On quivers and their representations ${ }^{1}$

By definition, a quiver Γ is an oriented graph. It consists of a set Γ_{0} of vertices and a set Γ_{1} of edges (also called arrows). For any arrow $a \in \Gamma_{1}$ we denote by $s(a)$ its source and by $t(a)$ its target. Today we will consider only finite quivers, that is, the sets Γ_{0} and Γ_{1} are finite.

A representation of a quiver Γ over a field k is by definition a collection $\left(M_{i}, i \in \Gamma_{0} ; m_{a}, a \in\right.$ $\left.\Gamma_{1}\right)$, where M_{i} are vector spaces and $m_{a}: M_{s(a)} \rightarrow M_{t(a)}$ are linear maps. A representation is finite-dimensional if all M_{i} are finite-dimensional. A morphism of representations $\left(M_{i}, m_{a}\right) \rightarrow$ $\left(N_{i}, n_{a}\right)$ is a collection $\left(f_{i}, i \in \Gamma_{0}\right)$, where $f_{i}: M_{i} \rightarrow N_{i}$ are linear maps obeying equalities

$$
f_{t(a)} m_{a}=n_{a} f_{s(a)}
$$

for any $a \in \Gamma_{1}$. Representations of Γ over k form an abelian category which we denote by $R e p_{\mathrm{k}} \Gamma$.
Also one can consider contravariant representations of Γ, where linear maps go in the opposite direction. If we denote the quiver Γ with all the arrows reversed by $\Gamma^{o p}$, then the category of contravariant representations of Γ is just $R e p_{\mathrm{k}} \Gamma^{o p}$.

A path from $i_{0} \in \Gamma_{0}$ to $i_{n} \in \Gamma_{0}$ is by definition a sequence of arrows a_{1}, \ldots, a_{n} such that $s\left(a_{1}\right)=i_{0}, t\left(a_{n}\right)=i_{n}$ and $t\left(a_{k}\right)=s\left(a_{k+1}\right)$ for all $k=1, \ldots, n-1$. Such path is written as $p=a_{n} a_{n-1} \cdot \ldots \cdot a_{1}$, it is said to have source $s(p)=i_{0}$, target $t(p)=i_{n}$ and length n. Clearly, any arrow is a path of length 1 . Also, by definition for any $i \in \Gamma_{0}$ we have a path of length 0 from i to i, denoted by e_{i}.

The path algebra $\mathrm{k} \Gamma$ of Γ is defined as follows. As a k -vector space, it has the basis formed by all paths in Γ. The composition law is defined on basic elements $p=a_{n} \ldots a_{1}$ and $q=b_{m} \ldots b_{1}$ by $p q=a_{n} \ldots a_{1} b_{m} \ldots b_{1}$ if $t(q)=s(p)$ and $p q=0$ otherwise. The algebra $\mathrm{k} \Gamma$ is associative, it has the identity $1=\sum_{i \in \Gamma_{0}} e_{i}$. The path algebra is finite-dimensional if and only if Γ has no oriented cycles. The algebra $\mathrm{k} \Gamma$ is usually non-commutative. Also, $\mathrm{k} \Gamma$ has a grading by the path length: $\mathrm{k} \Gamma=\oplus_{n \geqslant 0}(\mathrm{k} \Gamma)_{n}$.

Let $R=R(\mathrm{k} \Gamma)=\oplus_{n>0}(\mathrm{k} \Gamma)_{n} \subset \mathrm{k} \Gamma$ be the subspace spanned by paths of positive length. Clearly, R is a two-sided ideal. One has an algebra isomorphism $\mathrm{k} \Gamma / R(\mathrm{k} \Gamma) \cong \prod_{i \in \Gamma_{0}} \mathrm{k}$, hence $\mathrm{k} \Gamma$ is a basic algebra.

Elements $e_{i}, i \in \Gamma_{0}$ form a complete family of orthogonal idempotents: it means that

$$
\begin{equation*}
e_{i}^{2}=e_{i}, e_{i} e_{j}=0 \quad \text { for } i \neq j \text { and } \quad \sum_{i} e_{i}=1 \tag{1}
\end{equation*}
$$

Instead of representations one can consider modules over path algebras. For a right $\mathrm{k} \Gamma$ module M and $i \in \Gamma_{0}$ denote

$$
M_{i}:=M \cdot e_{i} \subset M .
$$

Formulas (1) imply the equality of vector spaces $M=\oplus_{i \in \Gamma_{0}} M_{i}$. For any arrow $i \xrightarrow{a} j$ the right multiplication $M \rightarrow M$ sends M_{j} to M_{i} and other M_{k}-s to 0 . Thus we get a contravariant representation of Γ. Vice versa, for any contravariant representation $\left(M_{i}, m_{a}\right)$ of Γ consider the vector space $M=\oplus_{i} M_{i}$. It is a right $\mathrm{k} \Gamma$-module: let idempotents e_{i} acts by projectors to M_{i}, let an arrow $a: i \rightarrow j$ act by m_{a} on M_{j} and by 0 on other M_{k}-s. This action extends to a right $\mathrm{k} \Gamma$ action on M. This gives a proof of

Proposition 1. One has equivalences

$$
R e p_{\mathrm{k}} \Gamma \cong \mathrm{k} \Gamma-\operatorname{Mod} ; \operatorname{Rep}_{\mathrm{k}} \Gamma^{o p} \cong \operatorname{Mod}-\mathrm{k} \Gamma
$$

[^0]We prefer to use right modules/contravariant representations. By default, modules are right modules.

Let us consider the following $\mathrm{k} \Gamma$-modules.
For any $i \in \Gamma_{0}$ let S_{i} be the representation of Γ such that $\left(S_{i}\right)_{i}=\mathrm{k},\left(S_{i}\right)_{j}=0$ otherwise, all arrows act by zero. Let $P_{i}=e_{i} \mathrm{k} \Gamma \subset \mathrm{k} \Gamma$ be the cyclic submodule generated by e_{i}.
Proposition 2. 1. Modules S_{i} are simple and pairwise non-isomorphic.
2. One has $\mathrm{k} \Gamma \cong \oplus_{i \in \Gamma_{0}} P_{i}$. Modules P_{i} are graded, projective, indecomposable and pairwise non-isomorphic.
3. For any right $\mathrm{k} \Gamma$-module M one has $\operatorname{Hom}\left(P_{i}, M\right) \cong M_{i}$. In particular, $\operatorname{Hom}\left(P_{i}, S_{j}\right)=\delta_{i j} \mathrm{k}$.
4. $\operatorname{Hom}\left(P_{i}, P_{j}\right)=\left(P_{j}\right)_{i}=\langle\text { paths from } i \text { to } j\rangle_{\mathrm{k}}$.

Proof. (1) is clear.
(2) Identities (1) imply that $\mathrm{k} \Gamma \cong \oplus_{i \in \Gamma_{0}} P_{i}$, hence P_{i}-s are projective. Any P_{i} is graded as a submodule in $\mathrm{k} \Gamma$ generated by a homogeneous element e_{i}. One has $P_{i} / P_{i} R(\mathrm{k} \Gamma) \cong S_{i}$ hence P_{i}-s are pairwise non-isomorphic.
(3) To any homomorphism $f: P_{i} \rightarrow M$ one can associate an element $f\left(e_{i}\right) \in M_{i}$. This element defines f uniquely. Moreover, any $m \in M_{i}$ can be such an image for some f. Indeed, consider the homomorphism $\bar{f}: \mathrm{k} \Gamma \rightarrow M$ given by $\bar{f}(x)=m x$ and restrict it to $P_{i} \subset \mathrm{k} \Gamma$, denote the restriction by f. Then $f\left(e_{i}\right)=m e_{i}=m$.
(4) follows from (3) because $\left(P_{j}\right)_{i}=e_{j} \mathrm{k} \Gamma e_{i}=\langle\text { paths from } i \text { to } j\rangle_{\mathrm{k}}$.

By a relation in Γ we mean an element in $\mathrm{k} \Gamma$ of the form $\sum_{i=1}^{n} \lambda_{i} p_{i}$ where $\lambda_{i} \in \mathrm{k}$ and p_{1}, \ldots, p_{n} are paths with common source and target. Alternatively, we can consider a two-sided ideal $I \subset k \Gamma$. Since $I=\oplus_{i, j \in \Gamma_{0}} e_{i} I e_{j}$, any ideal is generated (over k) by relations.

For an ideal $I \subset \mathrm{k} \Gamma$ a path algebra with relations is defined as $\mathrm{k} \Gamma / I$. Today we will denote this algebra by A. We usually use the same notations for elements in $\mathrm{k} \Gamma$ and their images in A. In particular, we have a complete system of orthogonal idempotents $e_{i}, i \in \Gamma_{0}$ in A.

For any $i, j \in \Gamma_{0}$ we denote $(\mathrm{k} \Gamma)_{i j}:=e_{i} \mathrm{k} \Gamma e_{j} \subset \mathrm{k} \Gamma, I_{i j}:=e_{i} I e_{j} \subset I$ and $A_{i j}=e_{i} A e_{j} \subset A$, these are linear subspaces. We have $\mathrm{k} \Gamma=\oplus_{i j}(\mathrm{k} \Gamma)_{i j}, I=\oplus_{i j} I_{i j}$ and $A=\oplus_{i, j} A_{i j}$. Consequently,

$$
A_{i j}=(k \Gamma)_{i j} / I_{i j},
$$

it is the space of paths from j to i modulo some relations.
As we shall see, one can restrict to admissible ideals in path algebras.
Definition 3. An ideal $I \subset \mathrm{k} \Gamma$ is called admissible if $R(\mathrm{k} \Gamma)^{2} \supset I \supset R(\mathrm{k} \Gamma)^{N}$ for some N.
For an admissible ideal the path algebra A with relations is finite-dimensional. Note also that zero ideal in $\mathrm{k} \Gamma$ is admissible iff Γ has no oriented cycles.

Further we will assume that ideal I is admissible.
Let $R(A):=R(\mathrm{k} \Gamma) / I \subset A$, this is a nilpotent ideal. Moreover, $A / R(A) \cong \mathrm{k} \Gamma / R(\mathrm{k} \Gamma) \cong$ $\prod_{i \in \Gamma_{0}} k$, hence $R(A)$ is the radical of A. Also it follows that A is a basic algebra.

In view of Proposition 1, modules over A correspond to those representations of Γ that obey relations from I. This gives an equivalence of certain categories.

Let M be a module over A. For any $i \in \Gamma_{0}$ we denote by M_{i} the subspace $M e_{i} \subset M$. As above, one has a decomposition of k-vector spaces

$$
M=\oplus_{i \in \Gamma_{0}} M_{i}
$$

Simple $\mathrm{k} \Gamma$-modules S_{i} satisfy all relations from I hence S_{i} is an A-module. Also, let $P_{i}:=$ $e_{i} A \subset A$, this is a right A-module.

Proposition 4. Assume $I \subset \mathrm{k} \Gamma$ is an admissible ideal and $A=\mathrm{k} \Gamma / I$. Then

1. Modules S_{i} are simple and pairwise non-isomorphic. Any simple A-module is one of these.
2. One has $A \cong \oplus_{i \in \Gamma_{0}} P_{i}$. Modules P_{i} are projective, indecomposable and pairwise nonisomorphic. Any indecomposable projective A-module is one of these.
3. For any right A-module M one has $\operatorname{Hom}\left(P_{i}, M\right) \cong M_{i}$. In particular, $\operatorname{Hom}\left(P_{i}, S_{j}\right)=\delta_{i j} \mathrm{k}$.
4. $\operatorname{Hom}\left(P_{i}, P_{j}\right)=\left(P_{j}\right)_{i}=\langle\text { paths from } i \text { to } j\rangle_{\mathrm{k}} / I_{j i}$.

Proof. (1) Only the last assertion in not straightforward. It follows from a more general fact: any finite-dimensional A-module has a filtration with quotients S_{i}. Indeed, let M be a such module. Consider the sequence $M \supset M \cdot R(A) \supset M \cdot R(A)^{2} \supset \ldots \supset M \cdot R(A)^{N}=0$. Any its quotient is a module annihilated by $R(A)$, thus is a direct sum of S_{i}-s. Refining this filtration we get a filtrations with quotients S_{i}-s.

The proof of (2) is the same as in Proposition 2. To see that P_{i} is indecomposable, use that $P_{i} / P_{i} \cdot R(A) \cong S_{i}$ is indecomposable and Lemma 5 below. To see that any indecomposable projective A-module is isomorphic to some P_{i}, use Krull-Schmidt theorem.
(3),(4) are similar to those of Proposition 2.

Lemma 5 ("Nakayama's Lemma"). Assume $I \subset \mathrm{k} \Gamma$ is an admissible ideal and $A=\mathrm{k} \Gamma / I$. Let M be an A-module such that $M=M \cdot R(A)$. Then $M=0$.
Proof. Clear since $R(A)^{N}=0$ for some N.
Corollary 6. Assume $I \subset \mathrm{k} \Gamma$ is an admissible ideal and $A=\mathrm{k} \Gamma / I$. Then any finite-dimensional A-module has a finite filtration with quotients $S_{i}, i \in \Gamma_{0}$.

Now let us prove that representation theory of finite-dimensional algebras reduces to the study of path algebras with admissible relations (over an algebraically closed field).

Let us denote by proj $-A$ the category of finite-dimensional projective right A-modules. Then we have

Proposition 7. Let $A=\mathrm{k} \Gamma / I$ be the path algebra with admissible relations. Then the AuslanderReiten quiver $\Gamma(\operatorname{proj}-A)$ of the category $\operatorname{proj}-A$ is isomorphic to Γ.

Proof. Recall the definition of the Auslander-Reiten quiver of a k-linear Krull-Schmidt category. Its vertices are isomorphism classes of indecomposable objects, number of arrows from X to Y is the dimension of the space

$$
\operatorname{Irr}(X, Y):=\mathcal{R}(X, Y) / \mathcal{R}^{2}(X, Y)
$$

where \mathcal{R} denotes the radical of the given category.
In our case, indecomposable objects in proj $-A$ are exactly the modules $P_{i}, i \in \Gamma_{0}$. Further, we have by Proposition 4

$$
\mathcal{R}\left(P_{i}, P_{j}\right)=\langle\text { paths of length } \geqslant 1 \text { from } i \text { to } j\rangle_{\mathrm{k}} / I_{j i}
$$

and

$$
\mathcal{R}^{2}\left(P_{i}, P_{j}\right)=\langle\text { paths of length } \geqslant 2 \text { from } i \text { to } j\rangle_{\mathrm{k}} / I_{j i},
$$

hence

$$
\begin{aligned}
& \mathcal{R}\left(P_{i}, P_{j}\right) / \mathcal{R}^{2}\left(P_{i}, P_{j}\right) \cong \\
& \cong\langle\text { paths of length } \geqslant 1 \text { from } i \text { to } j\rangle_{\mathrm{k}} /\langle\text { paths of length } \geqslant 2 \text { from } i \text { to } j\rangle_{\mathrm{k}} \cong \\
& \\
& \cong\langle\text { paths of length } 1 \text { from } i \text { to } j\rangle_{\mathrm{k}}=\langle\text { arrows from } i \text { to } j\rangle_{\mathrm{k}} .
\end{aligned}
$$

Thus the dimension of $\operatorname{Irr}\left(P_{i}, P_{j}\right)$ equals to the number of arrows from i to j in Γ.

Definition 8. A finite-dimensional k -algebra A is called elementary if $A / R(A) \cong \prod \mathrm{k}$.
From lecture 3 it follows that A is elementary iff the right A-module A decomposes as $A=\oplus_{i=1}^{n} P_{i}$ where P_{1}, \ldots, P_{n} are indecomposable pairwise non-isomorphic modules and for all i one has $\left(\operatorname{End} P_{i}\right) / R\left(\operatorname{End} P_{i}\right) \cong \mathrm{k}$.

Note that any elementary algebra is basic. Also we have
Proposition 9. Suppose \mathbf{k} is algebraically closed. Then a finite-dimensional algebra A is basic if and only if it is elementary.

Proof. Recall that an algebra A is basic iff the right A-module A decomposes as $A=\oplus_{i=1}^{n} P_{i}$ where P_{1}, \ldots, P_{n} are indecomposable pairwise non-isomorphic modules. Hence it suffices to check that any division algebra $T\left(P_{i}\right):=\left(\operatorname{End} P_{i}\right) / R\left(\operatorname{End} P_{i}\right)$ is just k. But $T\left(P_{i}\right)$ is a finitedimensional division k -algebra, it must be k since k is algebraically closed.

Theorem 10 (Gabriel). Let A be an elementary finite-dimensional k -algebra. Then A is isomorphic to $\mathrm{k} \Gamma / I$ where Γ is a finite quiver and I is an admissible ideal. Moreover, such quiver Γ is unique.

Proof. Uniqueness of Γ follows from Proposition 7. Let us prove the first assertion.
Let $A \cong \oplus_{i=1}^{n} P_{i}$ be the decomposition into indecomposable projective modules, then

$$
A \cong \operatorname{End}_{\bmod -A} A \cong \oplus_{i, j} \operatorname{Hom}\left(P_{i}, P_{j}\right)
$$

Since A is elementary, for any i one has End $P_{i}=\mathrm{k} \oplus R\left(\right.$ End $\left.P_{i}\right)$. Denote by $e_{i} \in A$ the element $1_{P_{i}} \in \operatorname{End} P_{i} \subset A$, then $e_{1}, \ldots, e_{n} \in A$ are orthogonal idempotents.

Let $\Gamma_{0}:=\{1, \ldots, n\}$. For any i, j take $\operatorname{dim}_{\mathrm{k}}\left(e_{j}\left(R(A) / R(A)^{2}\right) e_{i}\right)$ arrows from i to j. The finite quiver Γ is ready!

Choose bases in the vector spaces $e_{j}\left(R(A) / R(A)^{2}\right) e_{i}$, choose their lifts to $e_{j} R(A) e_{i}$. Define a homomorphism $f: \mathrm{k} \Gamma \rightarrow A$ by sending $e_{i} \in \mathrm{k} \Gamma$ to $e_{i} \in A$ and any arrow from i to j in Γ to the corresponding element in $e_{j} R(A) e_{i}$.

Let us check that f is surjective. We see that f sends $R(\mathrm{k} \Gamma)$ to $R(A)$ and thus $R(\mathrm{k} \Gamma)^{m}$ to $R(A)^{m}$ for any $m \geqslant 1$. The map

$$
f_{m}: R(\mathrm{k} \Gamma)^{m} / R(\mathrm{k} \Gamma)^{m+1} \rightarrow R(A)^{m} / R(A)^{m+1}
$$

induced by f is a bijection for $m=0$ (clear) and $m=1$ (by the construction of Γ), and thus f_{m} is epimorphic for any $m \geqslant 0$. Consequently, f induces surjective maps $\mathrm{k} \Gamma / R(\mathrm{k} \Gamma)^{m} \rightarrow A / R(A)^{m}$ for any $m \geqslant 1$, which are isomorphisms for $m=1,2$. Since $R(A)$ is a radical, one has $R(A)^{N}=0$ for some N. It follows that f is surjective.

Let $I=\operatorname{ker} f$, then $A \cong \mathrm{k} \Gamma / I$. It remains to check that I is admissible. First, $f\left(R(\mathrm{k} \Gamma)^{N}\right) \subset$ $R(A)^{N}=0$ by the above, hence $R(\mathrm{k} \Gamma)^{N} \subset I$. Also, the map $\mathrm{k} \Gamma / R(\mathrm{k} \Gamma)^{2} \rightarrow A / R(A)^{2}$ induced by f is an isomorphism, hence $I \subset f^{-1}\left(R(A)^{2}\right)=R(\mathrm{k} \Gamma)^{2}$.

[^0]: ${ }^{1}$ By technical reasons these notes are typed in English.

