an additive category. Its radical is defined as the ideal generated by
all non-invertible morphisms between indecomposable objects. Notation: R(A).

Proposition 12. Let A be a Krull-Schmidt category and R = R(A). Let X, Y ∈ Ind(A). Then
R(X, Y ) consists of all non-invertible morphisms from X to Y .

Proof. Assume f ∈ R(X, Y ). If X 6∼= Y there is nothing to prove, if X ∼= Y we can assume that
X = Y . By definition, f =

∑
fi where fi factors as

X
ai−→ Xi

bi−→ Yi
ci−→ X,

where Xi, Yi ∈ Ind(A) and bi is not invertible. Assume that fi is invertible, then biai is a split
embedding. Since Yi is indecomposable, its endomorphism ring has no idempotents, it means
that biai is invertible. Then bi is a split surjection. Since Xi is indecomposable, it means that bi is
invertible, a contradiction. Hence fi is not invertible, fi ∈ R(End(X)) and thus f ∈ R(End(X))
is not invertible.
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Let us describe the quotient category of a Krull-Schmidt category by its radical. For an
indecomposable object X ∈ A denote by TX the quotient

TX := End(X)/R(End(X)),

it is a division ring. By Proposition 12 we have

EndA/R(A)(X) ∼= TX , HomA/R(A)(X, Y ) = 0,

for X 6∼= Y indecomposable.
It follows that

Proposition 13. For a Krull-Schmidt category A one has

A/R(A) ∼=
⊕

X∈Ind(A)

mod−TX ,

where the sum is taken over isomorphism classes of indecomposable objects.

Proof of Theorem 7. Follows from Proposition 13 since mod−TX is the category of finite-
dimensional vector spaces over the division ring and the dimension of such vector spaces is
well-defined.

Remark 14. Let A be the category of finite-dimensional k-vector spaces V with dimV 6= 1.
Then A is not idempotent complete and a decomposition into indecomposable summands can
be not unique. For example, k6 = k2 ⊕ k2 ⊕ k2 = k3 ⊕ k3 are two such decompositions. The
endomorphism algebras End(k2) ∼= M2(k) and End(k3) ∼= M3(k) of indecomposable objects are
not local.

We continue with some properties of Krull-Schmidt categories. For a local ring A we de-
note its maximal ideal by R(A) and call it the radical of A. Denote by Ind(A) the family of
indecomposable objects in A.

Lemma 15. Let A be a Krull-Schmidt category, P,Q1, . . . , Qn ∈ Ind(A), P 6∼= Qi. Let P
f−→

⊕Qi
g−→ P be morphisms, then gf ∈ R(End(P )).

Proof. We have f =
∑
fi where fi : P → Qi belongs to R(A). By Lemma 9 f ∈ R(A), hence

gf ∈ R(A). By Proposition 12 we get that gf ∈ R(End(P )).

Lemma 16. Let A be a Krull-Schmidt category, P ∈ Ind(A), Q ∈ A. Then a morphism
f : P → Q is a split monomorphism iff f /∈ R(A). A similar dual statement holds.

Proof. If f is a split mono then gf = 1P for some g. Suppose f ∈ R(A), then 1P ∈ R(A), a
contradiction with Proposition 12. Now assume f /∈ R(A). WriteQ = ⊕Qi with indecomposable
Qi, then f =

∑
fi, where fi : P → Qi. By Lemma 9, fi /∈ R(A) for some i. By Proposition 12,

fi is an isomorphism. It follows easily that f has a left inverse.

Lemma 17. Let A be a Krull-Schmidt category, P ∈ Ind(A), Q1, . . . , Qn ∈ A, fi : P → Qi

be some morphisms. Then f := ⊕fi : P → ⊕Qi is a split monomorphism iff fi is a split
monomorphism for some i. A similar dual statement holds.

Proof. By Lemmas 16 and 9, f is a split mono ⇐⇒ f /∈ R(A) ⇐⇒ fi /∈ R(A) for some i ⇐⇒
fi is a split mono for some i.
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