
1. p -adic numbers

Definition 1.1. Let K be a field. A function || || : K → R≥0 is called an absolute value
if the following properties hold:
1) ||x|| = 0⇔ x = 0.
2) || || : K∗ → R∗>0 is a group homomorphism.
3) ∀x, y ||x+ y|| ≤ ||x||+ ||y|| (”the triangle inequality”).

Remark. The function ||x|| =
{

0, x=0
1, x 6=0

is called the trivial absolute value. This one

will often be excluded from consideration.

Definition 1.2. An absolute value || || : K → R≥0 is called nonarchimedean iff ∀x, y
||x+ y|| ≤ max(||x||, ||y||) (”the strict triangle inequality”).

Short visit to highschool (rings).

All the rings in this section will be commutative with the identity.

A ring O is called local if there exists just one maximal ideal m ⊂ O. Any element
outside the maximal ideal in the local ring is invertible. Conversely, if in some ring O
there exists an ideal m such that all the elements outside m are invertible then O is local
and m is the maximal ideal.

Suppose p ∈ O is a prime ideal. The localisation Op is the set of equivalence classes
of fractions x

y
, y 6∈ p, x

y
= x1

y1
⇔ ∃u /∈ p | u(xy1 − x1y) = 0. Since the ideal p is prime

this set is a ring. Let the ideal pOp ⊂ Op consist of all fractions with numerators in p.
Any element outside pOp is invertible hence Op is a local ring and pOp is its maximal ideal.

Suppose O contains no zero divisors (i.e. is an integral domain). Then the ideal (0)
is prime, hence O(0) exists. The ring O(0) is called the field of fractions of O.

Remark. Z(0) = Q.

The inclusion of prime ideals p ⊃ p1 leads to the inclusion of local rings Op1 ⊃ Op.
Hence the field of fractions of an integral domain O contains all other localisations Op.

Example. Let p ∈ Z be a prime. The ring Z(p) is a subring of Q consisting of all
rational numbers such that p does not divide the denominator.
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Let O ⊂ A be an inclusion of rings, x ∈ A. x is called integral over O iff x is a root of

some monic polynomial with coefficients in O : xn +
n−1∑
i=0

aix
i = 0. Certainly any element

of O is integral over O. If A contains no elements outside O which are integral over O
then O is called integrally closed in A. An integral domain O is shortly called integrally
closed if it is integrally closed in its own field of fractions.

Theorem-definition. Let O be a principal ideal domain. Then O is factorial (i.e.
any nonzero element could be in a unique way up to multiplication by invertible elements
decomposed as a product of irreducible factors). If p ∈ O is irreducible and 0 6= x ∈ O
then vp(x)

def
= max(n ∈ Z≥0 such that pn |x). If K is the field of fractions of O then vp(x)

may be extended to K∗ by the formula vp

(
x
y

)
= vp(x)− vp(y) with values in Z.

Proof. See any book on algebra �

End of the visit.

Definition-Theorem 1.3. Let K be a field, || || a nonarchimedean absolute value on K.
Then: 1) O = {x ∈ K , ||x|| ≤ 1} is a ring (called valuation ring), p = {x ∈ K , ||x|| < 1}
is a maximal ideal in O. p 6= (0) ⇔ || || is nontrivial. ∀x ∈ K∗ either x ∈ O or x−1 ∈ O.
2) O is a local ring, K is its field of fractions. O is integrally closed.
3) Let U = O∗ = O�p. U is a subgroup of K∗, || || : K∗/U → R∗>0 is an inclusion. The
absolute value || || is called discrete iff ||K∗|| is a discrete subgroup of R∗>0 (hence trivial
or infinite cyclic). || || is discrete ⇔ p ⊂ O is a principal ideal.

Proof. 1) and 3) are clear �
2) O∗ = O�p coincides with the set of all invertible elements of O, hence p is a unique

maximal ideal in O. If x ∈ K and xn =
n−1∑
i=0

aix
i for some ai ∈ O then ||x|| ≤ 1 (otherwise

the absolute value of the left side should have been strictly greater than the absolute value
of the right side, the latter being estimated with the strict triangle inequality). Hence O
is integrally closed �

Theorem 1.4. Let K be a field, || || a nonarchimedean absolute value on K, x ∈ K

and x =
n∑
i=0

xi. If all ||xi|| are different then ||x|| = max
i
||xi||.

Proof. Clear �
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Theorem 1.5. Let K be a field, || || an absolute value on K. Let I ⊂ K be the

image of the standard ring homomorphism i : Z→ K, 1
i7→ 1. (I is isomorphic to either

Z or some Fp, depending on char(K), cf. Remark 2 after the Definition 1.4). Then:
|| || is nonarchimedean ⇔ ∀ x ∈ I ||x|| ≤ 1.

Proof. ⇒ clear. ⇐ To prove that ||x + y|| ≤ max(||x||, ||y||) it suffices to prove that
∀z ∈ K ||z|| ≤ 1 ⇒ ||1 + z|| ≤ 1. Suppose ||z|| ≤ 1. Then for any natural n

||1 + z||n = ||(1 + z)n|| = ||
n∑
i=0

(
n
i

)
zi|| ≤ n + 1 (||

(
n
i

)
|| ≤ 1 by assumption, then use

the standard triangle inequality). Hence ||1 + z|| ≤ (n + 1)
1
n . Since this holds for any

n, ||1 + z|| ≤ 1 �

Remark. If char(K) 6= 0 then any absolute value on K is nonarchimedean (hometask).

Theorem 1.6. Suppose k is a field, K = k(T ) the field of rational fractions in one
independent variable over k. Suppose || || : K → R≥0 is an absolute value such that
its restriction on k is trivial while it is nontrivial itself. Then || || is nonarchimedean &
discrete and either
||x|| = s−vP (x) (where s ∈ R, s > 1, P ∈ k[T ] irreducible, degP ≥ 1), or
||x|| = sdeg(numerator(x))−deg(denominator(x)) (where s ∈ R, s > 1).

Remark. The two types of absolute values above are in fact the same. Namely, it is
easy to construct an automorphism of the field K such that the composition of the ab-
solute value of the second type with it becomes the absolute value of the first type. To
check this is a hometask.

Proof of the Theorem. By the previous theorem || || is nonarchimedean. First suppose
that ||T || ≤ 1. Then by strict triangle inequality k[T ] ⊂ O, O being the valuation ring
defined in Definition-Theorem 1.3. If p ⊂ O is the maximal ideal then p ∩ k[T ] which by
definition consists of all x ∈ k[T ] such that ||x|| < 1 is a prime ideal in k[T ]. It is nonzero
(otherwise ∀x ∈ k[T ] ||x|| = 1, so || || is trivial) hence generated by some irreducible
polynomial P ∈ k[T ] as k[T ] is a principal ideal ring. If x ∈ k[T ] then x = P vP (x)y where
y 6∈ p ∩ k[T ], so ||y|| = 1. This means that || || is of the first type.

Now suppose that ||T || > 1. Then by Theorem 1.4. for any polynomial ||
n∑
i=o

aiT
i|| =

||T n|| = ||T ||n, hence || || is of the second type. Clearly || || is discrete in both cases �
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Theorem 1.7. (Ostrowski) Suppose || || is a nontrivial absolute value on Q. Then
either
||x|| = s−vp(x) (where s ∈ R, s > 1, p prime) or
||x|| = |x|α (where a ∈ R, 0 < α ≤ 1, | | the standard absolute value).

Remark. The two types of absolute values above are totally different. In particular,
the absolute value of the second type is archimedean.

Proof of the Theorem. First suppose that ∀a ∈ Z ||a|| ≤ 1. Then by Theorem 1.5.
|| || is nonarchimedean. Now one should proceed as in the first case of Theorem 1.6 using
Z instead of k[T ]. This leads to the absolute value of the first type.
Now suppose ∃a ∈ Z such that ||a|| > 1. One may suppose a > 1. Let b be an arbitrary
integer such that b > 1. Let us prove that ||b|| > 1. Suppose the opposite is true. Write

down a in b-ary system: a =
m∑
i=0

aib
i, 0 ≤ ai < b. Then m ≤ log a

log b
. We have supposed

||b|| ≤ 1, so ||a|| ≤ (m + 1) max
i
||ai|| ≤ (m + 1) max

i
ai < (m + 1)b (as ||ai|| ≤ ai by the

triangle inequality). One may conclude that ||a|| <
(

log a
log b

+ 1
)
b. Now consider an instead

of a for some positive integer n, the inequality changing to ||a|| <
((

n log a
log b

+ 1
)
b
) 1
n
.

While n tends to infinity the right part of this inequality tends to 1 hence ||a|| ≤ 1 which
contradicts the assumption. So ||b|| > 1 for all integers b exceeding 1.

Now let us use again the expansion a =
m∑
i=0

aib
i, 0 ≤ ai < b. Since ∀i ai < b and ||b|| > 1

the triangle ineqality leads to ||a|| < (m + 1) b ||b||
log a
log b . Changing a to an, n arbitrary

large, one gets ||a|| < ||b||
log a
log b ((m+ 1)b)

1
n , hence ||a|| ≤ ||b||

log a
log b .

Exchanging a with b one may get the ineqality ||b|| ≤ ||a||
log b
log a in the same way, so ||a||

1
log a

does not depend on a which means that for any nonzero rational x ||x|| is given by the
formula ||x|| = |x|α, | | being the standard absolute value, α some real number.
It remains to check when this formula does in fact define an absolute value. Certainly it
suffices to check whether the triangle inequality does hold. If α < 0 it never holds (try
y = −x+ ε, ε→ 0). If α > 0 then the statement ∀x, y |x+ y|α ≤ |x|α + |y|α is equivalent
to the statement ∀z such that 0 < z ≤ 1 (1+z)α ≤ 1+zα. The derivative of the function
(1 + z)α − 1− zα is nonzero inside the segment 0 < z < 1 hence the triangle inequality is
equivalent to the condition 2α − 2 ≤ 0⇔ α ≤ 1 �
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Remark. If K is a field, || || an absolute value on K, then the distance function d(x, y) =
||x− y|| defines a structure of metric space on K.

Very short visit to highschool (metric spaces).

A sequence {xi} of elements of the metric space X is called fundamental or Cauchy
sequence if lim

i,j→∞
d(xi, xj) = 0.

A metric space X̂ is called the completion of the metric space X if X is a dense sub-
space of X̂ and X̂ is complete (by definition this means that any Cauchy sequence of

elements of X̂ converges). All the completions of X are isomorphic (as metric spaces)
to each other. In fact, it is easy to prove that they are isomorphic to one given by the
following standard construction.
Consider the set of all Cauchy sequences with elements in X. Define the equivalence rela-
tion on this set as follows: {xi} ∼ {yj} if lim

k→∞
d(xk, yk) = 0. Then X̂ is a quotient set by

this equivalence relation.

If X is a metric space, the base of its standard topology is given by the open balls
{x ∈ X | d(x, x0) < r}.

Any continuous map f : X → Y where Y is a complete metric space could be in a
unique way extended to X̂ with the formula f({xi}) = lim

i→∞
f(xi).

End of the visit.

Theorem 1.8. Let K be a field, || || an absolute value on K, d(x, y) = ||x − y|| corre-
sponding metric. Then
1) ” + ”, ” · ” : K ×K → K, ”x 7→ −x” : K → K, ”x 7→ x−1” : K�0→ K, || || : K → R
are all continuous in the topology defined by d (topology of the product being used on
K ×K, usual topology on R).

2) Let K̂ be the completion of the metric space K. Then the set K̂ with operations above
(extended by continuity) is a field.

3) The absolute value || || extended to K̂ by continuity is the absolute value on K̂. It is
nonarchimedean iff it is nonarchimedean on K. If this is the case then the sets of values
of || || on K and on K̂ coincide.
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Proof. 1) Hometask �
2) Taking of the limit commutes with substraction and with multiplication hence one may
define the algebraic operations on Cauchy sequences componentwise. The only problem is
to define the inverse element on K̂ (as the domain of the definition of this operation on K

does not contain zero). So one needs to prove that ∀x ∈ K̂, x 6= 0 there exists a sequence
{xi ∈ K, xi 6= 0} such that x = lim

i→∞
xi. Consider an arbitrary sequence {xi} ∈ K tending

to x. This cannot contain the infinite number of zero’s (otherwise it could tend only to
zero) so some its tail consists of nonzero elements and still tends to x.

3) If x = {xi} and y = {yi} are the elements of K̂ then ||xy|| = ||{xiyi}|| = lim
i→∞
||xiyi|| =

lim
i→∞
||xi||||yi|| = lim

i→∞
||xi|| lim

i→∞
||yi|| = ||x||||y||. If x = {xi} and ||x|| = 0 then {xi} repre-

sents 0 ∈ K̂ by definition. For the same token ||x + y|| ≤ ||x|| + ||y|| if this holds com-
ponentwise. The last statement is also correct if ||x||+ ||y|| is changed to max(||x||, ||y||).
Clearly ∀x ∈ K̂∃x0 ∈ K such that ||x− x0|| is arbitrarily small. If || || is nonarchimedean
then by Theorem 1.4 ||x0|| = max(||x||, ||x0 − x||) = ||x|| hence the sets of values of || ||
on K and on K̂ coincide �

Remark. If || || is archimedean then Theorem 1.4 is not true so the sets of values above
may be different.

Definition-Theorem 1.9. Let K be a field, || ||1 and || ||2 two absolute values on K.
They are called equivalent (notation || ||1 ∼ || ||2) if || ||2 = || ||t1, t > 0. Then || ||1 ∼ || ||2 ⇔
both define the same topology on K.

Proof. ⇒ clear. ⇐ The condition ||x|| < 1 is of topological nature (||x|| < 1⇔ lim
n→∞

xn =

0) hence ||x||1 < 1 ⇔ ||x||2 < 1. Let x, y ∈ K be any two nonzero elements. The set
{m,n ∈ Z | ||xmyn||i < 1} does not depend on i. The condition ||xmyn||i < 1 is equivalent
to the condition m log ||x||i+n log ||y||i < 0 hence the two vectors (log ||x||1, log ||y||1) and
(log ||x||2, log ||y||2) are proportional with positive coefficient, taking the exponent ends
the proof �

Definition 1.10. 1)The completion of the field Q with respect to the absolute value
||x||p = s−vp(x) is called the field of p-adic numbers (notation Qp).

2) The ring Zp ⊂ Qp (x ∈ Zp
def⇔ ||x||p ≤ 1) is called the ring of p-adic integers.
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Remark 1. The completion of the field Q with respect to the absolute value ||x||∞ = |x|α
(0 < α ≤ 1) is the field of reals R.

Remark 2. Equivalent absolute values define the same sets of Cauchy sequences, cor-
responding equivalence relations being also the same. Hence the concept of R (resp. Qp)
does not depend on the choice of α (resp. s).
Example. Consider the absolute value ||x||T = s−vT (x) on the field K = k(T ). Then the
completion of K with respect to this absolute value is isomorphic to the field k{T} of

formal Laurent power series with coefficients ai ∈ k of the form
∞∑
i=m

aiT
i (i.e series with

no more then finite number of terms of negative degree). For the proof see hometask.

Theorem 1.11. Let K be a field, || || a nonarchimedean absolute value on K. Sup-
pose || || defines a structure of a complete metric space on K. Consider an infinite series
∞∑
i=1

xi, xi ∈ K.
∞∑
i=1

xi converges ⇔ lim
i→∞
||xi|| = 0.

Proof. ⇒ clear. ⇐ One needs to check that yn
def
= {

n∑
i=1

xi} is a Cauchy sequence. In

fact, ||ym − yn|| = ||
m∑

i=n+1

xi|| ≤
m

max
i=n+1

||xi|| which by assumption tends to zero while m

and n both tend to infinity �

Remark . Of course the last theorem is not true if || || is archimedean. In fact, in

that case only ||
m∑

i=n+1

xi|| ≤
n∑

i=n+1

||xi|| is guaranteed. The sum to the right may be large

besides each particular ||xi|| is small (depending on the number of the terms i.e. on m−n).

We now switch to another construction of p-adic numbers which we later prove to be
equivalent to one developed above.

Alt-Definition 1.12. For i > 1 let φi : Z/(pi)→ Z/(pi−1) be the standard residue map.

Define the set Zp by the formula Zp
def
= lim

←
{Z/(pi), φi}. By definition this means that the

element x ∈ Zp is a sequence {ix ∈ Z/(pi), 1 ≤ i < ∞} such that ∀i > 1 φi(ix) = i−1x.
Such construction is called ”projective limit”.

Theorem 1.13. 1) Zp carries the natural structure of the commutative ring with 1.
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2) The standard ring homomorphism Z→ Zp, 1 7→ 1 sends n ∈ Z to {ix ≡ n (mod pi)}.
It is injective.
3) Let εi be the projection of Zp on its i-th component. Then εi is surjective and
ker(εi) = piZp.
4) u ∈ Zp is invertible ⇔ 1u 6= 0⇔ p - u in Zp.
5) ∀ nonzero x ∈ Zp ∃!u ∈ Zp invertible and n ∈ Z nonnegative such that x = pnu.

Proof. 1) Ring operations may be defined componentwise. Since all of them commute
with taking the residue, Zp becomes a ring, {1 mod pi} being the identity �
2) Clear �
3) Suppose a ∈ Z/(pi). Choose

∼
a∈ Z ⊂ Zp such that

∼
a mod pi equals a. Then εi(

∼
a) = a.

Clearly εi(p
iZp) = 0. Suppose x ∈ Zp, εi(x) = 0. Then for j > i the component

jx mod pj of x is divisible by pi and the quotient is uniquely defined mod pj−i. Set

y = {ny} : ny
def
= n+ix

pi
mod pn, then piy = x �

4) By the previous point 1u 6= 0 ⇔ p - u in Zp. Clearly 1u 6= 0 ⇔ ∀i iu is invertible in
Z/(pi)(hometask)⇔ u is invertible in Zp �
5) By 3) pi|x in Zp ⇔ ∀j ≤ i jx = 0. Now one may use 4) �

Alt-Definition 1.14. Suppose x ∈ Zp. vp(x)
def
= the number n from 2.13 5).

Alt-Definition-Theorem 1.15. 1) Zp is an integral domain (i.e. has no zero divi-
sors).
2) Let Qp be the field of fractions of Zp. Extend vp to Qp�0 by the formula vp(z = x

y
) =

vp(x)− vp(y). vp(z) does not depend on the choice of x, y ∈ Zp. vp : Q∗p → Z is a group
homomorphism.

3) Let || z 6= 0||p
def
= s−vp(z) for some s ∈ R, s > 1; || 0||p = 0. Then || ||p is a nonar-

chimedean absolute value on Qp.

Proof. 1) Clearly p is not a zero divisor in Zp hence Zp has no zero divisors by The-
orem 1.13 5) �
2) Easy consequence of the decomposition in 2.13. 5)�
3) It suffices to check that ∀z1, z2 ∈ Qp vp(z1+z2) ≥ min(vp(z1), vp(z2)). Here we formally
suppose that vp(0) = +∞. This is a hometask �

Theorem 1.16. The field Qp as defined above enjoys all the properties of Qp as de-
fined in Definition 1.10. ”This” Zp coincides with ”that” Zp. The absolute values || ||p

8



here and there are the same for the same s.

Proof. In the proof we refer to Zp,Qp and vp as defined in 1.14 -1.15.
Step 1. Zp is a complete metric space. We will costruct a limit for any Cauchy sequence
directly. Let xj be a Cauchy sequence of p-adic integers, each xj represented by the se-
quence of components {ixj ∈ Z/(pi)}. Consider the rectangular table:

. . . 4x1 3x1 2x1 1x1

. . . 4x2 3x2 2x2 1x2

. . . 4x3 3x3 2x3 1x3

. . .

So there is the i-th component (which is an element of Z/(pi)) of the j-th p-adic number
on the intersection of the i-th (to the left) column with the j-th row.
Since xj is a Cauchy sequence ∀i ∃n such that if j1, j2 > n then ixj1 = ixj2 . The last
equality holds because ||xj1 − xj2||p is small. Hence any column of the table above stabi-
lizes, i.e ∀i ixj is constant starting from some j. It is easy to check that the row consisting
of these constants is a p-adic number and that the Cauchy sequence we have started from
converges to this number (hometask) �
Step 2. Z is a dense subset of Zp. Indeed, suppose x = {ix} ∈ Zp. For each i choose
∼
ix∈ Z such that

∼
ix≡ ix mod pi. Then the sequence x1 = {· · · ∼1x mod p2,

∼
1x mod p},

x2 = {· · · ∼2x mod p2,
∼
2x mod p}, x3 = {· · · ∼3x mod p2,

∼
3x mod p} . . . of images of

integers
∼
ix in the ring Zp under the standard inclusion Z → Zp converges to the p-adic

number x �
Step 3. Q is dense in Qp. Hometask. �

Step 4. As a set, Qp = {0} ∪
∞⋃

i=−∞
piU , where U = Z∗p

(as a set)
= Zp�pZp. This is clear

from 1.13.5) �
Step 5. Qp is a complete metric space. Indeed, consider a Cauchy sequence xj of elements
of Qp. Then either xj → 0 or there exist i, j0 ∈ Z such that ∀j ≥ j0 xj ∈ piU . This
is an easy corollary of the strict triangle inequality (apply Theorem 1.4 to xj1 − xj2).
Since U = Zp�pZp U is closed in Zp hence complete, so any piU is complete whence the
statement �
Step 6. The restriction of vp to Q coincides with vp as defined in the ring theory high
school visit. Indeed, this holds for vp|Z by Theorem 1.13.5) therefore holds for vp|Q. This
ends the proof of the Theorem �
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Remark. It is easy to prove that Zp is a compact metric space (see hometask). It follows
from step 3 of the previous theorem that Qp is therefore locally compact.

Theorem 1.17. Consider the special set of absolute values on Q : || ||∞ = | |, for
each p || · ||p = p−vp(·). Suppose x ∈ Q. Then (”the product formula”)
||x||∞

∏
p

||x||p = 1.

Proof. Hometask. �

Now we are going to study the structure of the multiplicative group Q∗p. Clearly Q∗p =
pZ × U (see Theorem 1.13 5)). It remains to study U .

Definition-Theorem 1.18. Let Un = 1 + pnZp ⊂ U . Then Un is a subgroup,
εn|U : U → (Z/(pn))∗ is a surjective group homomorphism, ker(εn|U) = Un.

Proof. We already know that εn is a surjective ring homomorhism. Hence if x ∈ Zp

is invertible then εn(x) ∈ Z/(pn) is invertible. Conversely if εn(x) is invertible then
p - εn(x) (f hometask) hence x is invertible in Zp, so εn|U : U → (Z/(pn))∗ is surjective.
ker(εn|U) = Un by definition �

Theorem 1.19. (The Teichmüller decomposition). U = T ×U1, T
def
= {x ∈ U such that

xp−1 = 1} being a cyclic group of p-1 elements.

Proof. We postpone the proof to the end of the next theorem.

Remark. If p = 2 then U = U1 and T is a trivial group.

Theorem 1.20. (Hensel’s Lemma) Suppose f ∈ Zp[t], f
′ its derivative, n ∈ Z>0 a

positive integer. Suppose x ∈ Zp is some p-adic integer such that vp(f
′(x)) = 0 and

f(x) ≡ 0 mod pn. Then ∃y ∈ Zp such that
1) f(y) ≡ 0 mod pn+1

2) vp(f
′(y)) = 0

3) y ≡ x mod pn

Proof. Let us search for y = x+pnz, z ∈ Zp. By the Taylor formula f(y) =
degf∑
i=0

f (i)(x)
i!

(pnz)i.
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Since for any monomial xj and for any i ≤ j (xj)(i)(x)
i!

=
(
j
i

)
xj−i the coefficients f (i)(x)

i!

are p-adic integers hence f(y) = f(x) + pnzf ′(x) + p2na for some a ∈ Zp. By assumption
f(x) = pnb for some b ∈ Zp, f

′(x) = c for some c ∈ U . Choose z such that b+zc ≡ 0 modp,
since c is invertible this is possible. Then 1) holds. 3) holds automatically by the choice
of y. 2) also holds (use the Taylor formula for f ′(y)) �

Proof of the Theorem 1.19. The equation xp−1 − 1 = 0 has p − 1 different solutions
modp. By Hensel’s Lemma each of these solutions could be lifted to the solution of the
same equation in Zp. Clearly they all are different and form a subgroup in U which is
cyclic by the general Theorem as a finite subgroup of the multiplicative group of the field
�

Definition-Theorem 1.21. Suppose α ∈ Zp, α ≡ 1 modp. The function expα : Zp → Zp

is defined as follows. Suppose z ∈ Zp, z = {iz ∈ Z/(pi)}. For each i choose
∼
iz ∈ Z≥0 such

that
∼
iz ≡ iz mod pi. Then expα(z) (or αz) = lim

i→∞
{α

∼
iz}. The map expα is a group homo-

morphism from the additive group of the ring Zp to the subgroup U1 of its group of units U .

Proof. If a p-adic number equals 1 mod pk then its p-th power equals 1 mod pk+1 by
the binomial formula, hence for any integer y such that pi|y αy ≡ 1 mod pi+1. Therefore

{α
∼
iz} is a Cauchy sequence (for i > j both large ||α

∼
iz − α

∼
jz||p = ||α

∼
jz||p||α

∼
iz−

∼
jz − 1||p =

||α
∼
iz−

∼
jz−1||p, the latter being close to zero as pj|(∼iz −

∼
jz)), hence αz exists. We still need

to prove that αz does not depend on the choice of integers
∼
iz, which is a hometask.

Suppose z1 and z2 are two elements of Zp and the integers
∼
iz1 and

∼
iz2 are chosen. Let

z = z1 + z2. One may choose
∼
iz=

∼
iz1 +

∼
iz2. Then α

∼
iz = α

∼
iz1α

∼
iz2 hence the homomorphism

property holds for the Cauchy sequences componentwise and therefore holds for their lim-
its. Since α is in U1 it is clear that the image of expα is in U1 �

Theorem 1.22. 1) If p 6= 2 and α 6≡ 1 mod p2 then expα defines an isomorphism
Zp → U1.
2) If p = 2 and α ≡ 5 mod 8 then expα defines an isomorphism Zp → U2.

Proof. We first suppose p 6= 2. Consider the composite map δi = εi+1 ◦ expα Zp
expα→

U1
εi+1→ (Z/(pi+1))∗. By the first line of the proof of 1.21 piZp ⊂ ker δi, hence δi defines a

homomorphism Zp/(p
i) → (Z/(pi+1))∗ for which we will use the same notation δi. The

image of δi is contained in the subgroup (Z/(pi+1)∗)1 consisting of the residues equal to

11



1 mod p. The order of this subgroup equals pi because φ(pi+1) = pi(p − 1), so just pi

invertible residues mod pi+1 have a particular residue mod p. The order of Zp/(p
i) also

equals pi hence it suffices to prove that δi is injective to conclude it is an isomorphism.
For p = 2 one needs to define δi = εi+2 ◦ expα and to consider the subgroup (Z/(pi+2)∗)1
consisting of the residues equal to 1 mod 4. This is also of order pi.

Let z ∈ Zp, z 6≡ 0 mod pi. Choose
∼
z∈ Z,

∼
z ≡ z mod pi. Then δi(z) = δi(

∼
z). By the

choice of z
∼
z= pku for some k < i and u not divisible by p. So α

∼
z = αp

ku = (αu)p
k

.
It is clear that in both cases of the Theorem αu satisfies the same conditions as α does.
So to prove that δi is injective (hence an isomorphism) it remains to prove that for
k < i αp

k 6≡ 1 mod pi+1. This could be done by induction, using the following Lemma.

Lemma. If p - u, p 6= 2 and v ≥ 1 or p = 2 and v ≥ 2 then vp((1 + pvu)p − 1) = v + 1.

Proof. By the binomial formula (1 + pvu)p =
p∑
i=0

(
p
i

)
pivui. The first term is 1, vp(second

term) is v + 1. If i ≥ 3 then iv > v + 1 hence vp (forth and later terms) > v + 1. If i = 2
then iv + vp

((
p
i

))
> v + 1 by the conditions of the Lemma �

End of the proof of the Theorem. Zp is a projective limit of its quotient groups Z/(pi).
Correspondingly if p 6= 2 then U1 is a projective limit of its quotient groups (Z/(pi+1)∗)1
while if p = 2 then U2 is a projective limit of its quotient groups (Z/(pi+2)∗)1. The maps
δi are isomorphisms on the quotient groups and it is easy to check that they commute
with the standard residue maps (i.e. δi−1 ◦φi = φi+1 ◦ δi for p 6= 2 and δi−1 ◦φi = φi+2 ◦ δi
for p = 2). Hence the map expα of the projective limits is an isomorphism �

Theorem 1.23. If p 6= 2 then Z∗p ' T × Zp. If p = 2 then Z∗p ' {±1} × Zp.

Proof. This follows immediately from theorems 1.19 and 1.22 �

Definition 1.24. log: U1 → Zp log(1 + x)
def
=

∞∑
i=1

(−1)i−1 x
i

i
.

exp: (pZp → U1 if p 6= 2; p2Zp → U2 if p = 2) exp(z)
def
=

∞∑
i=0

zi

i!
.

Remark. Since vp(i!) = 1
p−1(i - sum of the digits of i in the p-based system) (to prove is

a hometask) the definition above is correct.

Theorem 1.25. If p 6= 2 then U1

log∼= pZp. If p=2 then U2

log∼= p2Zp.
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Proof. It is wellknown that the formal power series in the Definition 2.24 are inverse
to each other. Since in Qp every convergent power series converges absolutely the same
is true for the functions they define �
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