р-адические числа

Задачи.

Решения задач предпочтительнее всего набрать и прислать в pdf-виде. Если вы еще не очень хорошо освоились с набором, то можно разборчиво написать на бумаге и сделать читаемую скан- или фото-копию. Аккуратная письменная работа несколько уступает в удобстве проверки печатной, поскольку яркую копию сделать непросто. Однако печатная работа, в которой много опечаток, создает ещё больше проблем.

Дедлайн для задач 1-5: вторник, 28 сентября. Дедлайн можно отодвинуть, если у вас завал, но о том, что вы не успеваете (хоть и намерены сдать задание), меня следует предупредить.

- 1. Сконструируйте автоморфизм поля k(T) такой, что его композиция с нормированием, задаваемым второй формулой (см п.6 из документа "Формулировки"), задается первой формулой.
- **2**. Опишите пополнение $\widehat{k(T)}$ поля k(T) относительно нормирования $||\ ||_T \ (P=T\ {\rm B}\ {\rm n.6.1}).$
- **3**. Докажите, что ${\bf Z}_p$ компактное метрическое пространство в метрике, задаваемой p-адическим нормированием.
- 4. Рассмотрим специальный набор нормирований на $\mathbf{Q}: ||\ ||_{\infty} = |\ |$, а для каждого $p\ ||\cdot||_p = p^{-\mathbf{v}_p(\cdot)}$. Пусть $x \in \mathbf{Q}$. Докажите "формулу произведения" $||x||_{\infty} \prod_p ||x||_p = 1$.
- **5**. Докажите, что $\forall z_1, z_2 \in \mathbf{Q}_p$ $\mathbf{v}_p(z_1+z_2) \geq \min(\mathbf{v}_p(z_1), \mathbf{v}_p(z_2))$ ($\mathbf{v}_p(0) \stackrel{\mathrm{def}}{=} +\infty$) (используйте определение \mathbf{v}_p как длины "нулевого хвоста" целого p-адического числа, стандартно продолжая его на поле частных).
- **6**. Проверьте, что $\mathbf{v}_p(i!) = \frac{1}{p-1}(i$ сумма цифр i в p-ичной системе счисления).
- 7. Докажите, что любое $x \in \mathbf{Z}_p$ однозначно представляется в виде $x = \sum_{i=0}^{\infty} x_i p^i$, где $x_i \in \mathbf{Z}, \quad 0 \le x_i \le p-1$.
- **8***. Докажите комбинаторно, что ряд $\sum\limits_{i=1}^{\infty}\frac{2^i}{i}$ сходится к нулю 2-адически. Этот ряд получается из ряда для $\log(1+x)$ при подстановке в него x=-2, т.е. представляет $\log(-1)$ в \mathbf{Q}_2

(продолжение на следующей странице)

Упражнения.

Упражнения полезно сделать, чтобы не оставлять ничего за спиной. Записывать и сдавать решения не нужно.

1. Проверьте, что вычет $a \mod p^i$ обратим в кольце $\mathbf{Z}/(p^i)$ тогда и только тогда, когда $a\not\equiv 0 \mod p$

Разберите доказательства следующих утверждений:

- 2. Кольцо нормирования неархимедова нормирования локально и целозамкнуто.
- **3**. В поле с неархимедовым нормированием величиной любой ряд, члены которого стремятся к нулю, сходится.
- 4. В поле **R** функция | $|^{\alpha}$ задает нетривиальное нормирование тогда и только тогда, когда $0 < \alpha \le 1$.
- **5**. Лемма Гензеля.
- **6**. Определение для $\alpha \in U_1$ гомоморфизма экспоненты $\exp_{\alpha} : p\mathbf{Z}_p \to U_1$ корректно (в частности, не зависит от выбора представителей iz).
- 7. При $\alpha \notin U_2$ (соответственно, $\alpha \equiv 5 \mod 8$ при p=2) экспонента \exp_{α} задает изоморфизм $p{\bf Z}_p \to U_1$ (соответственно, $p^2{\bf Z}_p \to U_2$ при p=2).