4. Локальные поля

Инерция и ветвление в полных d.v.r.

Если $\mathcal{O}_1 \subset \mathcal{O}_2$ - дедекиндовы области, $\mathfrak{p}_1 \subset \mathcal{O}_1$ и $\mathfrak{p}_2 \subset \mathcal{O}_2$ - ненулевые простые идеалы, такие, что $\mathfrak{p}_1 = \mathfrak{p}_2 \cap \mathcal{O}_1$, $k_{\mathfrak{p}_1} = \mathcal{O}_1/\mathfrak{p}_1$, и $k_{\mathfrak{p}_2} = \mathcal{O}_2/\mathfrak{p}_2$ - соответствующие поля вычетов. Индекс инерции (степень классов вычетов) $f(\mathfrak{p}_2/\mathfrak{p}_1) \stackrel{\text{def}}{=} [k_{\mathfrak{p}_2} : k_{\mathfrak{p}_1}]$ (может быть и бесконечным), а индекс ветвления $e(\mathfrak{p}_2/\mathfrak{p}_1) \stackrel{\text{def}}{=} v_{\mathfrak{p}_2}(\mathfrak{p}_1)$ (всегда конечен).

Как индекс инерции, так и индекс ветвления мультипликативны в башнях. Если $\mathcal{O}_1 = \mathcal{O}_{\mathfrak{p}}$ - d.v.r, а $\mathcal{O}_2 = \widehat{\mathcal{O}}_{\mathfrak{p}}$ - его пополнение, то оба индекса равны 1.

Далее везде \mathcal{O} - полное d.v.r., \mathfrak{p} - максимальный идеал, k - поле частных, K/k - конечное сепарабельное расширение степени n. Напомним, что \mathfrak{p} -адическое нормирование однозначно продолжается с k на K. \mathcal{O}_K - кольцо нормирования (оно же целое замыкание \mathcal{O} в K), $\mathfrak{P} \subset \mathcal{O}_K$ - единственный максимальный идеал, $k_{\mathfrak{p}}$ и $K_{\mathfrak{P}}$ - поля вычетов, e и f- соответственно, индекс ветвления и индекс инерции. Будем предполагать, что $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ тоже сепарабельно (в арифметическом случае это всегда так).

 $\forall x \in K \ v_{\mathfrak{p}}(N(x)) = n v_{\mathfrak{p}}(x)$, соответственно, продолжение \mathfrak{p} - адического нормирования на K задается формулой $||x|| = ||N(x)||^{\frac{1}{n}}$.

При этих условиях f конечен, ef = n. Для общей дедекиндовой области эта формула приобретает вид $n = \sum e_i f_i$, где $e_i = e(\mathfrak{P}_i/\mathfrak{p}), \ f_i = f(\mathfrak{P}_i/\mathfrak{p}).$

Если $x \in \mathcal{O}_K$, то $\overline{Tr_{K/k}(x)} = e \, Tr_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\overline{x}), \, \overline{N_{K/k}(x)} = (N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\overline{x}))^e$ (горизонтальная черта слева означает редукцию по модулю \mathfrak{P} , а справа - редукцию по модулю \mathfrak{P})

Теорема (4.6). $v_{\mathfrak{P}}(\mathfrak{D}_{K/k}) \geq e - 1$.

Расширение K/k называется неразветвленным, если e = 1, слабо разветвленным, если $\operatorname{char}(k_{\mathfrak{p}}) \nmid e$, и вполне разветвленным, если f = 1.

Расширение неразветвлено $\Leftrightarrow \mathfrak{d}_{K/k} = \mathcal{O}$.

Расширение слабо разветвлено $\Leftrightarrow Tr_{K/k}(\mathcal{O}_K) = \mathcal{O} \Leftrightarrow v_{\mathfrak{P}}(\mathfrak{D}_{K/k}) = e - 1.$

Вполне разветвленные расширения.

Сепарабельный полином $P(T) = T^n + \sum_{i=0}^{n-1} a_i T^i \in \mathcal{O}[T]$ называется полиномом Эйзенштейна, если все $a_i \in \mathfrak{p}$ и $v_{\mathfrak{p}}(a_0) = 1$. Полином Эйзенштейна неприводим

Теорема (4.11).

- 1) Пусть $K = k_P$, $P \in \mathcal{O}[T]$ полином Эйзенштейна. Тогда K/k вполне разветвлено. Если $\Pi \in K$, $P(\Pi) = 0$, то $\mathbf{v}_{\mathfrak{R}}(\Pi) = 1$.
- 2) Пусть K/k вполне разветвлено, $\Pi \in \mathcal{O}_K$, $\mathbf{v}_{\mathfrak{P}}(\Pi) = 1$. Тогда P_{Π} полином Эйзенштейна, $K = k(\Pi), \ \mathcal{O}_K = \mathcal{O}[\Pi]$.

Неразветвленные расширения.

Теорема (4.12).

- 1) Пусть $K = k_P$, $P \in \mathcal{O}[T]$ унитарен степени n, причем $\overline{P} \in k_{\mathfrak{p}}[T]$ неприводим и сепарабелен (такой полином назывывается гензелевым). Тогда K/k неразветвлено, и $K_{\mathfrak{P}} = (k_{\mathfrak{p}})_{\overline{P}}$.
- 2) Пусть K/k неразветвлено. Тогда $\exists x \in \mathcal{O}_K$ такой, что $K_{\mathfrak{P}} = k_{\mathfrak{p}}(\overline{x})$, и в этом случае K = k(x), $\mathcal{O}_K = \mathcal{O}[x]$, и P_x гензелев полином.

Если K'/k - другое конечное сепарабельное расширение, а $\sigma: K/k \to K'/k$ - гомоморфизм, то его редукция $\overline{\sigma}: K_{\mathfrak{P}}/k_{\mathfrak{p}} \to K'_{\mathfrak{P}'}/k_{\mathfrak{p}}$ определяется формулой $\overline{\sigma}(\overline{x}) \stackrel{\text{def}}{=} \overline{\sigma(x)}$, где x - какой-нибудь прообраз \overline{x} в \mathcal{O}_K . Если K/k неразветвлено, а K'/k - произвольное конечное сепарабельное расширение, то естественное отображение $\Sigma_{K/k}^{K'/k} \to \Sigma_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}^{K'_{\mathfrak{P}}/k_{\mathfrak{p}}}$ взаимнооднозначно. Если K'/k также неразветвлено, а $K_{\mathfrak{P}}/k_{\mathfrak{p}} \simeq K'_{\mathfrak{P}}/k_{\mathfrak{p}}$, то $K/k \simeq K'/k$.

Теорема (максимальное неразветвленное подрасширение).

- 1) Существует единственное подполе $k \subset K_0 \subset K$, которое неразветвлено над k и содержит любое другое подполе K, неразветвленное над k. Все подполя $k \subset K_1 \subset K_0$ неразветвлены над k. $(K_0)_{\mathfrak{P}_0} = K_{\mathfrak{P}}$.
- 2) Если K/k нормально, то таково же и K_0/k . Пусть $G = \operatorname{Gal}(K/k)$. Тогда K_0/k соответствует подгруппе $G_0 \subset G$, определенной условием $G_0 \stackrel{\mathrm{def}}{=} \{g \in G \text{ такие, что } \forall x \in \mathcal{O}_K \ \mathrm{v}_{\mathfrak{P}}(g(x)-x)>0\}.$

Группа G_0 называется группой инерции.

Поле Тэйта C_p .

Функция \mathbf{v}_p однозначно продолжается с \mathbf{Q}_p^* на $\overline{\mathbf{Q}_p}^*$ со значениями в \mathbf{Q} и определяет на поле $\overline{\mathbf{Q}_p}$ неархимедово (недискретное) нормирование.

Пополнение \mathbf{C}_p поля $\overline{\mathbf{Q}_p}$ содержит трансцендентные над \mathbf{Q}_p элементы.

Теорема (лемма Краснера).

Пусть K - поле, полное относительно неархимедова нормирования, α , $\beta \in \overline{K}$. Пусть $\{\alpha = \alpha_1, \dots, \alpha_d\}$ - полный набор корней полинома $P_{\alpha,K}$. Если $\forall i \geq 2 \ ||\beta - \alpha|| < ||\alpha - \alpha_i||$, то $\alpha \in K(\beta)$.

Теорема (4.19). \mathbf{C}_p алгебраически замкнуто.

Степенные ряды.

Для степенного ряда $F(T) = \sum_{i=0}^{\infty} a_i T_i \in \mathbf{C}_p[[T]]$ положим $\mathbf{v}(F) \stackrel{\text{def}}{=} \liminf \frac{\mathbf{v}_p(a_i)}{i}$. $(\mathbf{v}(F))$ может быть конечным или равняться $+\infty$ или $-\infty$). Тогда ряд F(x) сходится при $\mathbf{v}_p(x) > -\mathbf{v}(F)$, определяя непрерывную функцию, и расходится при $\mathbf{v}_p(x) < -\mathbf{v}(F)$.

Многоугольником Ньютона степенного ряда $F(T)=1+\sum\limits_{i=1}^{\infty}a_iT^i\in 1+T\mathbf{C}_p[[t]]$ называется нижняя выпуклая оболочка точек $(i,\mathbf{v}_p(a_i))$ на плоскости. Многоугольник Ньютона может совпасть с отрицательной частью вертикальной оси, в противном случае определена строго возрастающая последовательность наклонов сторон λ_j ; длина проекции стороны на горизонтальную ось называется длиной l_j соответствующего наклона. Если ряд не является полиномом, а список наклонов конечен, то максимальный из них имеет бесконечную длину.

Теорема. $v(F) = \sup \lambda_j(F)$. Ряд F(x) сходится при $v_p(x) = v(F) \Leftrightarrow \{$ список наклонов конечен и расстояние по вертикали между точками (i, a_i) и бесконечной стороной многоугольника Ньютона стремится к $\infty \}$.

Теорема (4.23). Пусть $K \subset \mathbf{C}_p$ - полное подполе, $F(T) \in 1 + TK[T]$ - полином. Тогда $F(T) = \prod F_{\lambda_j(F)}, \ F_{\lambda_j(F)} \in K[T], \ \deg F_{\lambda_j(F)} = l_j(F)$ и для любого корня α полинома $F_{\lambda_j(F)}$ в \mathbf{C}_p $\mathbf{v}_p(\alpha) = -\lambda_j(F)$.

Теорема Вейерштрасса (\mathbf{C}_p - версия).

1) Пусть степенной ряд $F(T) \in 1 + T\mathbf{C}_p[[T]]$ таков, что F(x) сходится при всех $x \mid \mathbf{v}_p(x) \geq -\lambda$. Положим $n(\lambda, F) \stackrel{\mathrm{def}}{=} \sum_{\lambda_j(F) \leq \lambda} l_j(F)$ (если в эту сумму входит длина

максимального наклона, которая бесконечна, то будем считать, что соответствующая сторона заканчивается в последней лежащей на ней точке (i,a_i)). Тогда $\exists! H(T) \in 1+T\mathbf{C}_p[T]$, $\deg H=n(\lambda,F)$ и $G(T)\in 1+T\mathbf{C}_p[[T]]$ такие, что F(T)=H(T)G(T), G(x) также сходится при всех $x\mid \mathbf{v}_p(x)\geq -\lambda$ и не обращается там в 0. Многоугольник Ньютона полинома H(T) совпадает с частью многоугольника Ньютона ряда F(T) между точками (0,0) и $(n(\lambda,F),\mathbf{v}_p(a_{n(\lambda,F)}))$.

- 2) Пусть ряд $F(T) \in 1 + T\mathbf{C}_p[[T]]$ сходится при всех $x \in \mathbf{C}_p$, и $\{\alpha_k, 1 \le k \le \infty\}$ упорядоченный по убыванию $\mathbf{v}_p(\alpha_k)$ список нулей функции F(x). Тогда $\forall r \# (k | \mathbf{v}_p(\alpha_k) \ge k)$
- r) $<\infty$, и бесконечное произведение $\prod_{k=1}^{\infty}(1-\alpha_k^{-1}x)$ сходится к F(x) при всех $x\in \mathbf{C}_p$.