
2. Galois theory

Notation. If otherwise not specified k, K ,L and so on will be arbitrary fields.

Theorem. k[T ] is a principal ideal domain.

Proof. Euclid’s algorithm �

Definition 2.1. If the inclusion k ↪→ K is fixed then K is called an extension of k
(notation K/k). Under this condition k could be identified with its image in K. Suppose
K1/k and K2/k are extensions of k and σ : K1 → K2 is a field homomorhism. If σ|k = Id
then σ is called a homomorphism of extensions K1/k → K2/k.

Key Lemma 2.2. Suppose K1/k and K2/k are extensions of k, σ : K1/k → K2/k
a homomorphism of extensions. Suppose P (T ) ∈ k[T ], α ∈ K1. Then P (α) = 0 ⇒
P (σ(α)) = 0.
Proof. Clear �

Definition 2.3. Suppose K/k is an extension, α ∈ K. α is called algebraic over k
iff ∃P ∈ k[T ] such that P (α) = 0. K/k is called algebraic iff all elements of K are alge-
braic over k.

Definition 2.4. K/k is called finite iff K is a finitely dimensional vector space over

k. Its degree (notation [K : k])
def
= dimkK.

Theorem 2.5. K/k is finite ⇒ K/k is algebraic.

Proof. In the finitely dimensional vector space the powers 1, α, α2, α3, . . . are linearly
dependent �

Remark. The opposite is clearly not true.

Basic examples:
kP - construction. Suppose P ∈ k[T ] is irreducible of degree ≥ 1. Then (P ) is a maximal

ideal in k[T ] hence kP
def
= k[T ]/(P ) is a field. [kP : k] = degP (hometask).

k(α). Suppose K/k is an extension, α ∈ K. Then k(α)
def
= { the mimimal subfield of K

containing both k and α}.
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Remark. Let {αi, i∈I} be any set of elements of K. The subfield k({αi}) ⊂ K could
be defined by the same property. Any element α ∈ k({αi}) is representable (not neces-

sary in a unique way) with the formula α = P ({αi})
Q({αi}) where P and Q are polynomials in

variables {Ti, i ∈ I} and Q({αi}) 6= 0.

Theorem 2.6. Suppose K/k is an extension, α ∈ K algebraic over k. Let Pα,K/k ∈ k[T ]
(shortly just Pα, k or even Pα) be a monic irreducible polynomial such that Pα(α) = 0.
Then
1) Pα exists and is unique.
2) kPα ' k(α) ' k[α] (where k[α] is the minimal subring of K containig both k and α).

Proof. 1) Since α is algebraic some P ∈ k[T ] such that P (α) = 0 does exist. One
may suppose P is irreducible (otherwise decompose) and monic (otherwise divide by the
leading coefficient). If P and Q are both irreducible and monic then either P = Q or
∃G,H ∈ k[T ] such that PG+QH = 1 (Euclid algorithm). If P (α) = Q(α) = 0 the latter
case is excluded, so P=Q �

2) Consider the ring homomorphism φ : k[T ] → K, φ|k = Id, T
φ7→ α. By

construction im (φ) = k[α]. Since φ does not act on k and Pα has coefficients in k,
φ(Pα(T )) = Pα(φ(T )) = Pα(α) = 0, hence Pα ∈ ker(φ). Therefore φ defines a surjective
homomorphism φ : k[T ]/(Pα) → k[α]. Since Pα is irreducibe k[T ]/(Pα) is a field, so φ
is also injective, hence an isomorphism. This means k[α] is a field, so k[α] = k(α) �

Theorem 2.7. Suppose K/k and L/K are finite extensions. Then L/k is finite and
[L : K][K : k] = [L : k].

Proof. Let {xi} ∈ K be a basis of the vector space K over k, {yj} ∈ L same for L
over K. Then {xiyj} is a basis of the vector space L over k (hometask) �

Theorem 2.8. Suppose K/k is algebraic and finitely generated. Then K/k is finite.

Proof. If K = k(α) (i.e generated by one algebraic element) then K/k is finite by the
Theorem 2.6.2). Suppose now K = k(α, β). Then k(α, β)/k(α) and k(α)/k are both
finite hence k(α, β)/k is finite by the previous theorem. The proof ends by induction �

Theorem 2.9. Suppose K is generated over k by any number of algebraic elements.
Then K/k is algebraic.
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Proof. By 2.6.2) and by the Remark before Theorem 2.6 it suffices to prove that α±β, αβ
are algebraic over k for any α, β ∈ k. As in the proof of the previous theorem one may
conclude that k(α, β)/k is finite. Therefore it is algebraic �

Theorem 2.10. Suppose L/K and K/k are both algebraic (not necessary finite). Then
L/k is algebraic.

Proof. Suppose α ∈ L. By assumption α is algebraic over K hence α is a root of the
polynomial Pα,K ∈ K[T ]. Let k1 be the subfield of K generated over k by all coefficients
of the polynomial Pα,K . Then k ⊂ k1 ⊂ k1(α), k1(α)/k1 finite by the Theorem 2.6.2),
k1/k finite by the Theorem 2.8. So k1(α)/k is finite by the Theorem 2.7, hence algebraic.
In particular α is algebraic over k �

Definition 2.11. A field K is called algebraicaly closed iff K has no algebraic extensions.
Equivalently, any nonconstant irreducible polynomial P ∈ K[T ] is of degree 1.

Theorem 2.12. ∀k ∃ k/k such that k is algebraic over k and k is algebraically closed.

Remark. The notation k is justified later when we prove that k/k is unique up to a
(non-canonical) isomorphism.

Proof. Step 1. First we construct an algebraic extension K1/k such that any noncon-
stant polynomial with coefficients in k has a root in K1. This is just a refinement of
the kP - construction above. Consider the ring k[{TP}], TP being independent variables
numbered by all monic nonconstant polynomials in k[T ]. Let I ⊂ k[{TP}] be the ideal
generated by the elements P (TP ). Then I is nontrivial. Indeed, suppose the opposite
is true. Then there exist some polynomials Pi ∈ k[T ] and some elements gi ∈ k[{TP}]
such that

n∑
i=1

giPi(TPi) = 1. Consider a field K0 ⊃ k such that each Pi from this finite

set has a root in K0. Certainly one may get K0 by successive use of the kP -construction.
For 1 ≤ i ≤ n suppose αi ∈ K0 and Pi(αi) = 0. Consider the ring homomorphism
φ : k[{TP}] → K0 defined as follows: φ|k = Id; φ(TPi) = αi if 1 ≤ i ≤ n; φ(TPi) = 0
otherwise. Acting with φ on the equation above one gets 0=1 in K0.
Since I is nontrivial there exists a maximal ideal M, I ⊂ M ⊂ k[{TP}]. Let K1 be the
quotient field k[{TP}]/M . K1 is algebraic over k because it is generated by the images
of the independent variables TP which are all algebraic by construction of M (the latter
contains all P (TP )) �
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Step 2. Now construct k ⊂ K1 ⊂ K2 ⊂ K3 . . . as in step 1 (for all i any noncon-

stant polynomial with coefficients in Ki has a root in Ki+1). Let k
def
=
⋃
Ki. Clearly

the set k carries the natural structure of the field. By the Theorem 2.10 all the Ki are
algebraic over k hence same is k as any element of k lies in some Ki. Suppose P ∈ k[T ].
P has a finite number of coefficients therefore all of them are contained in some Ki. Then
P has a root in Ki+1 hence in k �

Now we switch to the main object of study in Galois theory : homomorphism s of exten-
sions.

Theorem 2.13. Suppose K/k is algebraic, σ : K/k → K/k is a homomorphism of
extensions. Then σ is an automorphism.

Proof. Any field homomorphism is injective so it suffices to prove σ is surjective. Suppose
α ∈ K. Let α = α1, α2, . . . , αn be the full list of the roots of Pα in K. k(α1, . . . , αn)/k
is finite by the Theorem 2.8. σ(k(α1, . . . , αn)) ⊂ k(α1, . . . , αn) (see the key Lemma 2.2).
Since kerσ = 0 σ is a nondegenerate linear transformation of the k - vector space of finite
dimension, therefore σ is surjective. In particular α ∈ imσ �

Definition 2.14. Supppose K/k and L/k are two extensions of the same ground field.

Then Σ
L/k
K/k is the set of all homomorphism s σ : K/k → L/k.

Example. Suppose K = kP . A homomorphism σ : K/k → L/k uniquely extends

to the ring homomorphism
∼
σ: k[T ] → L such that

∼
σ |k = Id and P (

∼
σ (T )) = 0. There-

fore in this case the set Σ
L/k
K/k coincides with the set of different roots of P (T ) in L.

Theorem 2.15. Suppose k ⊂ M ⊂ K, K = M(α), α algebraic over M , L/k alge-

braically closed. Then any element σ ∈ Σ
L/k
M/k could be extended to an element of Σ

L/k
K/k.

Proof. Define the extension L/M by including M ↪→ L via σ. Then the set Σ
L/M
M(α)/M

is nonempty by the Theorem 2.6.2) and the Example above �

Theorem 2.16. Suppose K/k is algebraic (not necessary finite), L/k algebraically closed.

Then Σ
L/k
K/k is nonempty. If both K/k and L/k are algebraic and algebraically closed then

any σ ∈ Σ
L/k
K/k is an isomorphism.
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Proof. We will use the transfinite induction. Consider the set of pairs (M,σ) where
k ⊂ M ⊂ K and σ : M/k → L/k is a homomorphism . Define an ordering on this set as
follows: (M1, σ1) ≤ (M2, σ2) iff M1 ⊂ M2 and σ2|M1 = σ1. Clearly any linearly ordered
subset (M1, σ1), (M2, σ2), (M3, σ3), . . . has an upper bound (M∞ =

⋃
Mi, σ∞ = (σionMi)).

By the Zorn Lemma there exists a pair (M,σ) which is a maximal element in the set.
Suppose that M 6= K. Then ∃α ∈ K such that α /∈ M . By the previous theorem there
exists a homomorphism M(α) → L extending σ. This contradicts the assumption that
the pair (M,σ) is maximal.

Therefore M = K, so Σ
L/k
K/k is nonempty. If K is algebraically closed same is σ(K). If L

is algebraic over k it is also algebraic over σ(K), so L and σ(K) must coincide �

Definition 2.17. The number [K : k]s
def
= #(Σ

k/k
K/k) is called the separable degree of

the algebraic extension K/k.

Remark. At the moment it is not yet clear that [K : k]s is finite for the finite exten-
sion K/k.

Theorem 2.18. 1) [L : K]s[K : k]s = [L : k]s if all three are finite.
2) If K/k is a finite extension then [K : k]s ≤ [K : k].

Proof. 1) Let k ⊂ K ⊂ L ⊂ k. Consider the natural map φ : Σ
k/k
L/k → Σ

k/k
K/k (the re-

striction to K). For any σ0 ∈ Σ
k/k
K/k the ”fiber” Fσ0

def
= {σ ∈ Σ

k/k
L/k such that σ|K = σ0} is

in one-to-one correspondence with the set Σ
k/K
L/K . Indeed, if σ0 = Id then it follows from

the definition of Σ. Now suppose σ0 is arbitrary. Let {σi ∈ Σ
k/k
L/k} be the full set of differ-

ent elements of Fσ0 . Then ∀i k ⊂ σ0(K) ⊂ σi(L) ⊂ k. The map σi 7→ σi ◦ σ−1
1 provides

a one-to-one correspondence Fσ0
∼→ Σ

k/σ0(K)
σ1(L)/σ0(K), the latter set clearly being isomorphic

to Σ
k/K
L/K . The number of elements in the ”total space” of the ”fibration” φ is equal to

[L : k]s, the cardinality of the ”base” is [K : k]s while each ”fiber” consists of [L : K]s
elements as has just been proved, whence the statement �
2) If K is generated over k by one algebraic element α then K = kPα . [K : k] = degPα

while [K : k]s = #(Σ
k/k
K/k) = {the number of different roots of Pα in k }. Clearly the

second number is less or equal than the first one. For the general case consider the finite
extension K/k as a tower of the extensions generated by one algebraic element and then
use 1) �
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Definition 2.19. A finite extension K/k is called finite separable iff [K : k]s = [K : k].

Definition 2.20. Suppose k ⊂ K, α ∈ K algebraic over k. The element α is called
separable over k iff the extension k(α)/k is finite separable. The algebraic (not necessary
finite) extension K/k is called separable iff all α ∈ K are separable over k.

Theorem 2.21. Suppose k ∈ K, α ∈ K algebraic. Then α is separable over k ⇔ Pα(T )
has no multiple roots in k.

Proof. Clear �

Remark. This justifies the name ”separable”: α is separable iff the roots of its mini-
mal polynomial are ”separated” from each other.

Theorem 2.22. For the finite extension K/k Definitions 2.19 and 2.20 lead to the
same concept.

Proof. If K/k fits the Definition 2.19 then ∀α ∈ K k ⊂ k(α) ⊂ K hence k(α)/k
also fits 2.19 by the Theorem 2.18. Conversely, suppose all α ∈ K are separable over
k. Consider K as a finite tower k ⊂ k(α1) ⊂ k(α1, α2) ⊂ · · · ⊂ K. Since each αi is
separable over k it is by the Theorem 2.21 also separable over k(α1, α2, . . . , αi−1) because
Pαi, k(α1,α2,...,αi−1) is a factor of Pαi, k. To finish the proof one may use the Theorem 2.18 �

Theorem 2.23. If char(k) = 0 then any algebraic extension K/k is separable. If
char(k) = p and K/k is finite then [K : k] = pν [K : k]s for some nonnegative integer
ν.

Proof. Suppose α ∈ K. Pα(T ) has multiple roots in k ⇔ gcd(Pα, P
′
α) 6= 1. Since

Pα is irreducible this leads to P ′α = 0. If char(k) = 0 this is not possible as Pα is noncon-
stant. If char(k) = p then P ′α = 0 means that Pα(T ) = Q(T p

µ
) where Q ∈ k[T ] is some

polynomial such that Q′ 6= 0 and µ is a positive integer. Clearly degPα = pµ degQ. If
α1, α2, . . . , αdegQ are the roots of Pα in k then αp

µ

1 , α
pµ

2 , . . . , α
pµ

degQ are the roots of Q in

k. This means that the Theorem is true for the extension generated by one element. In
general, K/k is a tower of extensions of that kind whence the Theorem �

Theorem 2.24 (primitive element). Suppose K/k is a finite separable extension. Then
∃α ∈ K such that K = k(α).
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Proof. One may suppose k is infinite (otherwise K is a finite field, so K is gener-
ated over k by any group generator of its multiplicative group K∗). By the induc-
tion it suffices to prove the following statement: if K is separable over k and is gen-
erated over k by two elements then it is generated over k by one element. Suppose

K = k(α, β). Let {σi} be the full set of elements of Σ
k/k
K/k. Define P (T ) by the formula

P (T ) =
∏
i 6=j

(σi(α) + σi(β)T − σj(α) − σj(β)T ). SInce k is infinite ∃t0 ∈ k such that

P (t0) 6= 0. This means that for any two i 6= j σi(α + βt0) 6= σj(α + βt0). Therefore
[k(α + βt0) : k]s ≥ {number of different σi} = [k(α, β) : k]s. Since both k(α + βt0)/k and
k(α, β)/k are separable this means that [k(α + βt0) : k] ≥ [k(α, β) : k] which finishes the
proof �

Example. If k and K are finite fields than the extension K/k is always separable.
Indeed, if K = Fq then ∀α ∈ K Pα,K/k |T q − T , the latter polynomial having no double
roots.

We now will study the conditions under which Aut(K/k) could be identified with Σ
k/k
K/k.

Definition-Theorem 2.25. Suppose P ∈ k[T ] is of degree d ≥ 1. The extension
K/k (and the field K itself if no mix up is possible) is called its splitting field (notation
kP, split) iff two conditions hold:

1) P =
d∏
i=1

(T − αi) in K and

2) K = k(α1, . . . , αd)
Let K1/k, K2/k be two splitting fields for the same polynomial P . Then there exists an
isomorphism σ : K1/k

∼→ K2/k. If k ⊂ K2 ⊂ k then any σ′ : K1/k → k/k maps K1 to K2.

Proof. The field K2 could be considered as k, so one may suppose k ⊂ K2 ⊂ k. By
the Theorem 2.15 ∃σ : K1/k → k/k. The images of the roots of P in K1 under σ are the
roots of P in k by the key Lemma hence σ(K1) ⊂ K2. Since K1/k is a splitting field for
P one may conclude by using the definition that σ(K1)/k is also a splitting field for P .
But σ(K1) ⊂ K2, therefore σ(K1) = K2 �

Remark 1. In the Definition above P needs not to be irreducible.

Remark 2. As opposite to kP no simple construction of kP, split is available. In partic-
ular it is not clear how to calculate the degree [kP, split : k].
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Examples.

deg P = 1 kP, split = k

deg P = 2 If P is irreducible then kP, split
∼
= kP else kP, split = k.

Indeed, suppose P (T ) = a0 + a1T + a2T
2 is irreducible. Then P (S) = (S − φ(T ))(a2S +

a2φ(T ) + a1) in the ring kP [S] where φ : k[T ] → kP is a standard homomorphism . So
P splits completely in kP [T ] hence k ⊂ kP, split ⊂ kP . But kP, split 6= k while [kP : k] = 2,
therefore kP, split = kP .

Definition-Theorem 2.26. The algebraic extension K/k is called normal iff,
equivalently,

1) All σ ∈ Σ
k/k
K/k have the same image or

2) For any irreducible P ∈ k[T ] P has a root in K ⇒ P totally splits in K.

Proof. 1) ⇒ 2). One may suppose k ⊂ K ⊂ k. Let α ∈ K, P (α) = 0. Then

k ⊂ k(α) ⊂ K, k(α)
∼
= kP . Let P (T ) =

d∏
i=1

(T − βi) in k. Then ∀ βi ∃
∼
σi: kP/k → k/k

such that
∼
σi (α) = βi. As in the proof of the Theorem 2.15 each

∼
σi could be extended to

some σi ∈ Σ
k/k
K/k (i.e. σi|k(α) =

∼
σi). Hence βi ∈ imσi(= imσ1 by the assumption 1)). Since

σ1 : K → imσ1 is an isomorphism P (T ) =
d∏
i=1

(T − σ−1
1 (βi)) in K �

2) ⇒ 1). Suppose σ1 ∈ Σ
k/k
K/k, β ∈ imσ1. The polynomial Pβ ∈ k[T ] has a root σ−1

1 (β) in

K hence (by the assumption 2)) K1
def
= kPβ , split ⊂ K. Consider an arbitrary σi ∈ Σ

k/k
K/k.

By the Definition-Theorem 2.25 σi(K1) coincides with the unique subfield of k isomorphic
to kPβ , split. In particular β ∈ σi(K1) ⊂ σi(K) = im σi �

Theorem 2.27. For any nonconstant P ∈ k[T ] kP, split is a normal extension.

Proof. Hometask �
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Examples. Suppose k ⊂ K ⊂ L is a tower of algebraic extensions.

1. If L/k is normal then L/K is normal. In fact, one may identify K with k. Then

Σ
K/K
L/K ⊂ Σ

k/k
L/k so if the criterion 2.25.1) holds for L/k it also holds for L/K.

2. L/k normal, K/k not normal. Let k = Q, K = Q( 3
√

2), L = Q ⊂ C. Certainly
k/k is normal for any k. But K/k is not normal as the complex roots of the polynomial
T 3 − 2 are not in K.

3. K/k normal, L/K normal, L/k not normal. Let k = Q, K = Q(
√

2), L = Q( 4
√

2).
K/k and L/K are both of degree 2 hence normal (see Example 2 of the splitting field).
But L/k is not normal as the imaginary roots of T 4 − 2 are not in L.

Definition 2.28. An algebraic extension K/k is called Galois iff it is separable and
normal. If this is the case then the group Aut (K/k) is called its Galois group (notation

Gal (K/k)). If k ⊂ K ⊂ k then Gal (K/k) could be identified with the set Σ
k/k
K/k.

In what follows all the fields are supposed to be the subfields of the fixed k.

Theorem 2.29. Suppose K/k is a finite Galois extension. Then #Gal (K/k) = [K : k].

Proof. Since K/k is finite separable [K : k] = #Σ
k/k
K/k, the latter set being identical

to Gal (K/k) �

Definition 2.30. Suppose H ⊂ Gal (K/k) is a subgroup. The fixed field KH def
= {x ∈ K

such that ∀h ∈ H h(x) = x}.

Theorem 2.31 (the fundamental theorem of Galois theory). Suppose K/k is a finite
Galois extension, G = Gal (K/k) its Galois group. Then
1) There exists a one-to-one correspondence {subgroups H ⊂ G} ↔ { subfields k ⊂M ⊂
K} defined by the maps H 7→ KH , Gal (K/M)←pM .
2) M/k is normal ⇔ H / G (i.e. H is a normal subgroup).

Proof. ∀M K/M is separable (easy hometask) and normal (see Example 1 above) there-
fore Galois.
1) - Step 1. First we prove that KG = k. Indeed, suppose α ∈ KG. Any

∼
σ: k(α)/k → k/k

could be extended to some σ : K/k → k/k which is an element of the Galois group
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Gal (K/k). By assumption σ(α) = α hence #Σ
k/k
k(α)/k = 1. Since α is separable over k

this means that [k(α) : k] = 1 hence α ∈ k. By the same token ∀M M = KGal (K/M).
Therefore the composition map M 7→ Gal (K/M) 7→ KGal (K/M) leads back to M �
1) - Step 2. To finish the proof of the first statement of the Theorem it remains to
prove that Gal (K/KH) = H. If h ∈ H then by definition h does not act on KH hence
H ⊂ Gal (K/KH). We still need to prove that Gal (K/KH) does not contain ”extra”
elements. Since #Gal (K/KH) = [K : KH ] it suffices to prove that [K : KH ] ≤ #H.
Suppose α ∈ K. Choose the elements Id = σ1, σ2, . . . , σr ∈ H such that all σi(α) are dif-
ferent and the set {σ1, . . . , σr} is maximal with this property (i.e ∀σ ∈ H σ(α) coincides

with some σi(α)). Let P (T )
def
=

r∏
i=1

(T − σi(α)). Then ∀h ∈ H hP (T ) = P (T ). Indeed,

hP (T ) =
r∏
i=1

(T −h◦σi(α)) where the action of h just permutes the roots σi(α) (otherwise

for some i h ◦ σi(α) were different from all σj(α) in contradiction with the choice of the
set {σi}). This means that P (T ) ∈ KH [T ] hence α is of degree ≤ r over KH .
This holds for arbitrary α. Since K is separable over KH (see the start of the proof)
by the Theorem about a primitive element ∃α ∈ K such that K = KH(α). This α is
also of degree ≤ r over KH hence [K : KH ] ≤ r, the latter being ≤ #H by construction �

2) If M/k is normal then the restriction of any σ ∈ Gal (K/k) to M maps M to itself

therefore belongs to Gal (M/k). Clearly Gal (K/M) = ker(Gal (K/k)
σ 7→σ|M−→ Gal (M/k))

hence Gal (K/M) / Gal (K/k). Conversely, if M/k is not normal then ∃σ ∈ Σ
k/k
M/k such

that σ(M) 6= M so Gal (K/σ(M)) 6= Gal (K/M) by the first statement of the Theo-

rem. This σ could be extended to
∼
σ∈ Σ

k/k
K/k = Gal (K/k). The subgroups Gal (K/M) and

Gal (K/σ(M)) are conjugate in Gal (K/k) (namely Gal (K/σ(M)) =
∼
σ ◦Gal (K/M) ◦ ∼σ

−1
,

for the proof see hometask) and different hence neither of them is normal �

Remark. The finiteness of the extension K/k is essential only for the step 2 of the proof
of the first statement. If K/k is infinite the ”extra” elements in Gal (K/M) may exist.
The correct formulation of the fundamental theorem in the general case looks as follows:
intermediate fields are in one-to-one correspondence with subgroups of Gal (K/k) which
are closed in the certain topology on Gal (K/k) named the Krull topology. The latter
is nothing but the topology on Gal (K/k) considered as the projective limit of its finite
quotient groups Gal (M/k), M/k running over the set of all normal finite sub-extensions
of K/k.
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Examples.

Example 1. Suppose P ∈ k[T ] is a nonconstant monic separable polynomial (not neces-

sary irreducible). Let K = kP, split, P (T ) =
n∏
i−1

(T − αi), αi ∈ K. The data above define

a natural inclusion Gal (K/k) ↪→ Sn.
The group Sn is nothing but the group of permutations of the roots αi. Since αi generate
K the homomorphism above is an inclusion.

Definition-Theorem 2.32. Suppose P ∈ k[T ] is a monic separable polynomial, P (T ) =
n∏
i−1

(T − αi), αi ∈ k. The discriminant ∆P
def
=

∏
i<j

(αi − αj)
2. Then ∆P ∈ k. Let

δP
def
=
√

∆P . δP ∈ kP, split, it is defined up to a sign. δP ∈ k ⇔ {the image of
Gal (kP, split/k) in Sn is contained in the subgroup of even permutations An}.

Proof. Neither permutation of the roots acts nontrivially on ∆P hence Gal (kP, split/k)
does not act on it by the previous example, therefore ∆P ∈ k by the Galois theory. It
is clear from the definition of δP that any permutation τ of the roots of P multiplies δP
with sign(τ) whence the Theorem.

Example 2. Suppose P ∈ k[T ] is separable of degree 2. It is irreducible iff δP /∈ k.
In this case kP, split ' kP and Gal (kP, split/k) = Z/(2).

Example 3. Suppose P ∈ k[T ] is separable irreducible of degree 3. By the Example 1
#Gal (kP, split/k)| #S3 = 6 hence [kP, split : k]| 6. On the other hand, ∀i k(αi) ⊂ kP, split,
thus [kP, split : k] = 3 or 6.
Consider the tower of extensions k ⊂ k(δP ) ⊂ kP, split. One may conclude that
δP ∈ k ⇔ Gal (kP, split/k) ⊂ A3 ⇔ Gal (kP, split/k) = A3 ⇔ kP, split ' kP , and
δP /∈ k ⇔ Gal (kP, split/k) = S3.

Example 4. Suppose k0 ia a field, K = k0(t1, t2, . . . , tn) is generated over k0 by n
independent variables. Let k = k0(s1, s2, . . . , sn) where si are elementary symmetric func-

tions of ti. Let P (T ) =
n∏
i=1

(T − ti) =
n−1∑
j=0

(−1)n−jsn−jT
j + T n.

Theorem 2.33. K = kP, split. Gal (K/k) ' Sn.
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Proof. The first statement is clear. By the definition of K any permutation of ti’s defines
an automorphism of K. Since k is generated by the symmetric functions such automor-
phism acts trivially on k therefore is an element of Gal (K/k), hence the inclusion from
Example 1 is surjective in this case �

Example 5. Finite fields. Suppose Fq ⊂ K ⊂ Fq, K/Fq is finite. Let m
def
= [K : Fq].

Theorem 2.34. K/Fq is Galois, Gal (K/Fq) ' Z/(m). It is generated by the rela-
tive Frobenius homomorphism Frq which sends any element of Fq to its q-th power.

Proof. #K = qm ⇒ K = Fqm = Fq T qm−T, split. Hence K/Fq is normal and separable.
Therefore the restriction of Frq to K is an element of Gal (K/Fq) (note that Frq = Id on
Fq) which is of order m. Clearly Frmq = Id on K but neither smaller power of Frq acts
as Id on K (for the proof see hometasks �

Example 6. ”The Fundamental Theorem of Algebra”.

Theorem 2.35. R = RT 2+1.

Proof. Suppose R ⊂ K0 ⊂ R and K0/R is finite. If K0/R is not Galois choose
K, R ⊂ K0 ⊂ K ⊂ R such that K/R is Galois. This is always possible because
K0/R is separable hence K0 = R(α) by the Theorem 2.24. Now let K = K0 Pα, split.
We are going to prove that [K : R] = 2. The Theorem then follows as any quadratic
extension of R clearly is contained in R(

√
−1).

To finish the proof we need four Lemmas.

Lemma 1. R has no nontrivial finite extensions of odd degree.

Lemma 2. Suppose G is a finite group. If G is not a 2-group (i.e. #G is not a power of
2) then ∃H ⊂ G such that (G : H) is odd and greater than 1.

Lemma 3. If G is a finite 2-group then ∃H ⊂ G such that (G : H) = 2.

Lemma 4. RT 2+1 has no quadratic extensions.

Let us derive the Theorem from the Lemmas above. Let G = Gal (K/R). If G is not a
2-group then ∃H ⊂ G from the Lemma 2, hence by the Galois theory R ⊂ KH ⊂ K,
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and [KH : R] is odd which is impossible by the Lemma 1. So one may suppose G is a
2-group. Then by Lemma 3 there exist H ⊂ G and the tower R ⊂ KH ⊂ K such that
[KH : R] = 2. Clearly KH = R(

√
−1). If H is a trivial subgroup of G then K = KH and

the proof ends. If not, consider G1 = Gal (K/KH). By the same Lemma ∃H1 ⊂ G1 such
that KH ⊂ KH1 ⊂ K and [KH1 : KH ] = 2 which is not possible by the Lemma 4 �

It remains to prove the Lemmas.

Proof of Lemma 1 & Lemma 4. Hometasks �

Proof of Lemma 2 & Lemma 3. We will prove both by induction on the #G using
the wellknown class formula: for any finite group G
#G = #ZG +

∑
C: #C>1

#C,

where C in the sum runs over the set of nontrivial conjugate classes of G. Let me recall
that the conjugate class is, by definition, an orbit of the action of G on itself by conju-
gations. The conjugate class is called trivial iff it consists of one element; such elements
constitute the center ZG of the group G. For any conjugate class C #C = (G : Gx),
Gx being the subgroup of G which consists of all elements which commute with x ∈ C.
Of course, Gx depends on x, but if x and y are in the same C thenGx andGy are conjugate.

Now we prove Lemma 2. If #G is odd one may take H = {1}. Suppose #G is even
but not a power of 2. If G : H is even for any subgroup H then all nontrivial conju-
gate classes in G have an even order, hence by the class formula #ZG is also even. ZG
is commutative therefore ∃Z0 ⊂ ZG such that #Z0 = 2. Consider the quotient group
G1 = G/Z0, let φ : G → G1 be the projection. Since G is not a 2-group same is G1. By
the induction, ∃H1 ⊂ G1 such that (G1 : H1) is odd, but (G : φ−1(H1)) = (G1 : H1) which
contradicts the assumption that the Lemma 2 does not hold for G �

The proof of Lemma 3 is the same (any 2-group has a nontrivial center thanks to the
class formula) �

Example 7. Cyclotomic fields. Suppose n is a positive integer, k a field such that
gcd(char (k), n) = 1. Our goal is to study the extension kTn−1, split/k. Certainly its struc-
ture depends on the nature of the field k. The polynomial T n − 1 is never irreducible,
sometimes splitting totally (say k = Fq and n = q − 1).
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Definition 2.36. The set of all roots of T n − 1 in k is called the set of ”roots of 1
of degree n”. They form a group under multiplication which is cyclic (being a finite sub-
group of k

∗
). Any generator of this group is called a primitive root.

Theorem 2.37. Suppose ζ is a primitive root. Then k(ζ)/k is Galois. There exists
an inclusion Gal (k(ζ)/k) ↪→ (Z/(n))∗.

Proof. Suppose σ ∈ Σ
k/k
k(ζ)/k. σ(ζ) is a power of ζ hence k(ζ)/k is normal. Since

gcd(char(k), n) = 1 T n − 1 is separable, so k(ζ)/k is Galois. Let σ(ζ) = ζ l(σ), then
l(σ) mod n is correctly defined by σ. Clearly l(σ) ∈ Z/(n) is invertible (otherwise σ(ζ)
were not primitive) and defines the homomorphism we need �

In particular, [k(ζ) : k] | φ(n).

Definition 2.38. T n − 1 =
∏
d|n
fd(T ), where fd(T ) =

∏
(order of ω)=d

(T − ω) is called the

cyclotomic polynomial of degree d.

Examples. f1 = T − 1; f2 = T + 1; f4 = T 2 + 1; fp = 1 + T + T 2 + · · · + T p−1 if
p is a prime integer.

Theorem 2.39. fd ∈ Z[T ]; deg fd = φ(d).

Remark. Of course char(k) may be finite, in this case the Theorem means that the
coefficients of fd are the elements of the prime field Fp.

Proof. Let k0 ⊂ k be any subfield. Then k0(ζ) contains all the roots of unity of de-
gree n since ζ is primitive. Any automorphism of k0(ζ) sends the elements of the group
of roots of 1 to the elments of that group preserving the order of the element. Hence
fd(T ) ∈ k0[T ], whichever is k0. This means that if char(k) = 0 then fd(T ) ∈ Q[T ] (hence
fd(T ) ∈ Z[T ] by the Gauss Lemma) while if char(k) = p then fd(T ) ∈ Fp[T ]. If d|n then
the number of elements of order exactly d in the cyclic group of order n equals φ(d) which
finishes the proof �

Theorem 2.40. fd is irreducible over Q.

Proof. Choose ζ ∈ Q a primitive d - root of 1. Then Pζ |fd. Let p be any prime in-
teger not dividing d. Clearly ζp is also a primitive d - root. We are going to prove that ζp
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is a root of Pζ . Indeed, suppose the opposite is true. Then fd = Pζg and ζp is a root of g.

Define h(T )
def
= g(T p), then ζ is a root of h. Therefore Pζ |h. Pζ , g and h are all in Z[T ] so

one may consider residues mod p. Then h(T ) = g(T p) ≡ (g(T ))p mod p. Since Pζ | h
Pζ and g have common roots in Fp which is impossible as both are factors of T d − 1.
Since any primitive d - root could be obtained from ζ by successive taking prime powers,
all of them are the roots of Pζ , therefore fd = Pζ �

Remark. Any quadratic extension of Q is a subfield of some field generated by the roots

of 1. Indeed, let ζ be a p - root of 1. Consider the Gaussian sum τp
def
=

∑
a mod p

(
a
p

)
ζa.

Then τ 2
p = (−1)

p−1
2 p (an easy calculation). Thus, Q(

√
p) ⊂ Q(ζ,

√
−1). This is a small

part of the deep Kronecker-Weber theorem which states that any Galois extension K/Q
such that Gal (K/Q) is commutative is contained in the field generated over Q by the
roots of 1.
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Definition 2.41. Suppose K/k is a finite extension, α ∈ K. Then the multiplication with
α defines a linear transformation of the k-vector space K. Its characteristic polynomial is
called the characteristic polynomial of α (notation χα, K/k(T )), its determinant is called
the norm of α (notation NK/k(α)) and its trace is called the trace of α (notation TrK/k(α)).

Remark 1. Clearly N : K∗ → k∗ and Tr : K+ → k+ are the group homomorphisms.

Remark 2. If [K : k] = n and χα, K/k(T ) =
n−1∑
i=0

aiT
i + T n then TrK/k(α)) = −an−1

and NK/k(α) = (−1)na0 (this is a standard statement from linear algebra which is true
for the determinant and trace of an arbitrary linear transformation).

Remark 3. If [K : k] = n and α ∈ k then χα, K/k(T ) = (T − α)n, NK/k(α) =
αn, T rK/k(α) = nα.

Theorem 2.42. Suppose [K : k] = n, α ∈ K, degPα, K/k = d. Then χα, K/k = P
n
d

α, K/k.

Proof. Consider the tower k ⊂ k(α) ⊂ K. Let m = n
d
. The set {αi, 0 ≤ i ≤ d − 1} is a

vector space basis for k(α) over k. Let {yj, 1 ≤ j ≤ m} be any basis of the vector space
K over k(α). As we have earlier proved {αiyj} is a basis for K over k. The matrix of the
multiplication with α in that basis is a block matrix consisting of m equal blocks of the
form

0 0 . . . . −a0

1 0 . . . . −a1

. . . . . . . . . . . . . . . . . .

. . . . 1 0 −ad−2

0 . . . . 1 −ad−1


where aj are the coefficients of the polynomial Pα(T ) =

d−1∑
i=0

aiT
i + T d. The characteristic

polynomial of each block equals Pα (please check and calculate) which finishes the proof
of the Theorem �

Theorem 2.43. Suppose K/k is separable. Then ∀α ∈ K NK/k(α) =
∏

σ∈Σ
k/k
K/k

σ(α),

T rK/k(α) =
∑

σ∈Σ
k/k
K/k

σ(α).
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Proof. Let us prove the statement for the norm (the proof for the trace is close). Con-
sider the tower k ⊂ k(α) ⊂ K. Let again d = degPα, n = [K : k], m = n

d
. Then

NK/k(α) = det(·α) = (−1)n· (the free term of χα, K/k). By the Theorem 2.42 this equals
((−1)d(free term of Pα, K/k))

m. Clearly the free term of Pα, K/k equals (−1)d
∏

σ∈Σ
k/k
k(α)/k

σ(α).

For any σ ∈ Σ
k/k
K/k σ(α) depends only on the restriction σ of σ to k(α), each fiber of this

surjective restriction map containing m elements by the proof of the Theorem 2.18. This
ends the proof �

Example 8. Cyclic extensions.

Theorem 2.44. (linear independence of characters). Suppose C is an arbitrary group,
K any field. Suppose χ1, . . . , χn : C → K∗ are different homomorphisms. Then the maps
χi are linearly independent over K.

Proof. Suppose the opposite is true. Choose a shortest linear relation
∑
aiχi = 0. This

means that ∀c ∈ C
∑
aiχi(c) = 0. One may change c to c0c in this equation to conclude

that ∀c ∈ C
∑
aiχi(c0c) =

∑
aiχi(c0)χi(c) = 0 thus the linear relation

∑
χi(c0)aiχi = 0

is also valid. Now choose c0 for which χ1(c0) 6= χ2(c0), multiply the first linear relation
with χ1(c0) and substract from the second one obtaining the shorter linear relation which
contradicts the assumption �

Theorem 2.45. (Theorem 90 Hilbert’s) Suppose K/k is a cyclic extension (i.e. finite Ga-
lois extension with a cyclic Galois group). Suppose σ is a generator of Gal (K/k), α ∈ K.

Then NK/k(α) = 1 ⇔ ∃β ∈ K such that α = σ(β)
β

.

Proof. ⇐ By the Theorem 2.43 NK/k(σ(β)) = NK/k(β) �
⇒ Let n = [K : k]. Consider the map ψ : K∗ → K, ψ(x) = x + ασ(x) + ασ(α)σ2(x) +
· · · + ασ(α)σ2(α) . . . σn−2(α)σn−1(x). The map ψ is a linear combinations of characters
for the group C = K∗ which fits the conditions of Theorem 2.44. Therefore ∃z ∈ K∗ such

that ψ(z) 6= 0. Since NK/k(α) = 1 ασ(ψ(z)) = ψ(z) hence α = σ(ψ(z)−1)
(ψ(z)−1)

�

Theorem 2.46. Suppose gcd(char(k), n) = 1. Let ζ ∈ k be a primitive n - root of 1.
Suppose ζ ∈ k. Then
1) K/k is cyclic of degree n ⇒ ∃b ∈ k such that K ' kTn−b.
2) ∀b ∈ k kTn−b, split is cyclic of some degree d, d|n.
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Proof. 1) Let σ be a generator of Gal (K/k). Since ζ ∈ k NK/k(ζ) = ζn = 1 hence
by the previous theorem ∃β ∈ K such that σ(β) = ζβ. Then ∀i σi(β) = ζ iβ, therefore
[k(β) : k]s ≥ n hence [k(β) : k] ≥ n thus K = k(β). But σ(βn) = (σ(β))n = ζnβn = βn.
Since σ generates Gal (K/k) the latter acts trivially on βn hence βn ∈ k �
2) Let β ∈ k be a root of the polynomial T n − b. Any other root of T n − b is of the form
ζ iβ for some i hence k(β) is normal over k. Since gcd(char(k), n) = 1 it is also separable.
Let G = Gal (k(β)/k). ∀g ∈ G g(β) = ωβ, ωn = 1 (ω is not necessary primitive). This
gives an injective homomorphism G ↪→ {group of roots of 1 of degree n in k}.The latter
is cyclic of order n hence G is cyclic of some order dividing n �

Theorem 2.47. Suppose char(k)=p. Then
1) K/k is cyclic of degree p ⇒ ∃b ∈ k such that K ' kT p−T−b.
2) ∀b ∈ k T p − T − b is either irreducible or splits totally in k[T ]. In the former case
kT p−T−b is cyclic of degree p.

Lemma (Hilbert’s 90, additive form). Suppose K/k is cyclic of degree n , σ is a gen-
erator of Gal (K/k),
α ∈ K. Then TrK/k(α) = 0 ⇔ ∃β ∈ K such that α = σ(β)− β.

Proof of the Lemma. Tr : K → k is a k-linear map which is nonzero by 2.43 and 2.44,
hence dimk ker(Tr) = n−1. By Galois Theory, ker(σ− Id ) = k hence dimk im (σ− Id ) =
n− 1. Obviously im (σ − Id ) ⊂ ker(Tr)�

Proof of the Theorem. 1) Consider α = 1. TrK/k(α) = pα = 0 ⇒ 1 = σ(β) − β
for some β ∈ K. σ(β) 6= β hence β 6∈ k. Since the degree [K : k] is prime there are no
subfields between k and K thus k(β) = K. Let b = βp − β. Then σ(b) = σ(βp)− σ(β) =
(σ(β))p − σ(β) = (1 + β)p − (1 + β) = 1 + βp − 1− β = b, therefore b ∈ k �
2) The polynomial P (T ) = T p − T − b is separable. Suppose β ∈ k is its root. Then
the full set of the roots of P coincides with β, β + 1, β + 2, . . . , β + (p − 1). It is easy
to see that the map Gal (kP, split/k) → Z/(p) which sends g 7→ g(β) − β is an injective
homomorphism . Hence it is either isomorphic or trivial �

Remark. To describe cyclic extensions of degree pk, k > 1 over the field k of charac-
teristic p one needs more complicated method (Witt vectors).

Example 9. Solving equations in radicals.

We restrict ourselves to the classical problem of solving equations over Q. First prove an
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important general theorem about Galois extensions.

Theorem 2.48. Suppose K/k is a finite Galois extension, M/k any extension (not

necessary algebraic). Suppose both K and M are subfields of some field
∼
k. Let KM ⊂

∼
k

be the composite field (i.e the minimal subfield of
∼
k containing both K and M).

Then KM/M is finite Galois, Gal (KM/M) = Gal (K/K
⋂
M).

Proof. K/k is separable therefore ∃P ∈ k[T ] irreducible and separable such that K ' kP .
Since K/k is normal K = kP, split. By definition KM = MP, split hence KM/M is finite
Galois. Consider the restriction homomorphism Gal (KM/M) → Gal (K/k), σ 7→ σ|K .
It is injective (if σ|K = Id then σ acts trivially on the roots of P hence on KM = MP, split)
and its image is contained in Gal (K/K

⋂
M). Let H be this image. Suppose α ∈ K. If H

acts trivially on α then α ∈M by the Galois theory for KM/M . This means α ∈ K
⋂
M .

Therefore by the Galois theory for K/K
⋂
M H must coincide with the entire group

Gal (K/K
⋂
M) �

Definition 2.49. Suppose K/Q is a finite extension. Let L/Q be the minimal Ga-
lois extension such that K ⊂ L. The extension K/Q is called solvable iff Gal (L/Q)
is a solvable group (recall this means that G admits a composition series of subgroups
{1} = G0 / G1 / G2 / · · · / Gr = G such that ∀i, 1 ≤ i ≤ r, Gi/Gi−1 is cyclic).

Definition 2.50. Suppose P (T ) ∈ Q[T ] is irreducible. The equation P (X) = 0
could be solved in radicals iff there exist a field L ⊃ QP, split and a sequence of sub-
fields Q = L0 ⊂ L1 ⊂ · · · ⊂ Ls = L such that ∀i, 1 ≤ i ≤ s, ∃α ∈ Li such that
Li = Li−1(α) and α is a root of the polynomial Tm − a = 0 for some a ∈ Li−1 and some
positive integer m.

Theorem 2.51. The equation P (X) = 0 could be solved in radicals⇔ QP/Q is solvable.

Proof. ⇒ Let K = QP, split. Choose an algebraic closure Q so that Q ⊂ K ⊂ L ⊂ Q,

L being a field from the Definition 2.50. If L/Q is not normal then let
∼
L (resp.

∼
Li) be the

minimal subfield of Q which contains all the fields σ(L)(resp. σ(Li)), σ ∈ Σ
Q/Q
L/Q . Then

∼
L

enjoys the same property as L. Indeed,
∼
Li could be generated over

∼
Li−1 by adding the roots

of certain polynomial Tm − a one by one (if Li = Li−1(α) then σ(Li) = σ(Li−1)(σ(α))).
Thus, one may suppose L/Q is normal. Let n = [L : Q] and let ζ ∈ Q be a primitive root
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of 1 of degree n. Consider the sequence of fields L0(ζ) ⊂ L1(ζ) ⊂ · · · ⊂ Ls(ζ). L(ζ)/Q(ζ)
is Galois by the Theorem 2.48 and ∀i, 1 ≤ i ≤ s, Li(ζ)/Li−1(ζ) is Galois cyclic by the
assumption and by the Theorem 2.46. By definition, this means that Gal (L(ζ)/Q(ζ))
is solvable. Gal (Q(ζ)/Q) is commutative hence also solvable. The rest is simple group
theory �

⇐ Choose an algebraic closure Q so that Q ⊂ QP, split(
def
= K) ⊂ Q. Let n = [K : Q ],

ζ ∈ Q a primitive root of 1 of degree n. By the Theorem 2.48 K(ζ)/Q(ζ) is Galois,
Gal (K(ζ)/Q(ζ)) being isomorphic to a subgroup of Gal (K/Q). The latter group is solv-
able by the assumption hence the former group is solvable (again simple group theory).
This means (by the Theorem 2.46) that the equation P (X) = 0 could be solved in radicals
over Q(ζ) hence also over Q �

To finish our survey of Galois Theory it remains to discuss two results related to lin-
ear algebra.

Theorem 2.52. Suppose K/k is a finite separable extension, M/k any extension. Then
there exists a M - algebra isomorphism K ⊗k M ' ⊕Mi where Mi are finite extensions
of M of the type MPi , Pi ∈ M [T ],

∑
degPi = [K : k]. The set {Mi} is unique up to a

permutation.

Proof. Choose P ∈ k[T ] irreducible such that K ' kp. Then there exist isomor-
phisms of M - algebras K ⊗k M ' (k[T ]/(P )) ⊗k M ' M [T ]/(P ). Let P =

∏
Pi

be the decomposition of P in irreducible factors in the ring M [T ]. Since P is sepa-
rable same are all the Pi and they are pairwise coprime. The Chinese remainder the-
orem for the ring M [T ] leads to a further isomorphism M [T ]/

∏
Pi ' ⊕M [T ]/(Pi).

Suppose now that there exists an M - algebra isomorphism φ : ⊕Mi
∼→ ⊕M ′

j. Let

πi : ⊕Mi → Mi, π′j : ⊕M ′
j → M ′

j be the natural projections, Ii
def
= ker(πi). Then∏

Ii = (0) hence ∀j
∏

(π′j ◦ φ(Ii)) = πj ◦ φ(
∏
Ii) = (0). Therefore ∀j ∃i such that

π′j ◦ φ(Ii) = (0) (recall that M ′
j is a field). Since the ideal Ii1 + Ii2 contains 1 (i1 and i2

being different) such i is unique for j given, otherwise π′j ◦φ were zero while it is surjective
by the assumption. So i is uniquely defined after the choice of j. Since π′j ◦ φ(Ii) = (0)
there exists a homomorphism φij : Mi → M ′

j such that π′j ◦ φ = φij ◦ πi. φij is surjective
by the assumption and injective because Mi is a field. This ends the proof �

Remark. Besides the polynomials Pi are pairwise coprime some of the fields Mi may
still be isomorphic.
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Theorem 2.53. If K/k is separable then Tr(ab) : K × K → k is a nondegenerate
symmetric bilinear form. Otherwise the trace map is zero.

Proof. Suppose first that K/k is not separable, so char(k) = p. Let α ∈ K. By the
Remark 2 after the Definition 2.41 TrK/k(α) is the negative of the second leading co-

efficient of its characteristic polynomial. By the Theorem 2.42 χα, K/k = P
n
d

α, K/k where

[K : k] = n and degPα, K/k = d. If K/k(α) is not separable then p|n
d

hence the degrees
of all nonzero terms of χα, K/k are divisible by p. If K/k(α) is separable then α is not
(otherwise K/k were separable), hence the statement about the degrees is true for the
Pα, K/k. In both cases TrK/k(α) is zero.
Now let K/k be separable. Suppose there exists a ∈ K such that ∀b ∈ K Tr(ab) = 0.
SinceK/k is separable one may use Theorem 2.43, thereby concluding that ∀b ∈ K∑
σ∈Σ

k/k
K/k

σ(a)σ(b) = 0. This contradicts to the Theorem 2.44 according to which the group

homomorphisms σi : K∗ → k∗ must be linearly independent �
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