
4. Local Fields

Definition 4.1. Suppose O1 ⊂ O2 are Dedekind domains, p1 ⊂ O1 and p2 ⊂ O2 nonzero
prime ideals such that p1 = p2 ∩ O1.
1) Let kp1 = O1/p1, kp2 = O2/p2 be the residue fields. The inertia index or the residue

class degree f(p2/p1)
def
= [kp2 : kp1 ] (f =∞ not excluded).

2) The ramification index e(p2/p1)
def
= vp2(p1O2) (clearly e is finite).

Theorem 4.2. 1) Suppose O1 ⊂ O2 ⊂ O3 are three Dedekind domains, pi ⊂ Oi such
that the condition above holds for both extensions. Then f(p3/p1) = f(p3/p2)f(p2/p1) if
at least two of three are finite.
2) The same is true for e.

3) Suppose O1 = Op is a d.v.r, O2 = Ôp its completion. Then f(pÔp/p) = e(pÔp/p) = 1.

Proof. Hometask �

From now on we always suppose O is a complete d.v.r, p its maximal ideal, k its
field of fractions, K/k a finite separable extension of degree n, OK its valuation ring
(recall that the p-adic absolute value on k extends to K in a unique way), P ⊂ OK a
unique maximal ideal, kp and KP corresponding residue fields. We also suppose that the
extension KP/kp is separable (this is not a direct consequence of K/k being separable but
still is fulfilled in the arithmetic case in which the residue fields are finite).

We will sometimes use the notation e or eK/k instead of e(P/p), same for f .

Theorem 4.3. 1) ∀x ∈ K vP(N(x)) = nvP(x).
2) The unique extension of the absolute value ||x||p = s−vp(x) from k to K is given by the

formula ||x|| def
= ||N(x)|| 1n .

Proof. 1) If K/k is Galois then the action of the Galois group G preserves the abso-
lute value (cf. Theorem 3.33) hence ∀g ∈ G vP(g(x)) = vP(x) whence the statement. If
K/k is not Galois then choose a Galois extension L/k such that K ⊂ L. Let Q ⊂ OL
be the maximal ideal. Then ∀g ∈ Gal (L/k) vQ(g(x)) = vQ(x). Since NK/k(x) is the
product of some n of these g(x), vQ(NK/k(x)) = nvQ(x) hence this also holds for vP �
2) First suppose x ∈ k. Since N(x) = xn the formula holds. By the definition pOK = Pe

thus vP(x) = evp(x), therefore for x ∈ k ||x|| = s−
1
e

vP(x). The extension of the absolute
value to K is unique hence the same formula should hold for x ∈ K. Now use 1) �
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Theorem 4.4. f is finite, ef = n

Proof. Consider the ascending series of subspaces of the the kp-vector space OK/pOK :
(0) ⊂ Pe−1/pOK ⊂ Pe−2/pOK ⊂ · · · ⊂ P/pOK ⊂ OK/pOK . All the quotient spaces
Pi−1/Pi, 1 ≤ i ≤ e are isomorphic, the successive isomorphism being defined by multi-
plication with some generator of the ideal P. The very first quotient space is OK/P = KP

thus its kp-dimension equals f . On the other hand, OK is a free O-module of rank n hence
OK/pOK is an (O/p = kp)-module of rank n. Thus n = ef and, by the way, f is finite �

Remark. In the general Dedekind domain case n =
∑
eifi where ei = e(Pi/p), fi =

f(Pi/p).

Notation. From now on we will use the bar symbol to denote residues modulo P of
elements in OK or in its suitable quotients (resp. residues modulo p of elements in O or its
qoutients). No algebraic closures will appear up to the end thus mix-up looks improbable.

Theorem 4.5. Suppose x ∈ OK . Then
1) TrK/k(x) = e TrKP/kp(x).

2) NK/k(x) = (NKP/kp(x))e.

Proof. 1)-2) Denote •x the operator of multiplication with x. By definition, TrK/k(x) =

Tr(•x acting on the free O-module OK). Since pOK ⊂ P, T rK/k(x) = Tr(•x act-
ing on the kp-algebra OK/pOK). The subspaces Pi/pOK introduced in the previous

theorem are OK-submodules hence TrK/k(x) =
e∑
i=1

Tr(•x acting on the quotient space

Pi−1/Pi) = e Tr(•x acting on OK/P) = e TrKP/kp(x) which ends the proof for the trace.
The proof for the norm is the same �

Theorem 4.6. vP(DK/k) ≥ e− 1.

Proof. dimkp P/pOK = (e − 1)f while dimkp OK/pOK = ef = n. Thus in OK there
exists an O-basis {xi, 1 ≤ i ≤ n} such that for 1 ≤ i ≤ (e − 1)f xi ∈ P. Therefore for
1 ≤ i ≤ (e − 1)f, j arbitrary xixj ∈ P hence by the previous theorem TrK/k(xixj) =
e TrKP/kp(xixj) = 0. This implies the first (e − 1)f rows of the Gram matrix Tr(xixj)

have all the entries in p hence vp(dK/k) ≥ (e − 1)f ⇒ vP(DK/k) =
1

n
vP(N/k(DK/k)) =
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n
vP(dK/k) =

e

n
vp(dK/k) ≥

e(e− 1)f

n
= e− 1 (by the theorems 3.39, 4.3 and 4.4) �

Definition 4.7. The extension K/k is called
1) unramified iff e = 1,
2) tamely ramified iff char(kp) - e,
3) totally ramified iff f = 1.

Theorem 4.8. K/k is unramified ⇔ dK/k = O.

Proof. ⇐ dK/k = O ⇔ DK/k = OK ⇒ e = 1 by the Theorem 4.6 �
⇒ e = 1 ⇒ pOK = P ⇒ OK/pOK = KP. Hence if {xi} is an O-basis in OK then {xi}
is a kp-basis in KP. Since e = 1, by the Theorem 4.5 detTr(xixj) = detTr(xixj) 6= 0,
therefore dK/k 6⊂ p �

Theorem 4.9. K/k is tamely ramified ⇔ TrK/k(OK) = O ⇔ vP(DK/k) = e− 1.

Proof. Since the map Tr : KP → kp is nonzero, the first equality is a direct consequence
of the Theorem 4.5. Further, by the hometask, DO(OK) ∩ k = (TrK/k(OK))−1. For any
OK-f.i I ⊂ K I ∩ k = {x ∈ k such that evp(x) ≥ vP(I)}. Therefore TrK/k(OK) = O ⇔
− e < vP((DK/k)

−1) ≤ 0. Theorem 4.6 now ends the proof of the second equality �

Definition-Theorem 4.10. A separable polynomial P (T ) = T n +
n−1∑
i=0

aiT
i ∈ O[T ]

is called an Eisenstein polynomial iff all ai ∈ p and vp(a0) = 1. Then P (T ) is irreducible.

Proof. Suppose P = P1P2 in k[T ]. Then by the Gauss lemma both P1 and P2 lie in
O[T ]. Taking residues mod p one gets P1P2 = T n hence P1 = T n1 , P2 = T n2 . Therefore
free terms of P1 and of P2 are both contained in p which contradicts the definition �

Theorem 4.11 (totally ramified extensions).
1) Suppose K = kP , P ∈ O[T ] is an Eisenstein polynomial. Then K/k is totally ramified.
If Π ∈ K, P (Π) = 0 then vP(Π) = 1.
2) Suppose K/k is totally ramified, Π ∈ OK , vP(Π) = 1. Then PΠ is an Eisenstein poly-
nomial, K = k(Π), OK = O[Π].

Proof. 1) By definition, NK/k(Π) = ±a0. By the Theorem 4.3 vP(Π) = 1
n
vP(a0) =

e
n
vp(a0) = e

n
. Since e ≤ n, n = e and vP(Π) = 1 �
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2) Since f = 1 the residue field KP = OK/P coincides with kp = O/p. Choose a full
system of representatives of residues T ⊂ O (for example, if k = Qp then the union
of zero and the Teichmüller elements (cf. Theorem 1.19) fits), then #T = #kp. For
−∞ ≤ r ≤ ∞ choose elements Πr ∈ K such that vP(Πr) = r. Then for any x ∈ K there

exists a unique representation x =
∞∑

r=−∞
trΠr where tr ∈ T , the sum being finite to the left

while possibly infinite to the right. The proof is evident, using the induction by vP(x).
Let π ∈ O be some generator of p. One may now choose the elements Πr = πα(r)Πβ(r)

such that ∀r α(r) ∈ Z, β(r) ∈ Z, 0 ≤ β(r) ≤ e − 1. The sum above becomes a poly-
nomial in Π of degree at most e − 1 with coefficients in O. Therefore K = k(Π) and
OK = O[Π]. Since Π ∈ OK , PΠ is monic, since K = k(Π), deg(PΠ) = n = e. If a0

is the free term of PΠ then a0 = ±NK/k(Π) hence by the assumption and by the Theo-
rem 4.3 vp(a0) = 1. Finally, PΠ is a characteristic polynomial of the endomorphism •Π
of the n-dimensional kp-vector space V = OK/pOK which is nilpotent of period e = n,
hence the chain of subspaces {Vr = ker(•Πr), 1 ≤ r ≤ n} increases strictly. Choosing a
basis {yr} such that yr ∈ Vr, yr 6∈ Vr−1 one may see that PΠ = T n which ends the proof �

Theorem 4.12 (unramified extensions).
1) Suppose K = kP , P ∈ O[T ] is monic of degree n, such that P ∈ kp[T ] is irreducible
and separable. Then K/k is unramified and KP = (kp)P .
2) Suppose K/k is unramified. Then ∃x ∈ OK such that KP = kp(x). If this is the case
then K = k(x), OK = O[x], Px ∈ kp[T ] is irreducible and separable.

Proof. 1) [K : k] = n = [(kp)P : kp] ≤ [KP : kp] = f ≤ n. This implies f = n and
KP = (kp)P �
2) Since KP/kp is separable, ∃x ∈ KP such that KP = kp(x). Choose x ∈ OK such that
x ≡ x mod P. Then [KP : kp] = deg(Px) ≤ deg(Px) = deg(Px) ≤ [K : k]. Since by the
assumption [K : k] = [KP : kp], this implies Px = Px, therefore Px is irreducible and sep-
arable of degree n = [K : k], thus K = k(x). Consider the set {xi, 0 ≤ i ≤ n− 1}. Since
e = 1, by the Theorem 4.5 detTr(xi+j) = detTr(xi+j). Since {xi} is a kp-basis in KP the
left side is nonzero, hence so is the right side, which implies detTr(xi+j) is invertible in
O. Thus dO(O[x]) = O, therefore by the theorems 4.8 and 3.25. 3) O[x] = OK �

Definition-Theorem 4.13 (reduction of homomorphisms).
Suppose K/k and K ′/k are finite separable extensions, σ : K/k → K ′/k a homomor-

phism. Then the map σp : OK/P → OK ′/P′ defined as σp(x mod P)
def
= σ(x) mod P′

is a correctly defined homomorphism of extensions KP/kp → K ′P′/kp.
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Proof. Clearly σ(OK) ⊂ O′K (both are integral closures of O). Using the Theorem
3.27 for the extension K ′/K one may conclude that σ(P) is nontrivial, hence σ(P) ⊂ P′.
Therefore σ(x) mod P′ depends only on the residue of x mod P �

Remark. Clearly reduction commutes with the composition of homomorphisms, thus
the reduction of an isomorphism is an isomorphism.

Theorem 4.14. Suppose K/k is unramified, K ′/k any finite separable extension. Then

the natural map Σ
K′/k
K/k → Σ

K′
P′/kp

KP/kp
is a one-to-one correspondence. If KP/kp ' K ′P/kp and

K ′/k is unramified then K/k ' K ′/k.

Proof. Choose x ∈ OK such that k(x) = K and kp(x) = KP. Suppose γ ∈ Σ
K′

P′/kp

KP/kp
.

Let y = γ(x). Clearly Px(y) = 0, hence by the Hensel’s Lemma 1.20 there exists a unique
y ∈ OK′ such that Px(y) = 0 and y mod P′ = y. Define σ by the formula σ(x) = y,
then σp = γ and such σ is unique. The residue field of σ(K) coincides with γ(KP) by
the construction, so it coincides with K ′P′ if γ is an isomorphism. If in addition K ′/k is
unramified then [K ′ : k] = [K ′P′ : kp] = [γ(KP) : kp] ≤ [σ(K) : k] hence K ′ = σ(K) �

Theorem 4.15 (maximal unramified subextension).
1) There exists a unique subfield k ⊂ K0 ⊂ K which is unramified and contains any other
unrumified subfield. Any subfield k ⊂ K1 ⊂ K0 is unramified. (K0)P0 = KP.
2) If K/k is normal, same is K0/k. Suppose G = Gal (K/k). Then K0/k corresponds to

the subgroup G0 ⊂ G defined as G0
def
= {g ∈ G such that ∀x ∈ OK vP(g(x)− x) > 0}.

Proof. 1) Choose x ∈ KP which generates KP/kp. Let P (T ) ∈ O[T ] be a monic polyno-
mial such that P = Px. By the Theorem 4.12 kP/k is unramified and its field of residues
coincides with KP. By the previous theorem there exists an inclusion kP/k → K/k, let K0

be its image. By construction K0/k is unramified and (K0)P0 = KP. Any subextension
of an unramified extension (in particular, of K0/k) is unramified by the Theorem 4.2.
Suppose now that k ⊂ K1 ⊂ K, K1/k unramified. Let j0 : K0/k → K/k and j1 : K1/k →
K/k be corresponding inclusions. Since (j0)p is an isomorphism, (j0)−1

p ◦ (j1)p : (K1)P1 →
(K0)P0 is defined. By the previous theorem there exists a unique ψ : K1/k → K0/k such
that ψp = (j0)−1

p ◦ (j1)p ⇔ (j0)p ◦ ψp = (j1)p. Applying the same theorem to the pair
(K1/k,K/k) one gets j0 ◦ ψ = j1, thus K1 ⊂ K0 �
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2) Suppose K/k is normal. Since ∀g ∈ G g(K0) is unramified by the Theorem 3.33,
K0 is normal by 1) above. Suppose Q ∈ kp[T ] is an irreducible polynomial having a root
in KP. Since KP/kp is separable Q is separable, hence there exists an irreducible separable
polynomial P ∈ k[T ] such that P = Q. By the Hensel’s Lemma P has a root in K hence
decomposes totally in K. Therefore Q decomposes totally in KP, thus KP/kp is normal.
Consider the homomorphism G → Gal (K0/k) → Gal (KP/kp) sending g to gp. By the
definition, G0 = ker(G → Gal (KP/kp)). The second arrow above is an isomorphism by
the Theorem 4.14, hence G0 = ker(G→ Gal (K0/k)) �

Remark. The group G0 is called the inertia group. In fact there exists a decreasing
chain of subgroups G ⊃ G0 ⊃ G1 ⊃ . . . which are called ramification groups. For ex-
ample, G1 corresponds to the subfield K1 ⊂ K which contains all the tamely ramified
subfields.

Next we discuss some elements of p-adic calculus. In what follows the bar sign means the
algebraic closure.

Definition 4.16. The field Cp (or the Tate field).

The function vp extends in a unique way from Q∗p to Qp
∗

with the formula vp(x)
def
=

1
deg x

vp(NQp(x)/Qp(x)) with values in Q and defines (after one chooses 1 < s ∈ R) a nonar-

chimedean (indiscrete) absolute value ||x|| def
= s−vp(x) on the field Qp. Cp (the Tate field)

is the completion of the field Qp with respect to the absolute value defined above.

Theorem 4.17.The field Cp contains some elements which are transcendental over Qp.

Proof. Search x in the form x =
∞∑
i=0

ζip
i where ζ0 = 1 and all the ζi are roots of unity of

degrees not divisible by p with the additional property that ∀ i ζi ∈ Qp(ζi+1). Such an ele-
ment in fact is contained in the completion of the maximal unramified subfield Qnr

p ⊂ Qp.

Let xn =
n∑
i=0

ζip
i. Then vp(x − xn) = n + 1. Let kn = Qp(ζn−1). Suppose x is al-

gebraic over Qp. Let Kn - be a finite Galois extension of kn which contains ζn (hence
also xn) and x. Define Gn = Gal (Kn/kn). Suppose σ, τ ∈ Gn act differently on ζn,
so that σ(ζn) 6= τ(ζn). Then vp(σ(xn) − τ(xn)) = vp(σ(ζn) − τ(ζn)) + n = n as dif-
ferent roots of unity have different residues modulo the maximal ideal in OQnr

p
(recall

that this ideal is generated by p and the residues themselves take values in Fp). At the
same time vp(σ(x) − σ(xn)) = vp(x − xn) = n + 1 and the same is true for τ . Since
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σ(x)− τ(x) = (σ(xn)− τ(xn)) + (σ(x)− σ(xn))− (τ(x)− τ(xn)) one concludes by using
Theorem 1.4 that vp(σ(x)− τ(x)) = n thus σ(x) 6= τ(x).
If x is algebraic over Qp of degree d, then it is algebraic over kn of degree no more than d
hence there exist no more than d conjugates to x over kn. Now choose the sequence ζi mak-
ing the degree of ζi over the field Qp(ζi−1) tend to infinity. The order of the group Gn (thus
the number of conjugates to x) then also tends to infinity which leads to a contradiction�

Theorem 4.18 (Krasner’s lemma).
Suppose k is a field complete with respect to a non-archimedean absolute value || ||, the
latter could thus be uniquely extended to the algebraic extensions. Suppose P ∈ k[T ] is
a monic separable polynomial with the roots α = α1, α2, . . . αn ∈ ksep. Suppose β ∈ ksep

and ∀i ≥ 2 ||α− β|| < ||α− αi||. Then α ∈ k(β).

Proof. If α′ is conjugate to α over k(β) (i.e. ∃σ ∈
∑k/k(β)

k/k(β)
such that σ(α) = α′) then

||α−β|| = ||α′−β|| (the absolute values of conjugate elements coincide since the absolute
value extends in a unique way). Since α and α′ both are roots of P , one may apply the
strict triangle inequality to the formula α−α′ = (α−β)−(α′−β) the result contradicting
to the assumption of the theorem �
The particular case of the theorem (β ∈ k while P = Pα ,k) proves that no α which is alge-
braic over k may admit rational approximation more close to α than some of its conjugates.

Theorem 4.19. Cp is algebraically closed.

Proof. Suppose α ∈ Cp, the roots of P
def
= Pα,Cp being α = α1, α2, . . . αn ∈ Cp. WLOG

one may suppose that α is integral over OCp (otherwise multiply α with a suitable con-
stant) hence P ∈ OCp [T ]. Choose a monic polynomial Q ∈ OQp

[T ] which enjoys the

property vp(Q − P ) > n max
i≥2

vp(α − αi) where vp(a polynomial)
def
= min vp(coefficients).

Suppose {βi} are the roots of Q. Then
∑
i

vp(α − βi) = vp(Q(α)) = vp(Q(α) − P (α)) ≥

vp(Q − P )) > n max
i≥2

vp(α − αi). Therefore ∃i such that vp(α − βi) > max
i≥2

vp(α − αi)

Using the Krasner lemma one concludes that α ∈ Cp(βi) = Cp.�

Definition-Theorem 4.20. For a power series F (T ) =
∞∑
i=0

aiT
i ∈ Cp[[T ]] define vp(F )

def
=

lim inf vp(ai)

i
. (vp(F ) may be finite or equal to either +∞ or −∞). Then F (x) converges

if vp(x) > −vp(F ) and defines a continuous function. If vp(x) < −vp(F ) then F (x) does
not converge.
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Proof. Since the absolute value is nonarchimedean one may apply Theorem 1.11. The
power series F (x) converges iff lim

i→∞
(vp(ai)+ ivp(x)) =∞. This means that ∀ C > 0 ∃ i(C)

such that for i > i(C) vp(ai)

i
+ vp(x) > C

i
which is the same as (using the definition of

vp(F )) for i > i(C) vp(ai)

i
− lim inf vp(ai)

i
+ vp(F ) + vp(x) > C

i
. Clearly the last inequality

holds provided vp(F ) + vp(x) is a positive constant and cannot hold if that constant is
negative. This proves the statement concerning convergence. For the proof of conitinuity
see hometask�

Definition 4.21. The Newton polygon N(F ) of a power series F (T ) = 1 +
∞∑
i=1

aiT
i ∈

1 + TCp[[T ]] is a lower convex hull of the points (i, vp(ai)) on the plane. The Newton
polygon may coincide with the lower half of the vertical axis. If this is not the case then
the strictly increasing sequence of slopes λj(F ) of the segments is defined; the length of
the projection of the corresponding segment onto the horisontal axis is called the length
of that slope.
If the power series F (T ) is a polynomial of degree n then its Newton polygon ends in the
point (n, vp(an)). If the power series is not a poliynomial while the sequence of slopes is
finite then the maximal slope has infinite length.

Informally speaking, in order to costruct the Newton polygone one turns the lower verti-
cal semiaxis anti-clockwise. When it meets the point (i, vp(ai)) one drives in a nail and
supports the semiaxis with a hinge. If the semiaxis meets several points at the same time
one drives in a nail choosing the last (righthand direction) point. The procedure stops
if the semiaxis meets infinite number of points at the same time or else if the successive
turns are blocked with the infinite number of points, the directions to which from the last
nail tend to the direction from next-to-the-last nail to the last one (even if the semiaxis
does not meet these points).

Theorem 4.22. vp(F ) = supλj(F ). Suppose vp(x) = −vp(F ). The power series F (x)
converges iff the list of slopes of the Newton polygon N(F ) is finiite and the vertical
distance between the points (i, vp(ai)) and the infinite segment of N(F ) tends to infinity.

Proof. The maximal slope λmax(F ) (if it is finite) coincides with vp(F ) = lim inf vp(ai)

i

by the definition of N(F ). The affine equation of the infinite segment of N(F ) looks
like c + λmaxi while the vertical distance mentioned in the formulation of the theorem
equals a(i) − c − λmaxi. If vp(x) = −vp(F ) then vp(aix

i) differs from the said distance
by a constant so that they both either do tend or do not tend to infinity simultaneously �
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Theorem 4.23. Suppose k ⊂ Cp is a subfield complete with respect to the absolute value,
F (T ) ∈ 1+Tk[T ] a polynomial. Then F (T ) =

∏
Fλj(F ), Fλj(F ) ∈ k[T ], degFλj(F ) = lj(F )

and for each root α ∈ Cp of the polynomial Fλj(F ) one has vp(α) = −λj(F ).

Proof. Suppose F (T ) = 1 +
n∑
s=1

asT
s =

n∏
i−1

(1 − T
αi

), define λi
def
= −vp(αi). Let the

roots be ordered so that λ1 ≤ · · · ≤ λn (this means that the absoute value of the roots
does not decrease). Suppose that λ1 = · · · = λr < λr+1. Since the coefficients of F (T )
are elementary symmetric functions on α−1

i one concludes that vp(ai) ≥ iλ1 (for any
i ≥ 1), vp(ar) = rλ1(as the term α−1

1 . . . α−1
r dominates all the other terms of ar) and

vp(ar+1) > (r + 1)λ1. This means that the first segment of N(F ) connects the points
(0, 0) and (r, vp(ar)). These calculations could be repeated for each successive collection
of equal λi hence the statement of the theorem. Since the function vp is Galois-invariant,
the polynomials Fλj(F ) have coefficients in k�

Theorem 4.24 (Weierstrass theorem, Cp - version).
1) Suppose F (T ) ∈ 1 + TCp[[T ]] is a power series such that F (x) converges for all x such

that vp(x) ≥ −λ. Define n(λ, F )
def
=

∑
λj(F )≤λ

lj(F ) (if the sum contains the length of the

maximal slope which is infinite then make an agreement that the corresponding segment
ends in the last point (i, vp(ai)) lying on it).
Then ∃!H(T ) ∈ 1+TCp[T ], degH = n(λ, F ) and G(T ) ∈ 1+TCp[[T ]] such that F (T ) =
H(T )G(T ) where G(x) converges to some nonezero element of Cp for all x |vp(x) ≥ −λ.
The Newton polygon N(H(T )) coincides with the part of the Newton polygon N(F (T ))
situated between the points (0, 0) and (n(λ, F ), vp(an(λ,F ))).
2) Suppose F (T ) ∈ 1+TCp[[T ]] converges for all x ∈ Cp. Let {αk, 1 ≤ k ≤ ∞} be the list
of zeros of the function F (x) ordered by decreasing vp(αk). Then ∀r#(k |vp(αk) ≥ r) <∞
and the infinite product

∞∏
k=1

(1− α−1
k x) converges to F (x) for all x ∈ Cp.

Proof. Hometask.

9


