Поля алгебраических чисел.

Задачи - 1.

Дедлайн для задач 18 - 23: вторник, 23 ноября.

Дедлайн можно отодвинуть, если у вас завал, но о том, что вы не успеваете (хоть и намерены сдать задание), меня следует предупредить.

- **18**. Пусть N свободная \mathcal{O} -решетка в K ранга n, порожденная базисом $\{e_i\}$. Проверьте, что $D_{\mathcal{O}}(N)$ свободная \mathcal{O} -решетка в K, порожденная двойственным базисом $\{f_i\}$.
- **19**. Пусть $N = \langle \{e_i\} \rangle$, $M = \langle \{g_i\} \rangle$ свободные \mathcal{O} -решетки в \mathcal{O}_K . Докажите, что $(D_{\mathcal{O}}(N):D_{\mathcal{O}}(M))_{\mathcal{O}} = (M:N)_{\mathcal{O}}$.
- **20**. Докажите, что если $N=\langle\{e_i\}\rangle$ свободная \mathcal{O} -решетка в \mathcal{O}_K , то $\mathfrak{d}_{\mathcal{O}}(N)=(\det Tr(e_ie_i)).$
- **21**. Пусть k поле. Докажите, что любая конечномерная k-алгебра без делителей нуля поле.
- **22**. Пусть $K = \mathbf{Q}(\sqrt{d}), \ d$ бесквадратное целое число. Вычислите какой-нибудь базис кольца \mathcal{O}_K над \mathbf{Z} и сосчитайте дискриминант Δ_K .
- **23**. Пусть \mathcal{O} дедекиндова область. Проверьте, что факторкольцо \mathcal{O}/I по любому ненулевому идеалу кольцо главных идеалов.

Упражнения.

Упражнения полезно сделать, чтобы не оставлять ничего за спиной. Записывать и сдавать решения не нужно.

Разберите ещё раз доказательства теорем 3.20, 3.23 и 3.29 из английского конспекта.