2. Galois theory

Notation. If otherwise not specified k, K, L and so on will be arbitrary fields.
Theorem. $k[T]$ is a principal ideal domain.
Proof. Euclid's algorithm
Definition 2.1. If the inclusion $k \hookrightarrow K$ is fixed then K is called an extension of k (notation K / k). Under this condition k could be identified with its image in K. Suppose K_{1} / k and K_{2} / k are extensions of k and $\sigma: K_{1} \rightarrow K_{2}$ is a field homomorhism. If $\left.\sigma\right|_{k}=\mathrm{Id}$ then σ is called a homomorphism of extensions $K_{1} / k \rightarrow K_{2} / k$.

Key Lemma 2.2. Suppose K_{1} / k and K_{2} / k are extensions of $k, \sigma: K_{1} / k \rightarrow K_{2} / k$ a homomorphism of extensions. Suppose $P(T) \in k[T], \alpha \in K_{1}$. Then $P(\alpha)=0 \Rightarrow$ $P(\sigma(\alpha))=0$.
Proof. Clear
Definition 2.3. Suppose K / k is an extension, $\alpha \in K . \alpha$ is called algebraic over k iff $\exists P \in k[T]$ such that $P(\alpha)=0 . K / k$ is called algebraic iff all elements of K are algebraic over k.

Definition 2.4. K / k is called finite iff K is a finitely dimensional vector space over k. Its degree (notation $[K: k]) \stackrel{\text { def }}{=} \operatorname{dim}_{k} K$.

Theorem 2.5. K / k is finite $\Rightarrow K / k$ is algebraic.
Proof. In the finitely dimensional vector space the powers $1, \alpha, \alpha^{2}, \alpha^{3}, \ldots$ are linearly dependent

Remark. The opposite is clearly not true.

Basic examples:

k_{P} - construction. Suppose $P \in k[T]$ is irreducible of degree ≥ 1. Then (P) is a maximal ideal in $k[T]$ hence $k_{P} \stackrel{\text { def }}{=} k[T] /(P)$ is a field. $\left[k_{P}: k\right]=\operatorname{deg} P$ (hometask). $\underline{k(\alpha)}$. Suppose K / k is an extension, $\alpha \in K$. Then $k(\alpha) \stackrel{\text { def }}{=}\{$ the mimimal subfield of K containing both k and $\alpha\}$.

Remark. Let $\left\{\alpha_{i, i \in I}\right\}$ be any set of elements of K. The subfield $k\left(\left\{\alpha_{i}\right\}\right) \subset K$ could be defined by the same property. Any element $\alpha \in k\left(\left\{\alpha_{i}\right\}\right)$ is representable (not necessary in a unique way) with the formula $\alpha=\frac{P\left(\left\{\alpha_{i}\right\}\right)}{Q\left(\left\{\alpha_{i}\right\}\right)}$ where P and Q are polynomials in variables $\left\{T_{i}, i \in I\right\}$ and $Q\left(\left\{\alpha_{i}\right\}\right) \neq 0$.

Theorem 2.6. Suppose K / k is an extension, $\alpha \in K$ algebraic over k. Let $P_{\alpha, K / k} \in k[T]$ (shortly just $P_{\alpha, k}$ or even P_{α}) be a monic irreducible polynomial such that $P_{\alpha}(\alpha)=0$. Then

1) P_{α} exists and is unique.
2) $k_{P_{\alpha}} \simeq k(\alpha) \simeq k[\alpha]$ (where $k[\alpha]$ is the minimal subring of K containig both k and α).

Proof. 1) Since α is algebraic some $P \in k[T]$ such that $P(\alpha)=0$ does exist. One may suppose P is irreducible (otherwise decompose) and monic (otherwise divide by the leading coefficient). If P and Q are both irreducible and monic then either $P=Q$ or $\exists G, H \in k[T]$ such that $P G+Q H=1$ (Euclid algorithm). If $P(\alpha)=Q(\alpha)=0$ the latter case is excluded, so $\mathrm{P}=\mathrm{Q}$
2) Consider the ring homomorphism $\quad \phi: k[T] \rightarrow K,\left.\quad \phi\right|_{k}=\mathrm{Id}, \quad T \xrightarrow{\phi} \alpha . \quad \mathrm{By}$ construction $\operatorname{im}(\phi)=k[\alpha]$. Since ϕ does not act on k and P_{α} has coefficients in k, $\phi\left(P_{\alpha}(T)\right)=P_{\alpha}(\phi(T))=P_{\alpha}(\alpha)=0$, hence $P_{\alpha} \in \operatorname{ker}(\phi)$. Therefore ϕ defines a surjective homomorphism $\bar{\phi}: k[T] /\left(P_{\alpha}\right) \rightarrow k[\alpha]$. Since P_{α} is irreducibe $k[T] /\left(P_{\alpha}\right)$ is a field, so $\bar{\phi}$ is also injective, hence an isomorphism. This means $k[\alpha]$ is a field, so $k[\alpha]=k(\alpha)$

Theorem 2.7. Suppose K / k and L / K are finite extensions. Then L / k is finite and $[L: K][K: k]=[L: k]$.

Proof. Let $\left\{x_{i}\right\} \in K$ be a basis of the vector space K over $k, \quad\left\{y_{j}\right\} \in L$ same for L over K. Then $\left\{x_{i} y_{j}\right\}$ is a basis of the vector space L over k (hometask)

Theorem 2.8. Suppose K / k is algebraic and finitely generated. Then K / k is finite.
Proof. If $K=k(\alpha)$ (i.e generated by one algebraic element) then K / k is finite by the Theorem 2.6.2). Suppose now $K=k(\alpha, \beta)$. Then $k(\alpha, \beta) / k(\alpha)$ and $k(\alpha) / k$ are both finite hence $k(\alpha, \beta) / k$ is finite by the previous theorem. The proof ends by induction

Theorem 2.9. Suppose K is generated over k by any number of algebraic elements. Then K / k is algebraic.

Proof. By 2.6.2) and by the Remark before Theorem 2.6 it suffices to prove that $\alpha \pm \beta, \alpha \beta$ are algebraic over k for any $\alpha, \beta \in k$. As in the proof of the previous theorem one may conclude that $k(\alpha, \beta) / k$ is finite. Therefore it is algebraic

Theorem 2.10. Suppose L / K and K / k are both algebraic (not necessary finite). Then L / k is algebraic.

Proof. Suppose $\alpha \in L$. By assumption α is algebraic over K hence α is a root of the polynomial $P_{\alpha, K} \in K[T]$. Let k_{1} be the subfield of K generated over k by all coefficients of the polynomial $P_{\alpha, K}$. Then $k \subset k_{1} \subset k_{1}(\alpha), k_{1}(\alpha) / k_{1}$ finite by the Theorem 2.6.2), k_{1} / k finite by the Theorem 2.8. So $k_{1}(\alpha) / k$ is finite by the Theorem 2.7, hence algebraic. In particular α is algebraic over k

Definition 2.11. A field K is called algebraicaly closed iff K has no algebraic extensions. Equivalently, any nonconstant irreducible polynomial $P \in K[T]$ is of degree 1 .

Theorem 2.12. $\forall k \exists \bar{k} / k$ such that \bar{k} is algebraic over k and \bar{k} is algebraically closed.
Remark. The notation \bar{k} is justified later when we prove that \bar{k} / k is unique up to a (non-canonical) isomorphism.

Proof. Step 1. First we construct an algebraic extension K_{1} / k such that any nonconstant polynomial with coefficients in k has a root in K_{1}. This is just a refinement of the k_{P} - construction above. Consider the ring $k\left[\left\{T_{P}\right\}\right], T_{P}$ being independent variables numbered by all monic nonconstant polynomials in $k[T]$. Let $I \subset k\left[\left\{T_{P}\right\}\right]$ be the ideal generated by the elements $P\left(T_{P}\right)$. Then I is nontrivial. Indeed, suppose the opposite is true. Then there exist some polynomials $P_{i} \in k[T]$ and some elements $g_{i} \in k\left[\left\{T_{P}\right\}\right]$ such that $\sum_{i=1}^{n} g_{i} P_{i}\left(T_{P_{i}}\right)=1$. Consider a field $K_{0} \supset k$ such that each P_{i} from this finite set has a root in K_{0}. Certainly one may get K_{0} by successive use of the k_{P}-construction. For $1 \leq i \leq n$ suppose $\alpha_{i} \in K_{0}$ and $P_{i}\left(\alpha_{i}\right)=0$. Consider the ring homomorphism $\phi: k\left[\left\{T_{P}\right\}\right] \rightarrow K_{0}$ defined as follows: $\left.\phi\right|_{k}=\mathrm{Id} ; \phi\left(T_{P_{i}}\right)=\alpha_{i}$ if $1 \leq i \leq n ; \phi\left(T_{P_{i}}\right)=0$ otherwise. Acting with ϕ on the equation above one gets $0=1$ in K_{0}.
Since I is nontrivial there exists a maximal ideal $M, I \subset M \subset k\left[\left\{T_{P}\right\}\right]$. Let K_{1} be the quotient field $k\left[\left\{T_{P}\right\}\right] / M . K_{1}$ is algebraic over k because it is generated by the images of the independent variables T_{P} which are all algebraic by construction of M (the latter contains all $P\left(T_{P}\right)$)

Step 2. Now construct $k \subset K_{1} \subset K_{2} \subset K_{3} \ldots$ as in step 1 (for all i any nonconstant polynomial with coefficients in K_{i} has a root in K_{i+1}). Let $\bar{k} \stackrel{\text { def }}{=} \cup K_{i}$. Clearly the set \bar{k} carries the natural structure of the field. By the Theorem 2.10 all the K_{i} are algebraic over k hence same is \bar{k} as any element of \bar{k} lies in some K_{i}. Suppose $P \in \bar{k}[T]$. P has a finite number of coefficients therefore all of them are contained in some K_{i}. Then P has a root in K_{i+1} hence in \bar{k}

Now we switch to the main object of study in Galois theory : homomorphism s of extensions.

Theorem 2.13. Suppose K / k is algebraic, $\sigma: K / k \rightarrow K / k$ is a homomorphism of extensions. Then σ is an automorphism.

Proof. Any field homomorphism is injective so it suffices to prove σ is surjective. Suppose $\alpha \in K$. Let $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the full list of the roots of P_{α} in $K . k\left(\alpha_{1}, \ldots, \alpha_{n}\right) / k$ is finite by the Theorem 2.8. $\sigma\left(k\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \subset k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (see the key Lemma 2.2). Since $\operatorname{ker} \sigma=0 \quad \sigma$ is a nondegenerate linear transformation of the k - vector space of finite dimension, therefore σ is surjective. In particular $\alpha \in \operatorname{im} \sigma$

Definition 2.14. Supppose K / k and L / k are two extensions of the same ground field. Then $\Sigma_{K / k}^{L / k}$ is the set of all homomorphism s $\sigma: K / k \rightarrow L / k$.

Example. Suppose $K=k_{P}$. A homomorphism $\sigma: K / k \rightarrow L / k$ uniquely extends to the ring homomorphism $\tilde{\sigma}: k[T] \rightarrow L$ such that $\left.\tilde{\sigma}\right|_{k}=\operatorname{Id}$ and $P(\tilde{\sigma}(T))=0$. Therefore in this case the set $\Sigma_{K / k}^{L / k}$ coincides with the set of different roots of $P(T)$ in L.

Theorem 2.15. Suppose $k \subset M \subset K, K=M(\alpha), \alpha$ algebraic over $M, L / k$ algebraically closed. Then any element $\sigma \in \Sigma_{M / k}^{L / k}$ could be extended to an element of $\Sigma_{K / k}^{L / k}$.

Proof. Define the extension L / M by including $M \hookrightarrow L$ via σ. Then the set $\Sigma_{M(\alpha) / M}^{L / M}$ is nonempty by the Theorem 2.6.2) and the Example above

Theorem 2.16. Suppose K / k is algebraic (not necessary finite), L / k algebraically closed. Then $\Sigma_{K / k}^{L / k}$ is nonempty. If both K / k and L / k are algebraic and algebraically closed then any $\sigma \in \Sigma_{K / k}^{L / k}$ is an isomorphism.

Proof. We will use the transfinite induction. Consider the set of pairs (M, σ) where $k \subset M \subset K$ and $\sigma: M / k \rightarrow L / k$ is a homomorphism. Define an ordering on this set as follows: $\left(M_{1}, \sigma_{1}\right) \leq\left(M_{2}, \sigma_{2}\right)$ iff $M_{1} \subset M_{2}$ and $\left.\sigma_{2}\right|_{M_{1}}=\sigma_{1}$. Clearly any linearly ordered subset $\left(M_{1}, \sigma_{1}\right),\left(M_{2}, \sigma_{2}\right),\left(M_{3}, \sigma_{3}\right), \ldots$ has an upper bound $\left(M_{\infty}=\bigcup M_{i}, \sigma_{\infty}=\left(\sigma_{i} \circ n M_{i}\right)\right)$. By the Zorn Lemma there exists a pair (M, σ) which is a maximal element in the set. Suppose that $M \neq K$. Then $\exists \alpha \in K$ such that $\alpha \notin M$. By the previous theorem there exists a homomorphism $\quad M(\alpha) \rightarrow L$ extending σ. This contradicts the assumption that the pair (M, σ) is maximal.
Therefore $M=K$, so $\Sigma_{K / k}^{L / k}$ is nonempty. If K is algebraically closed same is $\sigma(K)$. If L is algebraic over k it is also algebraic over $\sigma(K)$, so L and $\sigma(K)$ must coincide

Definition 2.17. The number $[K: k]_{s} \stackrel{\text { def }}{=} \#\left(\Sigma_{K / k}^{\bar{k} / k}\right)$ is called the separable degree of the algebraic extension K / k.

Remark. At the moment it is not yet clear that $[K: k]_{s}$ is finite for the finite extension K / k.

Theorem 2.18. 1) $[L: K]_{s}[K: k]_{s}=[L: k]_{s}$ if all three are finite.
2) If K / k is a finite extension then $[K: k]_{s} \leq[K: k]$.

Proof. 1) Let $k \subset K \subset L \subset \bar{k}$. Consider the natural map $\phi: \Sigma_{L / k}^{\bar{k} / k} \rightarrow \Sigma_{K / k}^{\bar{k} / k}$ (the restriction to K). For any $\sigma_{0} \in \Sigma_{K / k}^{\bar{k} / k}$ the "fiber" $F_{\sigma_{0}} \stackrel{\text { def }}{=}\left\{\sigma \in \Sigma_{L / k}^{\bar{k} / k}\right.$ such that $\left.\left.\sigma\right|_{K}=\sigma_{0}\right\}$ is in one-to-one correspondence with the set $\sum_{L / K}^{\bar{k} / K}$. Indeed, if $\sigma_{0}=\mathrm{Id}$ then it follows from the definition of Σ. Now suppose σ_{0} is arbitrary. Let $\left\{\sigma_{i} \in \Sigma_{L / k}^{\bar{k} / k}\right\}$ be the full set of different elements of $F_{\sigma_{0}}$. Then $\forall i k \subset \sigma_{0}(K) \subset \sigma_{i}(L) \subset \bar{k}$. The map $\sigma_{i} \mapsto \sigma_{i} \circ \sigma_{1}^{-1}$ provides a one-to-one correspondence $F_{\sigma_{0}} \xrightarrow{\sim} \Sigma_{\sigma_{1}(L) / \sigma_{0}(K)}^{\bar{k} / \sigma_{0}(K)}$, the latter set clearly being isomorphic to $\Sigma_{L / K}^{\bar{k} / K}$. The number of elements in the "total space" of the "fibration" ϕ is equal to $[L: k]_{s}$, the cardinality of the "base" is $[K: k]_{s}$ while each "fiber" consists of $[L: K]_{s}$ elements as has just been proved, whence the statement
2) If K is generated over k by one algebraic element α then $K=k_{P_{\alpha}} .[K: k]=\operatorname{deg} P_{\alpha}$ while $[K: k]_{s}=\#\left(\Sigma_{K / k}^{\bar{k} / k}\right)=\left\{\right.$ the number of different roots of P_{α} in $\left.\bar{k}\right\}$. Clearly the second number is less or equal than the first one. For the general case consider the finite extension K / k as a tower of the extensions generated by one algebraic element and then use 1)

Definition 2.19. A finite extension K / k is called finite separable iff $[K: k]_{s}=[K: k]$.
Definition 2.20. Suppose $k \subset K, \alpha \in K$ algebraic over k. The element α is called separable over k iff the extension $k(\alpha) / k$ is finite separable. The algebraic (not necessary finite) extension K / k is called separable iff all $\alpha \in K$ are separable over k.

Theorem 2.21. Suppose $k \in K, \alpha \in K$ algebraic. Then α is separable over $k \Leftrightarrow P_{\alpha}(T)$ has no multiple roots in \bar{k}.

Proof. Clear

Remark. This justifies the name "separable": α is separable iff the roots of its minimal polynomial are "separated" from each other.

Theorem 2.22. For the finite extension K / k Definitions 2.19 and 2.20 lead to the same concept.

Proof. If K / k fits the Definition 2.19 then $\forall \alpha \in K k \subset k(\alpha) \subset K$ hence $k(\alpha) / k$ also fits 2.19 by the Theorem 2.18. Conversely, suppose all $\alpha \in K$ are separable over k. Consider K as a finite tower $k \subset k\left(\alpha_{1}\right) \subset k\left(\alpha_{1}, \alpha_{2}\right) \subset \cdots \subset K$. Since each α_{i} is separable over k it is by the Theorem 2.21 also separable over $k\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right)$ because $P_{\alpha_{i}, k\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}\right)}$ is a factor of $P_{\alpha_{i}, k}$. To finish the proof one may use the Theorem 2.18

Theorem 2.23. If $\operatorname{char}(k)=0$ then any algebraic extension K / k is separable. If $\operatorname{char}(k)=p$ and K / k is finite then $[K: k]=p^{\nu}[K: k]_{s}$ for some nonnegative integer ν.

Proof. Suppose $\alpha \in K$. $P_{\alpha}(T)$ has multiple roots in $\bar{k} \Leftrightarrow \operatorname{gcd}\left(P_{\alpha}, P_{\alpha}^{\prime}\right) \neq 1$. Since P_{α} is irreducible this leads to $P_{\alpha}^{\prime}=0$. If $\operatorname{char}(k)=0$ this is not possible as P_{α} is nonconstant. If $\operatorname{char}(k)=p$ then $P_{\alpha}^{\prime}=0$ means that $P_{\alpha}(T)=Q\left(T^{p^{\mu}}\right)$ where $Q \in k[T]$ is some polynomial such that $Q^{\prime} \neq 0$ and μ is a positive integer. Clearly $\operatorname{deg} P_{\alpha}=p^{\mu} \operatorname{deg} Q$. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\operatorname{deg} Q}$ are the roots of P_{α} in \bar{k} then $\alpha_{1}^{p^{\mu}}, \alpha_{2}^{p^{\mu}}, \ldots, \alpha_{\operatorname{deg} Q}^{p^{\mu}}$ are the roots of Q in \bar{k}. This means that the Theorem is true for the extension generated by one element. In general, K / k is a tower of extensions of that kind whence the Theorem

Theorem 2.24 (primitive element). Suppose K / k is a finite separable extension. Then $\exists \alpha \in K$ such that $K=k(\alpha)$.

Proof. One may suppose k is infinite (otherwise K is a finite field, so K is generated over k by any group generator of its multiplicative group K^{*}). By the induction it suffices to prove the following statement: if K is separable over k and is generated over k by two elements then it is generated over k by one element. Suppose $K=k(\alpha, \beta)$. Let $\left\{\sigma_{i}\right\}$ be the full set of elements of $\Sigma_{K / k}^{\bar{k} / k}$. Define $P(T)$ by the formula $P(T)=\prod_{i \neq j}\left(\sigma_{i}(\alpha)+\sigma_{i}(\beta) T-\sigma_{j}(\alpha)-\sigma_{j}(\beta) T\right)$. SInce k is infinite $\exists t_{0} \in k$ such that $P\left(t_{0}\right) \neq 0$. This means that for any two $i \neq j \quad \sigma_{i}\left(\alpha+\beta t_{0}\right) \neq \sigma_{j}\left(\alpha+\beta t_{0}\right)$. Therefore $\left[k\left(\alpha+\beta t_{0}\right): k\right]_{s} \geq\left\{\right.$ number of different $\left.\sigma_{i}\right\}=[k(\alpha, \beta): k]_{s}$. Since both $k\left(\alpha+\beta t_{0}\right) / k$ and $k(\alpha, \beta) / k$ are separable this means that $\left[k\left(\alpha+\beta t_{0}\right): k\right] \geq[k(\alpha, \beta): k]$ which finishes the proof

Example. If k and K are finite fields than the extension K / k is always separable. Indeed, if $K=\mathbf{F}_{q}$ then $\forall \alpha \in K P_{\alpha, K / k} \mid T^{q}-T$, the latter polynomial having no double roots.

We now will study the conditions under which $\operatorname{Aut}(K / k)$ could be identified with $\Sigma_{K / k}^{\bar{k} / k}$.
Definition-Theorem 2.25. Suppose $P \in k[T]$ is of degree $d \geq 1$. The extension K / k (and the field K itself if no mix up is possible) is called its splitting field (notation $\left.k_{P, \text { split }}\right)$ iff two conditions hold:

1) $P=\prod_{i=1}^{d}\left(T-\alpha_{i}\right)$ in K and
2) $K=k\left(\alpha_{1}, \ldots, \alpha_{d}\right)$

Let $K_{1} / k, K_{2} / k$ be two splitting fields for the same polynomial P. Then there exists an isomorphism $\sigma: K_{1} / k \xrightarrow{\sim} K_{2} / k$. If $k \subset K_{2} \subset \bar{k}$ then any $\sigma^{\prime}: K_{1} / k \rightarrow \bar{k} / k$ maps K_{1} to K_{2}.

Proof. The field $\overline{K_{2}}$ could be considered as \bar{k}, so one may suppose $k \subset K_{2} \subset \bar{k}$. By the Theorem $2.15 \exists \sigma: K_{1} / k \rightarrow \bar{k} / k$. The images of the roots of P in K_{1} under σ are the roots of P in \bar{k} by the key Lemma hence $\sigma\left(K_{1}\right) \subset K_{2}$. Since K_{1} / k is a splitting field for P one may conclude by using the definition that $\sigma\left(K_{1}\right) / k$ is also a splitting field for P. But $\sigma\left(K_{1}\right) \subset K_{2}$, therefore $\sigma\left(K_{1}\right)=K_{2}$

Remark 1. In the Definition above P needs not to be irreducible.
Remark 2. As opposite to k_{P} no simple construction of $k_{P, \text { split }}$ is available. In particular it is not clear how to calculate the degree $\left[k_{P, \text { split }}: k\right]$.

Examples.

$\operatorname{deg} P=1 \quad k_{P, \text { split }}=k$
$\operatorname{deg} P=2$ If P is irreducible then $k_{P, \text { split }} \cong k_{P}$ else $k_{P, \text { split }}=k$.
Indeed, suppose $P(T)=a_{0}+a_{1} T+a_{2} T^{2}$ is irreducible. Then $P(S)=(S-\phi(T))\left(a_{2} S+\right.$ $\left.a_{2} \phi(T)+a_{1}\right)$ in the ring $k_{P}[S]$ where $\phi: k[T] \rightarrow k_{P}$ is a standard homomorphism. So P splits completely in $k_{P}[T]$ hence $k \subset k_{P, \text { split }} \subset k_{P}$. But $k_{P \text {, split }} \neq k$ while $\left[k_{P}: k\right]=2$, therefore $k_{P, \text { split }}=k_{P}$.

Definition-Theorem 2.26. The algebraic extension K / k is called normal iff, equivalently,

1) All $\sigma \in \Sigma_{K / k}^{\bar{k} / k}$ have the same image or
2) For any irreducible $P \in k[T] \quad P$ has a root in $K \Rightarrow P$ totally splits in K.

Proof. 1) $\Rightarrow 2$). One may suppose $k \subset K \subset \bar{k}$. Let $\alpha \in K, P(\alpha)=0$. Then $k \subset k(\alpha) \subset K, k(\alpha) \cong k_{P}$. Let $P(T)=\prod_{i=1}^{d}\left(T-\beta_{i}\right)$ in \bar{k}. Then $\forall \beta_{i} \exists \tilde{\sigma}_{i}: k_{P} / k \rightarrow \bar{k} / k$ such that $\tilde{\sigma}_{i}(\alpha)=\beta_{i}$. As in the proof of the Theorem 2.15 each $\tilde{\sigma}_{i}$ could be extended to some $\sigma_{i} \in \Sigma_{K / k}^{\bar{k} / k}\left(\right.$ i.e. $\left.\left.\sigma_{i}\right|_{k(\alpha)}=\tilde{\sigma}_{i}\right)$. Hence $\beta_{i} \in \operatorname{im} \sigma_{i}\left(=\operatorname{im} \sigma_{1}\right.$ by the assumption 1)). Since $\sigma_{1}: K \rightarrow \operatorname{im} \sigma_{1}$ is an isomorphism $P(T)=\prod_{i=1}^{d}\left(T-\sigma_{1}^{-1}\left(\beta_{i}\right)\right)$ in K
2) $\Rightarrow 1)$. Suppose $\sigma_{1} \in \Sigma_{K / k}^{\bar{k} / k}, \beta \in \operatorname{im} \sigma_{1}$. The polynomial $P_{\beta} \in k[T]$ has a root $\sigma_{1}^{-1}(\beta)$ in K hence (by the assumption 2)) $K_{1} \stackrel{\text { def }}{=} k_{P_{\beta}, \text { split }} \subset K$. Consider an arbitrary $\sigma_{i} \in \Sigma_{K / k}^{\bar{k} / k}$. By the Definition-Theorem $2.25 \sigma_{i}\left(K_{1}\right)$ coincides with the unique subfield of \bar{k} isomorphic to $k_{P_{\beta}, \text { split }}$. In particular $\beta \in \sigma_{i}\left(K_{1}\right) \subset \sigma_{i}(K)=\operatorname{im} \sigma_{i}$

Theorem 2.27. For any nonconstant $P \in k[T] k_{P, \text { split }}$ is a normal extension.
Proof. Hometask

Examples. Suppose $k \subset K \subset L$ is a tower of algebraic extensions.

1. If L / k is normal then L / K is normal. In fact, one may identify \bar{K} with \bar{k}. Then $\Sigma_{L / K}^{\bar{K} / K} \subset \Sigma_{L / k}^{\bar{k} / k}$ so if the criterion 2.25.1) holds for L / k it also holds for L / K.
2. L / k normal, K / k not normal. Let $k=\mathbf{Q}, K=\mathbf{Q}(\sqrt[3]{2}), L=\overline{\mathbf{Q}} \subset \mathbf{C}$. Certainly \bar{k} / k is normal for any k. But K / k is not normal as the complex roots of the polynomial $T^{3}-2$ are not in K.
3. K / k normal, L / K normal, L / k not normal. Let $k=\mathbf{Q}, K=\mathbf{Q}(\sqrt{2}), L=\mathbf{Q}(\sqrt[4]{2})$. K / k and L / K are both of degree 2 hence normal (see Example 2 of the splitting field). But L / k is not normal as the imaginary roots of $T^{4}-2$ are not in L.

Definition 2.28. An algebraic extension K / k is called Galois iff it is separable and normal. If this is the case then the group $\operatorname{Aut}(K / k)$ is called its Galois group (notation $\operatorname{Gal}(K / k))$. If $k \subset K \subset \bar{k}$ then $\operatorname{Gal}(K / k)$ could be identified with the set $\Sigma_{K / k}^{\bar{k} / k}$.

In what follows all the fields are supposed to be the subfields of the fixed \bar{k}.
Theorem 2.29. Suppose K / k is a finite Galois extension. Then $\# \operatorname{Gal}(K / k)=[K: k]$.
Proof. Since K / k is finite separable $[K: k]=\# \Sigma_{K / k}^{\bar{k} / k}$, the latter set being identical to $\operatorname{Gal}(K / k)$

Definition 2.30. Suppose $H \subset \operatorname{Gal}(K / k)$ is a subgroup. The fixed field $K^{H} \stackrel{\text { def }}{=}\{x \in K$ such that $\forall h \in H \quad h(x)=x\}$.

Theorem 2.31 (the fundamental theorem of Galois theory). Suppose K / k is a finite Galois extension, $G=\operatorname{Gal}(K / k)$ its Galois group. Then

1) There exists a one-to-one correspondence $\{$ subgroups $H \subset G\} \leftrightarrow\{$ subfields $k \subset M \subset$ $K\}$ defined by the maps $H \mapsto K^{H}, \operatorname{Gal}(K / M) \leftarrow M$.
2) M / k is normal $\Leftrightarrow H \triangleleft G$ (i.e. H is a normal subgroup).

Proof. $\forall M K / M$ is separable (easy hometask) and normal (see Example 1 above) therefore Galois.

1) - Step 1. First we prove that $K^{G}=k$. Indeed, suppose $\alpha \in K^{G}$. Any $\tilde{\sigma}: k(\alpha) / k \rightarrow \bar{k} / k$ could be extended to some $\sigma: K / k \rightarrow \bar{k} / k$ which is an element of the Galois group
$\operatorname{Gal}(K / k)$. By assumption $\sigma(\alpha)=\alpha$ hence $\# \Sigma_{k(\alpha) / k}^{\bar{k} / k}=1$. Since α is separable over k this means that $[k(\alpha): k]=1$ hence $\alpha \in k$. By the same token $\forall M \quad M=K^{\operatorname{Gal}(K / M)}$. Therefore the composition map $M \mapsto \operatorname{Gal}(K / M) \mapsto K^{\mathrm{Gal}(K / M)}$ leads back to M
2) - Step 2. To finish the proof of the first statement of the Theorem it remains to prove that $\operatorname{Gal}\left(K / K^{H}\right)=H$. If $h \in H$ then by definition h does not act on K^{H} hence $H \subset \operatorname{Gal}\left(K / K^{H}\right)$. We still need to prove that $\operatorname{Gal}\left(K / K^{H}\right)$ does not contain "extra" elements. Since $\# \operatorname{Gal}\left(K / K^{H}\right)=\left[K: K^{H}\right]$ it suffices to prove that $\left[K: K^{H}\right] \leq \# H$.
Suppose $\alpha \in K$. Choose the elements Id $=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r} \in H$ such that all $\sigma_{i}(\alpha)$ are different and the set $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ is maximal with this property (i.e $\forall \sigma \in H \sigma(\alpha)$ coincides with some $\left.\sigma_{i}(\alpha)\right)$. Let $P(T) \stackrel{\text { def }}{=} \prod_{i=1}^{r}\left(T-\sigma_{i}(\alpha)\right)$. Then $\forall h \in H^{h} P(T)=P(T)$. Indeed, ${ }^{h} P(T)=\prod_{i=1}^{r}\left(T-h \circ \sigma_{i}(\alpha)\right)$ where the action of h just permutes the roots $\sigma_{i}(\alpha)$ (otherwise for some $i h \circ \sigma_{i}(\alpha)$ were different from all $\sigma_{j}(\alpha)$ in contradiction with the choice of the set $\left.\left\{\sigma_{i}\right\}\right)$. This means that $P(T) \in K^{H}[T]$ hence α is of degree $\leq r$ over K^{H}.
This holds for arbitrary α. Since K is separable over K^{H} (see the start of the proof) by the Theorem about a primitive element $\exists \alpha \in K$ such that $K=K^{H}(\alpha)$. This α is also of degree $\leq r$ over K^{H} hence $\left[K: K^{H}\right] \leq r$, the latter being $\leq \# H$ by construction
3) If M / k is normal then the restriction of any $\sigma \in \operatorname{Gal}(K / k)$ to M maps M to itself therefore belongs to $\operatorname{Gal}(M / k)$. Clearly $\operatorname{Gal}(K / M)=\operatorname{ker}(\operatorname{Gal}(K / k) \xrightarrow{\sigma \mapsto \sigma \mid M} \operatorname{Gal}(M / k))$ $\operatorname{hence} \operatorname{Gal}(K / M) \triangleleft \operatorname{Gal}(K / k)$. Conversely, if M / k is not normal then $\exists \sigma \in \Sigma_{M / k}^{\bar{k} / k}$ such that $\sigma(M) \neq M$ so $\operatorname{Gal}(K / \sigma(M)) \neq \operatorname{Gal}(K / M)$ by the first statement of the Theorem. This σ could be extended to $\tilde{\sigma} \in \Sigma_{K / k}^{\bar{k} / k}=\operatorname{Gal}(K / k)$. The subgroups $\operatorname{Gal}(K / M)$ and $\operatorname{Gal}(K / \sigma(M))$ are conjugate in $\operatorname{Gal}(K / k)\left(\right.$ namely $\operatorname{Gal}(K / \sigma(M))=\tilde{\sigma} \circ \operatorname{Gal}(K / M) \circ \tilde{\sigma}^{-1}$, for the proof see hometask) and different hence neither of them is normal

Remark. The finiteness of the extension K / k is essential only for the step 2 of the proof of the first statement. If K / k is infinite the "extra" elements in Gal (K / M) may exist. The correct formulation of the fundamental theorem in the general case looks as follows: intermediate fields are in one-to-one correspondence with subgroups of $\operatorname{Gal}(K / k)$ which are closed in the certain topology on $\operatorname{Gal}(K / k)$ named the Krull topology. The latter is nothing but the topology on $\operatorname{Gal}(K / k)$ considered as the projective limit of its finite quotient groups $\operatorname{Gal}(M / k), M / \mathrm{k}$ running over the set of all normal finite sub-extensions of K / k.

Examples.

Example 1. Suppose $P \in k[T]$ is a nonconstant monic separable polynomial (not necessary irreducible). Let $K=k_{P, \text { split }}, \quad P(T)=\prod_{i-1}^{n}\left(T-\alpha_{i}\right), \quad \alpha_{i} \in K$. The data above define a natural inclusion $\operatorname{Gal}(K / k) \hookrightarrow \mathbf{S}_{n}$.
The group \mathbf{S}_{n} is nothing but the group of permutations of the roots α_{i}. Since α_{i} generate K the homomorphism above is an inclusion.

Definition-Theorem 2.32. Suppose $P \in k[T]$ is a monic separable polynomial, $P(T)=$ $\prod_{i-1}^{n}\left(T-\alpha_{i}\right), \quad \alpha_{i} \in \bar{k}$. The discriminant $\Delta_{P} \stackrel{\text { def }}{=} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$. Then $\Delta_{P} \in k$. Let $\delta_{P} \stackrel{\text { def }}{=} \sqrt{\Delta_{P}} . \quad \delta_{P} \in k_{P}$, split, it is defined up to a sign. $\quad \delta_{P} \in k \Leftrightarrow\{$ the image of $\operatorname{Gal}\left(k_{P, \text { split }} / k\right)$ in \mathbf{S}_{n} is contained in the subgroup of even permutations $\left.\mathbf{A}_{n}\right\}$.

Proof. Neither permutation of the roots acts nontrivially on Δ_{P} hence $\operatorname{Gal}\left(k_{P, \text { split }} / k\right)$ does not act on it by the previous example, therefore $\Delta_{P} \in k$ by the Galois theory. It is clear from the definition of δ_{P} that any permutation τ of the roots of P multiplies δ_{P} with $\operatorname{sign}(\tau)$ whence the Theorem.

Example 2. Suppose $P \in k[T]$ is separable of degree 2. It is irreducible iff $\delta_{P} \notin k$. In this case $k_{P, \text { split }} \simeq k_{P}$ and $\operatorname{Gal}\left(k_{P, \text { split }} / k\right)=\mathbf{Z} /(2)$.

Example 3. Suppose $P \in k[T]$ is separable irreducible of degree 3. By the Example 1 $\# \operatorname{Gal}\left(k_{P, \text { split }} / k\right) \mid \# \mathbf{S}_{3}=6$ hence $\left[k_{P, \text { split }}: k\right] \mid 6$. On the other hand, $\forall i k\left(\alpha_{i}\right) \subset k_{P, \text { split }}$, thus $\left[k_{P, \text { split }}: k\right]=3$ or 6 .
Consider the tower of extensions $k \subset k\left(\delta_{P}\right) \subset k_{P \text {, split }}$. One may conclude that $\delta_{P} \in k \Leftrightarrow \operatorname{Gal}\left(k_{P, \text { split }} / k\right) \subset \mathbf{A}_{3} \Leftrightarrow \operatorname{Gal}\left(k_{P, \text { split }} / k\right)=\mathbf{A}_{3} \Leftrightarrow k_{P, \text { split }} \simeq k_{P}$, and $\delta_{P} \notin k \Leftrightarrow \operatorname{Gal}\left(k_{P, \text { split }} / k\right)=\mathbf{S}_{3}$.

Example 4. Suppose k_{0} ia a field, $K=k_{0}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is generated over k_{0} by n independent variables. Let $k=k_{0}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where s_{i} are elementary symmetric functions of t_{i}. Let $P(T)=\prod_{i=1}^{n}\left(T-t_{i}\right)=\sum_{j=0}^{n-1}(-1)^{n-j} s_{n-j} T^{j}+T^{n}$.
Theorem 2.33. $K=k_{P, \text { split }} \operatorname{Gal}(K / k) \simeq \mathbf{S}_{n}$.

Proof. The first statement is clear. By the definition of K any permutation of t_{i} 's defines an automorphism of K. Since k is generated by the symmetric functions such automorphism acts trivially on k therefore is an element of $\operatorname{Gal}(K / k)$, hence the inclusion from Example 1 is surjective in this case

Example 5. Finite fields. Suppose $\mathbf{F}_{q} \subset K \subset \overline{\mathbf{F}_{q}}, K / \mathbf{F}_{q}$ is finite. Let $m \stackrel{\text { def }}{=}\left[K: \mathbf{F}_{q}\right]$.
Theorem 2.34. K / \mathbf{F}_{q} is Galois, $\operatorname{Gal}\left(K / \mathbf{F}_{q}\right) \simeq \mathbf{Z} /(m)$. It is generated by the relative Frobenius homomorphism $F r_{q}$ which sends any element of $\overline{\mathbf{F}_{q}}$ to its q-th power.

Proof. $\# K=q^{m} \Rightarrow K=\mathbf{F}_{q^{m}}=\mathbf{F}_{q T^{q^{m}}-T \text {, split }}$. Hence K / \mathbf{F}_{q} is normal and separable. Therefore the restriction of $F r_{q}$ to K is an element of $\operatorname{Gal}\left(K / \mathbf{F}_{q}\right)$ (note that $F r_{q}=\operatorname{Id}$ on \mathbf{F}_{q}) which is of order m. Clearly $F r_{q}^{m}=$ Id on K but neither smaller power of $F r_{q}$ acts as Id on K (for the proof see hometasks

Example 6. "The Fundamental Theorem of Algebra".
Theorem 2.35. $\overline{\mathbf{R}}=\mathbf{R}_{T^{2}+1}$.
Proof. Suppose $\mathbf{R} \subset K_{0} \subset \overline{\mathbf{R}}$ and K_{0} / \mathbf{R} is finite. If K_{0} / \mathbf{R} is not Galois choose $K, \quad R \subset K_{0} \subset K \subset \overline{\mathbf{R}}$ such that K / \mathbf{R} is Galois. This is always possible because K_{0} / \mathbf{R} is separable hence $K_{0}=\mathbf{R}(\alpha)$ by the Theorem 2.24. Now let $K=K_{0} P_{\alpha}$, split. We are going to prove that $[K: \mathbf{R}]=2$. The Theorem then follows as any quadratic extension of \mathbf{R} clearly is contained in $\mathbf{R}(\sqrt{-1})$.
To finish the proof we need four Lemmas.
Lemma 1. R has no nontrivial finite extensions of odd degree.
Lemma 2. Suppose G is a finite group. If G is not a 2 -group (i.e. $\# G$ is not a power of 2) then $\exists H \subset G$ such that $(G: H)$ is odd and greater than 1 .

Lemma 3. If G is a finite 2-group then $\exists H \subset G$ such that $(G: H)=2$.
Lemma 4. $\mathbf{R}_{T^{2}+1}$ has no quadratic extensions.
Let us derive the Theorem from the Lemmas above. Let $G=\operatorname{Gal}(K / \mathbf{R})$. If G is not a 2-group then $\exists H \subset G$ from the Lemma 2, hence by the Galois theory $\mathbf{R} \subset K^{H} \subset K$,
and $\left[K^{H}: \mathbf{R}\right]$ is odd which is impossible by the Lemma 1 . So one may suppose G is a 2-group. Then by Lemma 3 there exist $H \subset G$ and the tower $\mathbf{R} \subset K^{H} \subset K$ such that $\left[K^{H}: \mathbf{R}\right]=2$. Clearly $K^{H}=\mathbf{R}(\sqrt{-1})$. If H is a trivial subgroup of G then $K=K^{H}$ and the proof ends. If not, consider $G_{1}=\operatorname{Gal}\left(K / K^{H}\right)$. By the same Lemma $\exists H_{1} \subset G_{1}$ such that $K^{H} \subset K^{H_{1}} \subset K$ and $\left[K^{H_{1}}: K^{H}\right]=2$ which is not possible by the Lemma 4

It remains to prove the Lemmas.
Proof of Lemma 1 \& Lemma 4. Hometasks
Proof of Lemma 2 \& Lemma 3. We will prove both by induction on the \#G using the wellknown class formula: for any finite group G
$\# G=\# Z_{G}+\sum_{C: \# C>1} \# C$,
where C in the sum runs over the set of nontrivial conjugate classes of G. Let me recall that the conjugate class is, by definition, an orbit of the action of G on itself by conjugations. The conjugate class is called trivial iff it consists of one element; such elements constitute the center Z_{G} of the group G. For any conjugate class $C \# C=\left(G: G_{x}\right)$, G_{x} being the subgroup of G which consists of all elements which commute with $x \in C$. Of course, G_{x} depends on x, but if x and y are in the same C then G_{x} and G_{y} are conjugate.

Now we prove Lemma 2. If $\# G$ is odd one may take $H=\{1\}$. Suppose $\# G$ is even but not a power of 2 . If $G: H$ is even for any subgroup H then all nontrivial conjugate classes in G have an even order, hence by the class formula $\# Z_{G}$ is also even. Z_{G} is commutative therefore $\exists Z_{0} \subset Z_{G}$ such that $\# Z_{0}=2$. Consider the quotient group $G_{1}=G / Z_{0}$, let $\phi: G \rightarrow G_{1}$ be the projection. Since G is not a 2 -group same is G_{1}. By the induction, $\exists H_{1} \subset G_{1}$ such that $\left(G_{1}: H_{1}\right)$ is odd, but $\left(G: \phi^{-1}\left(H_{1}\right)\right)=\left(G_{1}: H_{1}\right)$ which contradicts the assumption that the Lemma 2 does not hold for G

The proof of Lemma 3 is the same (any 2-group has a nontrivial center thanks to the class formula)

Example 7. Cyclotomic fields. Suppose n is a positive integer, k a field such that $\operatorname{gcd}(\operatorname{char}(k), n)=1$. Our goal is to study the extension $k_{T^{n}-1, \text { split }} / k$. Certainly its structure depends on the nature of the field k. The polynomial $T^{n}-1$ is never irreducible, sometimes splitting totally (say $k=\mathbf{F}_{q}$ and $n=q-1$).

Definition 2.36. The set of all roots of $T^{n}-1$ in \bar{k} is called the set of "roots of 1 of degree n^{*} ". They form a group under multiplication which is cyclic (being a finite subgroup of \bar{k}^{*}). Any generator of this group is called a primitive root.

Theorem 2.37. Suppose ζ is a primitive root. Then $k(\zeta) / k$ is Galois. There exists an inclusion $\operatorname{Gal}(k(\zeta) / k) \hookrightarrow(\mathbf{Z} /(n))^{*}$.

Proof. Suppose $\sigma \in \sum_{k(\zeta) / k}^{\bar{k} / k} \quad \sigma(\zeta)$ is a power of ζ hence $k(\zeta) / k$ is normal. Since $\operatorname{gcd}(\operatorname{char}(k), n)=1 T^{n}-1$ is separable, so $k(\zeta) / k$ is Galois. Let $\sigma(\zeta)=\zeta^{l(\sigma)}$, then $l(\sigma) \bmod n$ is correctly defined by σ. Clearly $l(\sigma) \in \mathbf{Z} /(n)$ is invertible (otherwise $\sigma(\zeta)$ were not primitive) and defines the homomorphism we need

In particular, $[k(\zeta): k] \mid \phi(n)$.
Definition 2.38. $T^{n}-1=\prod_{d \mid n} f_{d}(T)$, where $f_{d}(T)=\prod_{\text {(order of } \omega \text {) }=d}(T-\omega)$ is called the cyclotomic polynomial of degree d.

Examples. $f_{1}=T-1 ; \quad f_{2}=T+1 ; \quad f_{4}=T^{2}+1 ; \quad f_{p}=1+T+T^{2}+\cdots+T^{p-1}$ if p is a prime integer.

Theorem 2.39. $f_{d} \in \mathbf{Z}[T] ; \operatorname{deg} f_{d}=\phi(d)$.

Remark. Of course char (k) may be finite, in this case the Theorem means that the coefficients of f_{d} are the elements of the prime field \mathbf{F}_{p}.

Proof. Let $k_{0} \subset k$ be any subfield. Then $k_{0}(\zeta)$ contains all the roots of unity of degree n since ζ is primitive. Any automorphism of $k_{0}(\zeta)$ sends the elements of the group of roots of 1 to the elments of that group preserving the order of the element. Hence $f_{d}(T) \in k_{0}[T]$, whichever is k_{0}. This means that if char $(k)=0$ then $f_{d}(T) \in \mathbf{Q}[T]$ (hence $f_{d}(T) \in \mathbf{Z}[T]$ by the Gauss Lemma) while if $\operatorname{char}(k)=p$ then $f_{d}(T) \in \mathbf{F}_{p}[T]$. If $d \mid n$ then the number of elements of order exactly d in the cyclic group of order n equals $\phi(d)$ which finishes the proof

Theorem 2.40. f_{d} is irreducible over \mathbf{Q}.

Proof. Choose $\zeta \in \overline{\mathbf{Q}}$ a primitive d - root of 1 . Then $P_{\zeta} \mid f_{d}$. Let p be any prime integer not dividing d. Clearly ζ^{p} is also a primitive d - root. We are going to prove that ζ^{p}
is a root of P_{ζ}. Indeed, suppose the opposite is true. Then $f_{d}=P_{\zeta} g$ and ζ^{p} is a root of g. Define $h(T) \stackrel{\text { def }}{=} g\left(T^{p}\right)$, then ζ is a root of h. Therefore $P_{\zeta} \mid h . P_{\zeta}, g$ and h are all in $\mathbf{Z}[T]$ so one may consider residues $\bmod p$. Then $h(T)=g\left(T^{p}\right) \equiv(g(T))^{p} \bmod p$. Since $P_{\zeta} \mid h$ P_{ζ} and g have common roots in $\overline{\mathbf{F}_{p}}$ which is impossible as both are factors of $T^{d}-1$. Since any primitive d - root could be obtained from ζ by successive taking prime powers, all of them are the roots of P_{ζ}, therefore $f_{d}=P_{\zeta}$

Remark. Any quadratic extension of \mathbf{Q} is a subfield of some field generated by the roots of 1. Indeed, let ζ be a p-root of 1 . Consider the Gaussian sum $\tau_{p} \stackrel{\text { def }}{=} \sum_{a \bmod p}\left(\frac{a}{p}\right) \zeta^{a}$. Then $\tau_{p}^{2}=(-1)^{\frac{p-1}{2}} p$ (an easy calculation). Thus, $\mathbf{Q}(\sqrt{p}) \subset \mathbf{Q}(\zeta, \sqrt{-1})$. This is a small part of the deep Kronecker-Weber theorem which states that any Galois extension K / \mathbf{Q} such that $\operatorname{Gal}(K / \mathbf{Q})$ is commutative is contained in the field generated over \mathbf{Q} by the roots of 1 .

Definition 2.41. Suppose K / k is a finite extension, $\alpha \in K$. Then the multiplication with α defines a linear transformation of the k-vector space K. Its characteristic polynomial is called the characteristic polynomial of α (notation $\chi_{\alpha, K / k}(T)$), its determinant is called the norm of α (notation $N_{K / k}(\alpha)$) and its trace is called the trace of α (notation $\operatorname{Tr}_{K / k}(\alpha)$).

Remark 1. Clearly $N: K^{*} \rightarrow k^{*}$ and $\operatorname{Tr}: K^{+} \rightarrow k^{+}$are the group homomorphisms.
Remark 2. If $[K: k]=n$ and $\chi_{\alpha, K / k}(T)=\sum_{i=0}^{n-1} a_{i} T^{i}+T^{n}$ then $\left.\operatorname{Tr}_{K / k}(\alpha)\right)=-a_{n-1}$ and $N_{K / k}(\alpha)=(-1)^{n} a_{0}$ (this is a standard statement from linear algebra which is true for the determinant and trace of an arbitrary linear transformation).

Remark 3. If $[K: k]=n$ and $\alpha \in k$ then $\chi_{\alpha, K / k}(T)=(T-\alpha)^{n}, \quad N_{K / k}(\alpha)=$ $\alpha^{n}, \operatorname{Tr}_{K / k}(\alpha)=n \alpha$.

Theorem 2.42. Suppose $[K: k]=n, \alpha \in K, \operatorname{deg} P_{\alpha, K / k}=d$. Then $\chi_{\alpha, K / k}=P_{\alpha, K / k}^{\frac{n}{d}}$.
Proof. Consider the tower $k \subset k(\alpha) \subset K$. Let $m=\frac{n}{d}$. The set $\left\{\alpha^{i}, 0 \leq i \leq d-1\right\}$ is a vector space basis for $k(\alpha)$ over k. Let $\left\{y_{j}, 1 \leq j \leq m\right\}$ be any basis of the vector space K over $k(\alpha)$. As we have earlier proved $\left\{\alpha^{i} y_{j}\right\}$ is a basis for K over k. The matrix of the multiplication with α in that basis is a block matrix consisting of m equal blocks of the form

$$
\left(\begin{array}{cccc}
0 & 0 & \ldots & -a_{0} \\
1 & 0 & \ldots & -a_{1} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots \\
\ldots & 1 & 0 & -a_{d-2} \\
0 & \ldots & 1 & -a_{d-1}
\end{array}\right)
$$

where a_{j} are the coefficients of the polynomial $P_{\alpha}(T)=\sum_{i=0}^{d-1} a_{i} T^{i}+T^{d}$. The characteristic polynomial of each block equals P_{α} (please check and calculate) which finishes the proof of the Theorem

Theorem 2.43. Suppose K / k is separable. Then $\forall \alpha \in K \quad N_{K / k}(\alpha)=\prod_{\sigma \in \Sigma_{K / k}^{k / k}} \sigma(\alpha)$,
$\operatorname{Tr}_{K / k}(\alpha)=\sum_{\sigma \in \Sigma_{K / k}^{\bar{k} / k}} \sigma(\alpha)$.

Proof. Let us prove the statement for the norm (the proof for the trace is close). Consider the tower $k \subset k(\alpha) \subset K$. Let again $d=\operatorname{deg} P_{\alpha}, \quad n=[K: k], \quad m=\frac{n}{d}$. Then $N_{K / k}(\alpha)=\operatorname{det}(\cdot \alpha)=(-1)^{n}$. (the free term of $\chi_{\alpha, K / k}$). By the Theorem 2.42 this equals $\left((-1)^{d}\left(\text { free term of } P_{\alpha, K / k}\right)\right)^{m}$. Clearly the free term of $P_{\alpha, K / k}$ equals $(-1)^{d} \prod_{\bar{\sigma} \in \Sigma_{k(\alpha) / k}^{k / k}} \bar{\sigma}(\alpha)$.
For any $\sigma \in \Sigma_{K / k}^{\bar{k} / k} \sigma(\alpha)$ depends only on the restriction $\bar{\sigma}$ of σ to $k(\alpha)$, each fiber of this surjective restriction map containing m elements by the proof of the Theorem 2.18. This ends the proof

Example 8. Cyclic extensions.
Theorem 2.44. (linear independence of characters). Suppose C is an arbitrary group, K any field. Suppose $\chi_{1}, \ldots, \chi_{n}: C \rightarrow K^{*}$ are different homomorphisms. Then the maps χ_{i} are linearly independent over K.

Proof. Suppose the opposite is true. Choose a shortest linear relation $\sum a_{i} \chi_{i}=0$. This means that $\forall c \in C \quad \sum a_{i} \chi_{i}(c)=0$. One may change c to $c_{0} c$ in this equation to conclude that $\forall c \in C \quad \sum a_{i} \chi_{i}\left(c_{0} c\right)=\sum a_{i} \chi_{i}\left(c_{0}\right) \chi_{i}(c)=0$ thus the linear relation $\sum \chi_{i}\left(c_{0}\right) a_{i} \chi_{i}=0$ is also valid. Now choose c_{0} for which $\chi_{1}\left(c_{0}\right) \neq \chi_{2}\left(c_{0}\right)$, multiply the first linear relation with $\chi_{1}\left(c_{0}\right)$ and substract from the second one obtaining the shorter linear relation which contradicts the assumption

Theorem 2.45. (Theorem 90 Hilbert's) Suppose K / k is a cyclic extension (i.e. finite Galois extension with a cyclic Galois group). Suppose σ is a generator of $\operatorname{Gal}(K / k), \alpha \in K$. Then $N_{K / k}(\alpha)=1 \Leftrightarrow \exists \beta \in K$ such that $\alpha=\frac{\sigma(\beta)}{\beta}$.

Proof. \Leftarrow By the Theorem $2.43 N_{K / k}(\sigma(\beta))=N_{K / k}(\beta)$
\Rightarrow Let $n=[K: k]$. Consider the map $\psi: K^{*} \rightarrow K, \psi(x)=x+\alpha \sigma(x)+\alpha \sigma(\alpha) \sigma^{2}(x)+$ $\cdots+\alpha \sigma(\alpha) \sigma^{2}(\alpha) \ldots \sigma^{n-2}(\alpha) \sigma^{n-1}(x)$. The map ψ is a linear combinations of characters for the group $C=K^{*}$ which fits the conditions of Theorem 2.44. Therefore $\exists z \in K^{*}$ such that $\psi(z) \neq 0$. Since $N_{K / k}(\alpha)=1 \alpha \sigma(\psi(z))=\psi(z)$ hence $\alpha=\frac{\sigma\left(\psi(z)^{-1}\right)}{\left(\psi(z)^{-1}\right)}$

Theorem 2.46. Suppose $\operatorname{gcd}(\operatorname{char}(k), n)=1$. Let $\zeta \in \bar{k}$ be a primitive n-root of 1 . Suppose $\zeta \in k$. Then

1) K / k is cyclic of degree $n \Rightarrow \exists b \in k$ such that $K \simeq k_{T^{n}-b}$.
2) $\forall b \in k k_{T^{n}-b \text {, split }}$ is cyclic of some degree $d, d \mid n$.

Proof. 1) Let σ be a generator of $\operatorname{Gal}(K / k)$. Since $\zeta \in k \quad N_{K / k}(\zeta)=\zeta^{n}=1$ hence by the previous theorem $\exists \beta \in K$ such that $\sigma(\beta)=\zeta \beta$. Then $\forall i \sigma^{i}(\beta)=\zeta^{i} \beta$, therefore $[k(\beta): k]_{s} \geq n$ hence $[k(\beta): k] \geq n$ thus $K=k(\beta)$. But $\sigma\left(\beta^{n}\right)=(\sigma(\beta))^{n}=\zeta^{n} \beta^{n}=\beta^{n}$. Since σ generates $\operatorname{Gal}(K / k)$ the latter acts trivially on β^{n} hence $\beta^{n} \in k$
2) Let $\beta \in \bar{k}$ be a root of the polynomial $T^{n}-b$. Any other root of $T^{n}-b$ is of the form $\zeta^{i} \beta$ for some i hence $k(\beta)$ is normal over k. Since $\operatorname{gcd}(\operatorname{char}(k), n)=1$ it is also separable. Let $G=\operatorname{Gal}(k(\beta) / k) . \forall g \in G \quad g(\beta)=\omega \beta, \quad \omega^{n}=1$ (ω is not necessary primitive). This gives an injective homomorphism $G \hookrightarrow$ \{group of roots of 1 of degree n in $k\}$. The latter is cyclic of order n hence G is cyclic of some order dividing n

Theorem 2.47. Suppose $\operatorname{char}(k)=p$. Then

1) K / k is cyclic of degree $p \Rightarrow \exists b \in k$ such that $K \simeq k_{T^{p}-T-b}$.
2) $\forall b \in k T^{p}-T-b$ is either irreducible or splits totally in $k[T]$. In the former case $k_{T^{p}-T-b}$ is cyclic of degree p.

Lemma (Hilbert's 90, additive form). Suppose K / k is cyclic of degree n, σ is a generator of $\operatorname{Gal}(K / k)$,
$\alpha \in K$. Then $\operatorname{Tr}_{K / k}(\alpha)=0 \Leftrightarrow \exists \beta \in K$ such that $\alpha=\sigma(\beta)-\beta$.
Proof of the Lemma. $\mathrm{Tr}: K \rightarrow k$ is a k-linear map which is nonzero by 2.43 and 2.44, hence $\operatorname{dim}_{k} \operatorname{ker}(T r)=n-1$. By Galois Theory, $\operatorname{ker}(\sigma-\mathrm{Id})=k$ hence $\operatorname{dim}_{k} \operatorname{im}(\sigma-\mathrm{Id})=$ $n-1$. Obviously im $(\sigma-\mathrm{Id}) \subset \operatorname{ker}(T r)$

Proof of the Theorem. 1) Consider $\alpha=1$. $\operatorname{Tr}_{K / k}(\alpha)=p \alpha=0 \Rightarrow 1=\sigma(\beta)-\beta$ for some $\beta \in K . \sigma(\beta) \neq \beta$ hence $\beta \notin k$. Since the degree $[K: k]$ is prime there are no subfields between k and K thus $k(\beta)=K$. Let $b=\beta^{p}-\beta$. Then $\sigma(b)=\sigma\left(\beta^{p}\right)-\sigma(\beta)=$ $(\sigma(\beta))^{p}-\sigma(\beta)=(1+\beta)^{p}-(1+\beta)=1+\beta^{p}-1-\beta=b$, therefore $b \in k$
2) The polynomial $P(T)=T^{p}-T-b$ is separable. Suppose $\beta \in \bar{k}$ is its root. Then the full set of the roots of P coincides with $\beta, \beta+1, \beta+2, \ldots, \beta+(p-1)$. It is easy to see that the map $\operatorname{Gal}\left(k_{P, \text { split }} / k\right) \rightarrow \mathbf{Z} /(p)$ which sends $g \mapsto g(\beta)-\beta$ is an injective homomorphism. Hence it is either isomorphic or trivial

Remark. To describe cyclic extensions of degree $p^{k}, k>1$ over the field k of characteristic p one needs more complicated method (Witt vectors).

Example 9. Solving equations in radicals.
We restrict ourselves to the classical problem of solving equations over \mathbf{Q}. First prove an
important general theorem about Galois extensions.

Theorem 2.48. Suppose K / k is a finite Galois extension, M / k any extension (not necessary algebraic). Suppose both K and M are subfields of some field \widetilde{k}. Let $K M \subset \widetilde{k}$ be the composite field (i.e the minimal subfield of \tilde{k} containing both K and M). Then $K M / M$ is finite Galois, $\operatorname{Gal}(K M / M)=\operatorname{Gal}(K / K \bigcap M)$.

Proof. K / k is separable therefore $\exists P \in k[T]$ irreducible and separable such that $K \simeq k_{P}$. Since K / k is normal $K=k_{P, \text { split }}$. By definition $K M=M_{P \text {, split }}$ hence $K M / M$ is finite Galois. Consider the restriction homomorphism $\operatorname{Gal}(K M / M) \rightarrow \operatorname{Gal}(K / k),\left.\sigma \mapsto \sigma\right|_{K}$. It is injective (if $\left.\sigma\right|_{K}=$ Id then σ acts trivially on the roots of P hence on $K M=M_{P \text {, split }}$) and its image is contained in $\operatorname{Gal}(K / K \bigcap M)$. Let H be this image. Suppose $\alpha \in K$. If H acts trivially on α then $\alpha \in M$ by the Galois theory for $K M / M$. This means $\alpha \in K \bigcap M$. Therefore by the Galois theory for $K / K \bigcap M \quad H$ must coincide with the entire group $\operatorname{Gal}(K / K \bigcap M)$

Definition 2.49. Suppose K / \mathbf{Q} is a finite extension. Let L / \mathbf{Q} be the minimal Galois extension such that $K \subset L$. The extension K / \mathbf{Q} is called solvable iff $\operatorname{Gal}(L / \mathbf{Q})$ is a solvable group (recall this means that G admits a composition series of subgroups $\{1\}=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{r}=G$ such that $\forall i, 1 \leq i \leq r, G_{i} / G_{i-1}$ is cyclic).

Definition 2.50. Suppose $P(T) \in \mathbf{Q}[T]$ is irreducible. The equation $P(X)=0$ could be solved in radicals iff there exist a field $L \supset \mathbf{Q}_{P \text {, split }}$ and a sequence of subfields $\mathbf{Q}=L_{0} \subset L_{1} \subset \cdots \subset L_{s}=L$ such that $\forall i, 1 \leq i \leq s, \exists \alpha \in L_{i}$ such that $L_{i}=L_{i-1}(\alpha)$ and α is a root of the polynomial $T^{m}-a=0$ for some $a \in L_{i-1}$ and some positive integer m.

Theorem 2.51. The equation $P(X)=0$ could be solved in radicals $\Leftrightarrow \mathbf{Q}_{P} / \mathbf{Q}$ is solvable.
Proof. \Rightarrow Let $K=\mathbf{Q}_{P \text {, split }}$. Choose an algebraic closure $\overline{\mathbf{Q}}$ so that $\mathbf{Q} \subset K \subset L \subset \overline{\mathbf{Q}}$, L being a field from the Definition 2.50. If L / \mathbf{Q} is not normal then let \widetilde{L} (resp. \tilde{L}_{i}) be the minimal subfield of $\overline{\mathbf{Q}}$ which contains all the fields $\sigma(L)$ (resp. $\left.\sigma\left(L_{i}\right)\right), \sigma \in \Sigma_{L / \mathbf{Q}}^{\overline{\mathbf{Q}} / \mathbf{Q}}$. Then \tilde{L} enjoys the same property as L. Indeed, \widetilde{L}_{i} could be generated over \widetilde{L}_{i-1} by adding the roots of certain polynomial $T^{m}-a$ one by one (if $L_{i}=L_{i-1}(\alpha)$ then $\sigma\left(L_{i}\right)=\sigma\left(L_{i-1}\right)(\sigma(\alpha))$). Thus, one may suppose L / \mathbf{Q} is normal. Let $n=[L: \mathbf{Q}]$ and let $\zeta \in \overline{\mathbf{Q}}$ be a primitive root
of 1 of degree n. Consider the sequence of fields $L_{0}(\zeta) \subset L_{1}(\zeta) \subset \cdots \subset L_{s}(\zeta) . \quad L(\zeta) / \mathbf{Q}(\zeta)$ is Galois by the Theorem 2.48 and $\forall i, 1 \leq i \leq s, L_{i}(\zeta) / L_{i-1}(\zeta)$ is Galois cyclic by the assumption and by the Theorem 2.46. By definition, this means that $\operatorname{Gal}(L(\zeta) / \mathbf{Q}(\zeta))$ is solvable. $\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$ is commutative hence also solvable. The rest is simple group theory
\Leftarrow Choose an algebraic closure $\overline{\mathbf{Q}}$ so that $\mathbf{Q} \subset \mathbf{Q}_{P, \text { split }}(\stackrel{\text { def }}{=} K) \subset \overline{\mathbf{Q}}$. Let $n=[K: \mathbf{Q}]$, $\zeta \in \overline{\mathbf{Q}}$ a primitive root of 1 of degree n. By the Theorem $2.48 K(\zeta) / \mathbf{Q}(\zeta)$ is Galois, $\operatorname{Gal}(K(\zeta) / \mathbf{Q}(\zeta))$ being isomorphic to a subgroup of $\operatorname{Gal}(K / \mathbf{Q})$. The latter group is solvable by the assumption hence the former group is solvable (again simple group theory). This means (by the Theorem 2.46) that the equation $P(X)=0$ could be solved in radicals over $\mathbf{Q}(\zeta)$ hence also over \mathbf{Q}

To finish our survey of Galois Theory it remains to discuss two results related to linear algebra.

Theorem 2.52. Suppose K / k is a finite separable extension, M / k any extension. Then there exists a M - algebra isomorphism $K \otimes_{k} M \simeq \oplus M_{i}$ where M_{i} are finite extensions of M of the type $M_{P_{i}}, \quad P_{i} \in M[T], \sum \operatorname{deg} P_{i}=[K: k]$. The set $\left\{M_{i}\right\}$ is unique up to a permutation.

Proof. Choose $P \in k[T]$ irreducible such that $K \simeq k_{p}$. Then there exist isomorphisms of M - algebras $K \otimes_{k} M \simeq(k[T] /(P)) \otimes_{k} M \simeq M[T] /(P)$. Let $P=\prod P_{i}$ be the decomposition of P in irreducible factors in the ring $M[T]$. Since P is separable same are all the P_{i} and they are pairwise coprime. The Chinese remainder theorem for the ring $M[T]$ leads to a further isomorphism $M[T] / \prod P_{i} \simeq \oplus M[T] /\left(P_{i}\right)$. Suppose now that there exists an M - algebra isomorphism $\phi: \oplus M_{i} \xrightarrow{\sim} \oplus M_{j}^{\prime}$. Let $\pi_{i}: \oplus M_{i} \rightarrow M_{i}, \quad \pi_{j}^{\prime}: \oplus M_{j}^{\prime} \rightarrow M_{j}^{\prime}$ be the natural projections, $I_{i} \stackrel{\text { def }}{=} \operatorname{ker}\left(\pi_{i}\right)$. Then $\prod I_{i}=(0)$ hence $\forall j \Pi\left(\pi_{j}^{\prime} \circ \phi\left(I_{i}\right)\right)=\pi_{j} \circ \phi\left(\prod I_{i}\right)=(0)$. Therefore $\forall j \exists i$ such that $\pi_{j}^{\prime} \circ \phi\left(I_{i}\right)=(0)$ (recall that M_{j}^{\prime} is a field). Since the ideal $I_{i_{1}}+I_{i_{2}}$ contains 1 (i_{1} and i_{2} being different) such i is unique for j given, otherwise $\pi_{j}^{\prime} \circ \phi$ were zero while it is surjective by the assumption. So i is uniquely defined after the choice of j. Since $\pi_{j}^{\prime} \circ \phi\left(I_{i}\right)=(0)$ there exists a homomorphism $\phi_{i j}: M_{i} \rightarrow M_{j}^{\prime}$ such that $\pi_{j}^{\prime} \circ \phi=\phi_{i j} \circ \pi_{i}$. $\phi_{i j}$ is surjective by the assumption and injective because M_{i} is a field. This ends the proof

Remark. Besides the polynomials P_{i} are pairwise coprime some of the fields M_{i} may still be isomorphic.

Theorem 2.53. If K / k is separable then $\operatorname{Tr}(a b): K \times K \rightarrow k$ is a nondegenerate symmetric bilinear form. Otherwise the trace map is zero.

Proof. Suppose first that K / k is not separable, so $\operatorname{char}(k)=p$. Let $\alpha \in K$. By the Remark 2 after the Definition $2.41 \operatorname{Tr}_{K / k}(\alpha)$ is the negative of the second leading coefficient of its characteristic polynomial. By the Theorem $2.42 \chi_{\alpha, K / k}=P_{\alpha, K / k}^{\frac{n}{d}}$ where $[K: k]=n$ and $\operatorname{deg} P_{\alpha, K / k}=d$. If $K / k(\alpha)$ is not separable then $p \left\lvert\, \frac{n}{d}\right.$ hence the degrees of all nonzero terms of $\chi_{\alpha, K / k}$ are divisible by p. If $K / k(\alpha)$ is separable then α is not (otherwise K / k were separable), hence the statement about the degrees is true for the $P_{\alpha, K / k}$. In both cases $\operatorname{Tr}_{K / k}(\alpha)$ is zero.
Now let K / k be separable. Suppose there exists $a \in K$ such that $\forall b \in K \operatorname{Tr}(a b)=0$. Since K / k is separable one may use Theorem 2.43, thereby concluding that $\forall b \in K$
$\sum_{\sigma \in \Sigma_{K / k}^{\bar{k} / k}} \sigma(a) \sigma(b)=0$. This contradicts to the Theorem 2.44 according to which the group homomorphisms $\sigma_{i}: K^{*} \rightarrow \overline{k^{*}}$ must be linearly independent

